JPS6234059B2 - - Google Patents

Info

Publication number
JPS6234059B2
JPS6234059B2 JP54076936A JP7693679A JPS6234059B2 JP S6234059 B2 JPS6234059 B2 JP S6234059B2 JP 54076936 A JP54076936 A JP 54076936A JP 7693679 A JP7693679 A JP 7693679A JP S6234059 B2 JPS6234059 B2 JP S6234059B2
Authority
JP
Japan
Prior art keywords
copolymer rubber
nbr
thermoplastic elastomer
monoolefin copolymer
monoolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076936A
Other languages
Japanese (ja)
Other versions
JPS562332A (en
Inventor
Kyoshi Sakai
Masao Shiraishi
Shuichi Nakayama
Yutaka Tsuruki
Hideo Nakanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP7693679A priority Critical patent/JPS562332A/en
Publication of JPS562332A publication Critical patent/JPS562332A/en
Publication of JPS6234059B2 publication Critical patent/JPS6234059B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、成圢品のベト぀きがなく耐油性が改
良されたオレフむン系熱可塑性゚ラストマヌ配合
物に関する。 モノオレフむン共重合䜓ゎムず、ポリオレフむ
ンプラスチツクスずの組み合わせよりなるポリオ
レフむン系熱可塑性゚ラストマヌ配合物は数倚く
知られおいるが、これらは耐油性に劣る欠点を有
しおいる。 モノオレフむン共重合䜓ゎムは、耐候性、耐寒
性に優れるが鉱物油等の炭化氎玠系の油に察しお
は党く抵抗性を瀺さない。䞀方アクリロニトリ
ル・ブタゞ゚ン共重合䜓ゎム以䞋NBRず略蚘
するは、炭化氎玠系の油に察しお優れた抵抗性
を瀺すが、耐候性、耐寒性が劣るため、モノオレ
フむン共重合䜓ゎムずNBRの混和により耐油
性、耐候性、耐寒性に優れた加硫ゎムを埗ようず
する公知技術は数倚くある。ずころがモノオレフ
むン共重合䜓ゎムずNBRでは、加硫促進剀や加
硫剀の溶解性が倧巟に異なるこず、および䞡者共
重合䜓の芪和性が悪いこずが障害ずな぀お共加硫
が困難なためいただ有力な技術は加硫ゎム分野で
も埗られおいない。 モノオレフむン共重合䜓ゎムず、ポリオレフむ
ンプラスチツクスを䞻原料ずするオレフむン系熱
可塑性゚ラストマヌは、その優れた耐候性、耐寒
性、成圢䞊の経枈性を掻かしお、自動車の内倖装
郚品及び電線被芆材分野で需芁を獲埗し぀぀ある
が、炭化氎玠系の油に察しお党く抵抗性を瀺さ
ず、油が接觊する堎合には著しく膚最し、原圢を
ずどめないたでに倉圢しおしたうため甚途が倧巟
に制限されおいる。䟋えば自動車倖装郚品で、ガ
゜リン絊油口の付近に取り付けられるような郚品
は、絊油時にガ゜リンが付着する可胜性が有り、
付着した堎合は、郚品の倖芳及び圢状に倧巟な倉
化が発生するおそれがありオレフむン系熱可塑性
゚ラストマヌは䜿甚できない。この珟象は、モノ
オレフむン共重合䜓ゎム成分の倚い高柔軟性、熱
可塑性゚ラストマヌの堎合は特に顕著である。な
ぜならばモノオレフむン共重合䜓ゎムはポリオレ
フむンプラスチツクスに比范しお、炭化氎玠系の
油に察しお著しく抵抗性が劣るからである。すな
わち特に機胜的に柔軟性が芁求される甚途で、炭
化氎玠系の油に接觊する可胜性のある分野の郚品
には、オレフむン系熱可塑性゚ラストマヌの䜿甚
は䞍可胜である。 前述の劂く、モノオレフむン共重合䜓ゎムの耐
油性を改良する詊みは、加硫ゎム分野では数倚く
なされおいる。すなわち、モノオレフむン共重合
䜓ゎムの耐油性が劣る本質的原因はその非極性化
孊構造に起因しおいるため、他の極性化孊構造を
有するゎムを添加、混合する方法が䞀般的にずら
れおいる。極性化孊構造ゎムずしおは、通垞
NBRが採甚される。 ずころが、モノオレフむン共重合䜓ゎムに
NBRを混和し、耐油性改良加硫ゎムを埗る堎合
には䞡者ゎムの極性が著しく異なるために、配合
された加硫促進剀および加硫剀の䞡者ゎムぞの溶
解性が異なり結果ずしお䞀方のゎムに加硫促進
剀、加硫剀が局圚しおしたうため共加硫の困難な
こず、および䞡者ゎムの芪和性が著しく劣るこず
により加硫物性の䜎䞋が生じおしたう。埓぀お
NBRの混和によるモノオレフむン共重合䜓ゎム
の耐油性改良は、ゎム業界においお重芁な技術課
題ずしお取り䞊げられおおり、公知技術もいく぀
か知られおいる。䟋えば、モノオレフむン共重合
䜓ゎムずNBRに察しおより近い溶解性を持぀
た、特殊な加硫促進剀を䜿甚しお共加硫を実珟す
る方法特公昭52−19574や、モノオレフむン
共重合䜓ゎムNBR系に第の特殊重合䜓を添
加しお芪和性を改良する方法特開昭53−
67754等が知られおいる。 本発明者らは、ポリオレフむン系熱可塑性゚ラ
ストマヌの耐油性を改良すべく鋭意研蚎した結
果、混緎り機䞭、モノオレフむン共重合䜓ゎムず
NBRおよびポリオレフむンプラスチツクスを混
緎りし、ポリオレフむンプラスチツクスが融解し
た埌、有機過酞化物を分散させながら同時に架橋
反応を生じさせるこずにより、モノオレフむン共
重合䜓ゎムずNBRが郚分的に共架橋した、耐油
性の改良された非ベト぀き性熱可塑性゚ラストマ
ヌ配合物が埗られるこずを芋出した。 本発明はかかる知芋に基づいお達成されたもの
で、その芁旚ずするずころは、モノオレフむン共
重合䜓ゎム、アクリロニトリル・ブタゞ゚ン共重
合䜓ゎムおよびポリオレフむンプラスチツクスを
混緎りし、ポリオレフむンプラスチツクスが融解
した埌、、架橋剀を分散させながら䜜甚させ、モ
ノオレフむン共重合䜓ゎムずアクリロニトリル・
ブタゞ゚ン共重合䜓ゎムを郚分的に共架橋させた
こずを特城ずする成圢品のベト぀きがなく耐油性
が改良された熱可塑性゚ラストマヌ配合物に存す
る。 本発明においおは、融解状態のポリオレフむン
プラスチツクスおよび有機過酞化物によ぀お代衚
される架橋剀の存圚䞋で、モノオレフむン共重合
䜓ゎムずNBRを、バンバリヌ・ミキサヌ等の密
閉型混緎り機で混緎りし架橋物をモノオレフむン
共重合䜓ゎムずNBRの䞡共重合䜓に分散させな
がら䜜甚させるこずにより、共架橋を達成する。 本発明では、架橋剀の分散ず架橋反応を同時に
行なうため架橋剀の溶解性の問題が発生せず、耐
油性の改良された熱可塑性゚ラストマヌが埗られ
る。この方法によれば、前蚘の特殊な加硫剀や第
の特殊重合䜓を䜿甚せずずも、物䜓䜎䞋の少な
い耐油性の改良された非ベト぀き性熱可塑性゚ラ
ストマヌ配合物が埗られる。本発明以倖の方法に
よる配合物、すなわちモノオレフむン共重合䜓ゎ
ムずポリオレフむンプラスチツクを原料ずするオ
レフむン系熱可塑性゚ラストマヌずNBRを単玔
に混合した配合物は耐油性改良効果はあるが成圢
品にベト぀き性が芳察される。プラスチツク材料
で成圢品にベト぀きがある堎合は、材料ずしおの
商品䟡倀が激枛するため、オレフむン系熱可塑性
゚ラストマヌの耐油性を改良するにあた぀おは、
モノオレフむン共重合䜓ゎムずNBRを共架橋す
るこずが必須䞍可欠である。曎に、本願発明を詳
现に説明すれば、予め加熱されたロヌルミルや、
バンバリヌミキサヌ、加圧型ニヌダヌ等の内郚密
閉型混緎り機に、所定量のポリオレフむンプラス
チツクス、モノオレフむン共重合䜓ゎム、NBR
をチダヌゞし、混緎りを開始する。チダヌゞした
重合䜓は自己発熱によ぀お、やがおポリオレフむ
ンプラスチツクスが融解する。この時点で少量の
架橋剀を添加し重合䜓䞭に分散させながら架橋剀
をほが100䜿甚させ、モノオレフむン共重合䜓
ゎムずNBRを郚分的に共架橋させ、非ベト぀き
性の耐油性の改良された熱可塑性゚ラストマヌ配
合物を埗るこずができる。この配合物は混緎り終
了埌、通垞のプラスチツクス成圢機で成圢可胜な
圢状、すなわちペレツトやフレヌク状に加工され
る。以䞊、本発明における耐油性熱可塑性゚ラス
トマヌ配合物を埗る基本的方法に぀いお説明した
が、所望に応じお、䞀般的にゎム業界で知られお
いるように、鉱物油等の䌞展油、ゞオクチルフタ
レヌト等の可塑剀を添加しおもよいし、各皮顔料
や、耐熱安定剀、耐候安定剀を適宜添加しおもよ
い。曎に、本発明によ぀お埗られる耐油性熱可塑
性゚ラストマヌに察しお、䜎密床ポリ゚チレン、
高密床ポリ゚チレン、゚チレン・酢酞ビニル共重
合䜓等のポリオレフむン暹脂を远加しお、目的ず
する剛性等の性胜を付䞎しおもよい。 次に、本発明に䜿甚される各皮原料に぀いお説
明する。たずモノオレフむン共重合䜓ゎムずしお
は、バナゞりム化合物ずアルミニりム化合物の組
合せによ぀お代衚されるチヌグラヌ・ナツタ系觊
媒を甚いお、皮以䞊のモノオレフむンあるいは
それにさらに共重合しうる少くずも皮のポリ゚
ンを共重合しおなる本質的に無定圢なランダム共
重合䜓である。通垞、モノオレフむンの䞀方ぱ
チレンであり他方はプロピレンであるが、他のα
−モノオレフむン䞀般匏CH2CHRも䜿甚
できる。このモノオレフむン共重合䜓ゎムぱチ
レン・プロピレン成分共重合䜓ゎムのような飜
和化合物でもよいが、共重合䜓䞭に少量の少なく
ずも皮の共重合しうるポリ゚ンを含有させお、
共重合䜓に、䞍飜和性を付䞎するこずが通垞奜た
しい。ポリ゚ンずしおは・−ヘキサゞ゚ン、
シクロペンタゞ゚ン、メチレンノルボルネン、゚
チリデンノルボルネン、プロペニルノルボルネ
ン、シクロオクタゞ゚ン、メチルテトラヒドロむ
ンデンなどが䜿甚される。次に、ポリオレフむン
プラスチツクスずしおは高床の結晶性を有するア
む゜タクチツクおよびシンゞオクチツクポリプロ
ピレンであり、曎に゚チレンずプロピレンの結晶
性ブロツク共重合䜓も䜿甚される。本発明に甚い
るNBRはアクリロニトリル含量15〜50重量の
アクリロニトリル−ブタゞ゚ン共重合䜓ゎムであ
る。より奜適にはモノオレフむン共重合䜓ゎムず
の芪和性を考慮しお、より䜎アクリロニトリル含
量のNBRがよい。即ちアクリロニトリル含量ず
しおは15〜35重量のものが奜たしい。曎にアク
リル酞、メタクリル酞などの䞍飜和カルボン酞お
よびそれらのアルキル゚ステルなどの第単量䜓
を10重量以䞋共重合させた倉性NBRも甚いる
こずもできる。 本発明に䜿甚される架橋剀ずしおは通垞、有機
過酞化物のようなフリヌラゞカル発生剀が甚いら
れる。架橋剀ずしお䜿甚される有機過酞化物ずし
おは、・−ゞメチル・−ゞ−ブチル
パヌオキシヘキシン−、ゞ−−ブチルパヌ
オキサむド、・−ゞメチル−・−ゞ
−ブチルパヌオキシヘキサン、α・α′−ビス
−ブチルパヌオキシ−−ゞむ゜プロピルベ
ンれン、ゞクミルブチルパヌオキサむド、−ブ
チルパヌオキシベンゟ゚ヌト、・−ビス
−ブチルパヌオキシ−・・−トリメチル
シクロヘキサン、・−ゞクロルベンゟむルパ
ヌオキサむド、ベンゟむルパヌオキサむド、−
クロルベンゟむルパヌオキサむドなどがあるが、
より奜適には高枩分解型のものが遞択䜿甚され
る。曎に有機過酞化物の添加方法に関しおは安党
性および品質の安定性を確保するこずを目的ずし
お本発明者らによる特開昭54−1386公報にみられ
る技術を採甚するこずが奜たしい。すなわち有機
過酞化物架橋剀ず架橋反応遅延剀を含有するモノ
オレフむン共重合䜓ゎムマスタヌバツチを、予め
補造埌添加する方法である。 次にモノオレフむン共重合䜓ゎム、ポリオレフ
むンプラスチツクス、NBR、有機過酞化物架橋
剀の割合に぀いお説明する。各重合䜓および架橋
剀の割合は熱可塑性゚ラストマヌずしおの芁求性
胜に応じお決められるが、匟性および熱可塑性を
保持するためには、ポリオレフむンプラスチツク
は党重合䜓の10〜50重量にし、それに察応しお
モノオレフむン共重合䜓ゎムずNBRのゎム成分
を90〜50重量にする必芁がある。モノオレフむ
ン共重合䜓ゎムずNBRの比率は、芁求される耐
油性のレベルによ぀お決められるがモノオレフむ
ン共重合䜓ゎム100重量郚に察しおNBR5〜700重
量郚の範囲で遞択される。NBRが重量郚未満
であれば耐油性改良効果がなく、700重量郚を超
えるずモノオレフむン共重合䜓ゎムの特性である
耐候性、耐熱性が損われる。奜たしくは30〜300
重量郚の範囲で遞択される。䞀方、架橋剀の量は
党重合䜓100重量郚に察しお0.1〜1.0重量郚の範
囲で決められるが、より奜たしくは0.3〜0.7重量
郚である。なぜならば架橋剀量が少なすぎるず共
架橋性が劣るし、倚すぎるず架橋が過床に進むた
め熱可塑性゚ラストマヌずしおの成圢性がそこな
われ成圢倖芳が著しく悪化する。 耐油性改良効果は配合するNBRの割合および
NBRの皮類すなわちアクリロニトリル含量によ
぀お異なるが、実斜䟋に瀺した劂くNBRを添
加しない比范䟋に比べお、耐油性Δ、Δ
灯油䞭垞枩で3hrs浞挬埌の䜓積倉化率、重量倉
化率  詊隓法JIS−K6301準拠は倧巟に改良
される。実隓番号〜ず実隓番号〜10の比
范 曎にモノオレフむン共重合䜓ゎムずNBRの共
架橋の効果ずしお、実斜䟋、比范䟋に瀺した
劂く、予めポリオレフむンプラスチツクスずモノ
オレフむン共重合䜓ゎムおよび架橋剀ずからオレ
フむン系熱可塑性゚ラストマヌを補造埌、単玔に
NBRを混和したものに比范しお本発明の熱可塑
性゚ラストマヌ配合物は匕匵詊隓JIS−
K6301における100応力M100、砎断点応力
Bが倧きいこず、および射出成圢品のベタ぀
きがない等の特城がみられる。実隓番号〜
ず実隓番号11〜13の比范 次に実斜䟋によ぀お本発明を曎に具䜓的に説明
するが、本発明はその芁旚をこえない限り以䞋の
実斜䟋に制玄されるものではない。 実斜䟋、比范䟋に甚いた各成分の詳现は以䞋の
ずおりである。 モノオレフむン共重合䜓ゎムEPM
ML1+410040、プロピレン含量49wt、
EPDMML1+410038、プロピレン含量
34wt、ペり玠䟡19  第成分゚チリデン
ノルボルネン6wt。 結晶性ポリプロピレンPPメルトフロヌ
むンデツクス12

ASTM D1238、枬定枩床
230℃、比重0.91 NBRNBRML1+410056、結合アクリロ
ニトリル含量26wt、NBRML1+4
63、結合アクリロニトリル含量20wt 有機過酞化物架橋剀POα・α′−ビス
−ブチルパヌオキシ−ゞむ゜プロピル
ベンれン 有機過酞化物架橋反応遅延剀REゞベン
ゟチアゟヌルゞスルフむド 有機過酞化物マスタヌバツチMBEPM
100重量郚に察しお、POを40郚、
PEを10郚、むンチロヌルにお配合し
たもの 実斜䟋  第衚に瀺した配合凊方により、以䞋の手順に
よ぀お熱可塑性゚ラストマヌ配合物を補造した。
物性評䟡結果もあわせお第衚に瀺した。熱可塑
性゚ラストマヌ配合物の補造手順は、予め170℃
に予熱した加圧型ニヌダヌ森山補䜜所補、容量
に、EPDM、PP、NBR
たたはNBRを添加し、分間混緎りを続
けPPを融解状態䞋に眮き、有機過酞化物
マスタヌバツチMBを添加した。添加埌、
曎に分間混緎りを続けお有機過酞化物を100
䜜甚させ熱可塑性゚ラストマヌ配合物を埗た。埗
られた配合物の郚をプレス成圢したのち物性評
䟡を実斜した。残りの配合物は角切りペレタむザ
ヌで角ペレツト状に加工され射出成圢機にお板状
テストピヌスを成圢し衚面のベト぀き状態を芳察
した。実隓番号− 比范䟋  比范䟋ずしおNBRを䜿甚しない堎合を瀺す。
第衚に瀺した配合凊方によりNBRの添加以倖
は実斜䟋ず党く同じ手順で熱可塑性゚ラストマ
ヌ配合物を補造し、物性を評䟡した。実隓番号
〜10、なお実隓番号〜の配合物はそれぞ
れTPE〜TPEずする。 比范䟋  比范䟋ずしおオレフむン系熱可塑性゚ラストマ
ヌずNBRを単玔に混ぜた堎合を瀺す。すなわ
ち、比范䟋で埗られた熱可塑性゚ラストマヌ配
合物ず、NBRを第衚に瀺した配合凊方
により、加圧型ニヌダで単玔に混ぜあわせ、埗ら
れる配合物の物性を評䟡した。実隓番号11〜
13 なお、実隓番号〜の配合物はそれぞれ実隓
番号11〜13の配合物ず構成する各成分の割合が同
䞀ずなるようにコントロヌルされおいる。 比范䟋  第衚に瀺した配合凊方により、加圧型ニヌダ
ヌにEPDM、PP、NBRおよび
POを同時に添加しお、玄360〓玄180
℃で分間混緎りを行ない、熱可塑性゚ラスト
マヌ配合物を補造した。埗られた配合物に぀い
お、実斜䟋ず同様にしお物性を評䟡した結果を
第衚に瀺した。察応する実斜䟋の実隓番号
に比しお耐油性および匕匵匷床M100、Bが
かなり劣぀おいる。 第衚〜衚に瀺した詊隓項目の詊隓方法を列
挙すれば次のずおりである。 硬 床 JIS −6301型 M100 100応力JIS K6301 B 砎断点応力 〃 B 砎断点䌞床 〃 耐油性△癜灯油、宀枩、3hrs浞挬埌の䜓積倉
化率JIS K6301準拠 耐油性△癜灯油、宀枩、3hrs浞挬埌の重量倉
化率JIS K6301準拠 ETQ高化匏フロヌテスタヌ、200℃、300Kg荷
重、ノズルmmφ×mmの毎秒時の流出量 ベト぀き山城粟機、1OZ射出成圢機、シリンダ
ヌ枩床200℃で、射出成圢シヌトを成圢。成圢
品のベト぀きを手による感觊により刀定。
The present invention relates to an olefinic thermoplastic elastomer compound that provides molded articles with no stickiness and improved oil resistance. Many polyolefin thermoplastic elastomer compounds are known, which are made by combining monoolefin copolymer rubber and polyolefin plastics, but these have the disadvantage of poor oil resistance. Monoolefin copolymer rubber has excellent weather resistance and cold resistance, but shows no resistance to hydrocarbon oils such as mineral oil. On the other hand, acrylonitrile-butadiene copolymer rubber (hereinafter abbreviated as NBR) shows excellent resistance to hydrocarbon oils, but has poor weather resistance and cold resistance, so monoolefin copolymer rubber and NBR There are many known techniques that attempt to obtain vulcanized rubber with excellent oil resistance, weather resistance, and cold resistance by mixing. However, co-vulcanization of mono-olefin copolymer rubber and NBR is difficult due to wide differences in solubility of the vulcanization accelerator and vulcanizing agent, and poor affinity between the two copolymers. For this reason, no effective technology has yet been obtained in the field of vulcanized rubber. Olefin thermoplastic elastomers, whose main raw materials are monoolefin copolymer rubber and polyolefin plastics, take advantage of their excellent weather resistance, cold resistance, and economical molding, and are used in automobile interior and exterior parts and electric wire coating materials. Although it is gaining demand in the field, it has no resistance at all to hydrocarbon oils, and when oil comes into contact with it, it swells significantly and deforms to the point where it no longer retains its original shape, so it has a wide range of uses. Limited in width. For example, automotive exterior parts that are installed near the gasoline filler port may be contaminated with gasoline during refueling.
If it adheres, there is a risk that the appearance and shape of the part will change significantly, so olefin-based thermoplastic elastomers cannot be used. This phenomenon is particularly remarkable in the case of highly flexible thermoplastic elastomers containing a large amount of monoolefin copolymer rubber components. This is because monoolefin copolymer rubber has significantly lower resistance to hydrocarbon oils than polyolefin plastics. In other words, it is impossible to use olefinic thermoplastic elastomers for parts that may come into contact with hydrocarbon oils, especially in applications where functional flexibility is required. As mentioned above, many attempts have been made in the vulcanized rubber field to improve the oil resistance of monoolefin copolymer rubber. In other words, the essential cause of the poor oil resistance of monoolefin copolymer rubber is due to its non-polar chemical structure; therefore, the method of adding and mixing rubbers with other polar chemical structures is generally adopted. There is. As a polar chemical structure rubber, usually
NBR is adopted. However, monoolefin copolymer rubber
When mixing NBR to obtain a vulcanized rubber with improved oil resistance, the polarity of the two rubbers is significantly different, so the solubility of the blended vulcanization accelerator and vulcanizing agent in the rubber is different, resulting in one Since the vulcanization accelerator and the vulcanizing agent are localized in the rubber, co-vulcanization is difficult, and the affinity between the two rubbers is extremely poor, resulting in a decrease in vulcanized physical properties. accordingly
Improving the oil resistance of monoolefin copolymer rubber by incorporating NBR has been taken up as an important technical issue in the rubber industry, and several publicly known techniques are known. For example, there is a method to achieve co-vulcanization using a special vulcanization accelerator (Japanese Patent Publication No. 52-19574), which has closer solubility to mono-olefin copolymer rubber and NBR, and Method of improving affinity by adding a third special polymer to polymer rubber/NBR system
67754) etc. are known. As a result of intensive research aimed at improving the oil resistance of polyolefin-based thermoplastic elastomers, the present inventors discovered that monoolefin copolymer rubber
After kneading NBR and polyolefin plastic and melting the polyolefin plastic, the monoolefin copolymer rubber and NBR were partially co-crosslinked by simultaneously causing a crosslinking reaction while dispersing the organic peroxide. It has been discovered that non-stick thermoplastic elastomer formulations with improved oil resistance are obtained. The present invention was achieved based on this knowledge, and its gist is that monoolefin copolymer rubber, acrylonitrile-butadiene copolymer rubber, and polyolefin plastics are kneaded, and the polyolefin plastics is melted. After that, the crosslinking agent is dispersed and acted upon, and the monoolefin copolymer rubber and acrylonitrile are combined.
The present invention relates to a thermoplastic elastomer compound that is characterized by partially co-crosslinking butadiene copolymer rubber and provides non-sticky molded products and improved oil resistance. In the present invention, monoolefin copolymer rubber and NBR are mixed in a closed kneader such as a Banbury mixer in the presence of a molten polyolefin plastic and a crosslinking agent such as an organic peroxide. Co-crosslinking is achieved by applying the kneaded crosslinked product to both monoolefin copolymer rubber and NBR copolymers while dispersing them. In the present invention, since the dispersion of the crosslinking agent and the crosslinking reaction are carried out simultaneously, problems with the solubility of the crosslinking agent do not occur, and a thermoplastic elastomer with improved oil resistance can be obtained. According to this method, a non-stick thermoplastic elastomer compound with improved oil resistance and less material deterioration can be obtained without using the special vulcanizing agent or the third special polymer. Compounds made by methods other than the present invention, i.e., compounds in which NBR is simply mixed with an olefin thermoplastic elastomer made from monoolefin copolymer rubber and polyolefin plastic, have the effect of improving oil resistance, but the molded product becomes sticky. gender is observed. If the molded product is sticky with plastic materials, the commercial value of the material will be drastically reduced, so when improving the oil resistance of olefin thermoplastic elastomers,
It is essential to co-crosslink the monoolefin copolymer rubber and NBR. Furthermore, if the present invention is explained in detail, a pre-heated roll mill,
A predetermined amount of polyolefin plastics, monoolefin copolymer rubber, NBR is added to an internally closed kneading machine such as a Banbury mixer or a pressure kneader.
Charge and start kneading. The charged polymer will eventually melt the polyolefin plastic due to self-heating. At this point, a small amount of crosslinking agent is added and dispersed in the polymer to ensure that almost 100% of the crosslinking agent is used, partially co-crosslinking the monoolefin copolymer rubber and NBR, resulting in a non-stick, oil-resistant product. Improved thermoplastic elastomer formulations can be obtained. After kneading, this compound is processed into a shape that can be molded using a conventional plastic molding machine, that is, into pellets or flakes. The basic method for obtaining an oil-resistant thermoplastic elastomer compound according to the present invention has been described above, but if desired, extender oil such as mineral oil, dioctyl phthalate, etc. may be used, as is generally known in the rubber industry. A plasticizer may be added, and various pigments, heat stabilizers, and weather stabilizers may be added as appropriate. Furthermore, for the oil-resistant thermoplastic elastomer obtained by the present invention, low density polyethylene,
A polyolefin resin such as high-density polyethylene or ethylene/vinyl acetate copolymer may be added to impart desired performance such as rigidity. Next, various raw materials used in the present invention will be explained. First, as a monoolefin copolymer rubber, a Ziegler-Natsuta catalyst represented by a combination of a vanadium compound and an aluminum compound is used to produce monoolefin copolymer rubber. It is an essentially amorphous random copolymer made by copolymerizing polyenes. Typically, one monoolefin is ethylene and the other is propylene, but other α
- Monoolefins (general formula CH 2 =CHR) can also be used. This monoolefin copolymer rubber may be a saturated compound such as an ethylene/propylene two-component copolymer rubber, but by incorporating a small amount of at least one copolymerizable polyene into the copolymer,
It is usually preferred to impart unsaturation to the copolymer. As polyene, 1,4-hexadiene,
Cyclopentadiene, methylenenorbornene, ethylidenenorbornene, propenylnorbornene, cyclooctadiene, methyltetrahydroindene, etc. are used. Next, polyolefin plastics include isotactic and syndioctic polypropylene having a high degree of crystallinity, and also crystalline block copolymers of ethylene and propylene. The NBR used in the present invention is an acrylonitrile-butadiene copolymer rubber containing 15 to 50% by weight of acrylonitrile. More preferably, NBR with a lower acrylonitrile content is preferred in consideration of affinity with monoolefin copolymer rubber. That is, the acrylonitrile content is preferably 15 to 35% by weight. Furthermore, modified NBR obtained by copolymerizing 10% by weight or less of a third monomer such as an unsaturated carboxylic acid such as acrylic acid or methacrylic acid and an alkyl ester thereof may also be used. As the crosslinking agent used in the present invention, a free radical generator such as an organic peroxide is usually used. Organic peroxides used as crosslinking agents include 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3, di-t-butylperoxide, and 2,5-dimethyl-2. 5-di(t
-butylperoxy)hexane, α・α′-bis(t-butylperoxy)-p-diisopropylbenzene, dicumylbutylperoxide, t-butylperoxybenzoate, 1,1-bis(t-butylperoxy)hexane,
-butylperoxy)-3,3,5-trimethylcyclohexane, 2,4-dichlorobenzoyl peroxide, benzoyl peroxide, p-
Chlorbenzoyl peroxide, etc.
More preferably, a high-temperature decomposition type is selected and used. Furthermore, as for the method of adding the organic peroxide, it is preferable to adopt the technique disclosed in Japanese Patent Application Laid-Open No. 1386-1986 by the present inventors for the purpose of ensuring safety and quality stability. That is, this is a method in which a monoolefin copolymer rubber masterbatch containing an organic peroxide crosslinking agent and a crosslinking reaction retarder is added after production. Next, the proportions of monoolefin copolymer rubber, polyolefin plastics, NBR, and organic peroxide crosslinking agent will be explained. The proportion of each polymer and crosslinking agent is determined according to the required performance as a thermoplastic elastomer, but in order to maintain elasticity and thermoplasticity, the proportion of polyolefin-in plastic should be 10 to 50% by weight of the total polymer. It is necessary to adjust the rubber components of monoolefin copolymer rubber and NBR to 90 to 50% by weight. The ratio of the monoolefin copolymer rubber to NBR is determined depending on the level of oil resistance required, and is selected within the range of 5 to 700 parts by weight of NBR per 100 parts by weight of the monoolefin copolymer rubber. If NBR is less than 5 parts by weight, there is no oil resistance improvement effect, and if it exceeds 700 parts by weight, the weather resistance and heat resistance, which are the characteristics of monoolefin copolymer rubber, are impaired. Preferably 30-300
Selected within the range of parts by weight. On the other hand, the amount of the crosslinking agent is determined in the range of 0.1 to 1.0 parts by weight, and more preferably 0.3 to 0.7 parts by weight, based on 100 parts by weight of the total polymer. This is because if the amount of the crosslinking agent is too small, the co-crosslinking property will be poor, and if it is too large, the crosslinking will proceed excessively, thereby impairing the moldability of the thermoplastic elastomer and significantly deteriorating the molded appearance. The oil resistance improvement effect depends on the proportion of NBR blended and
Although it varies depending on the type of NBR, that is, the acrylonitrile content, the oil resistance ΔV, ΔW
(Volume change rate and weight change rate after immersion in kerosene at room temperature for 3 hours...according to test method JIS-K6301) are greatly improved. (Comparison of Experiment Numbers 1 to 6 and Experiment Numbers 7 to 10) Furthermore, as an effect of co-crosslinking of monoolefin copolymer rubber and NBR, as shown in Example 1 and Comparative Example 2, polyolefin plastics and monoolefin copolymer rubber were After producing an olefinic thermoplastic elastomer from a copolymer rubber and a crosslinking agent, simply
The thermoplastic elastomer blend of the present invention was tested in tensile tests (JIS-
K6301), the 100% stress (M 100 ) and stress at break (T B ) are large, and the injection molded product is free from stickiness. (Experiment numbers 1-3
(Comparison of Experiment Nos. 11 to 13) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Details of each component used in Examples and Comparative Examples are as follows. Monoolefin copolymer rubber; EPM ()
(ML 1+4 100=40, propylene content 49wt%),
EPDM () (ML 1+4 100=38, propylene content
34wt%, iodine value 19...Third component ethylidene norbornene 6wt%). Crystalline polypropylene; PP () (melt flow index 12...ASTM D1238, measurement temperature
230℃, specific gravity 0.91) NBR; NBR () (ML 1+4 100 = 56, bound acrylonitrile content 26wt%), NBR () (ML 1+4 =
63, bound acrylonitrile content 20wt%) Organic peroxide crosslinking agent; PO() (α・α′-bis(t-butylperoxy)p-diisopropylbenzene) Organic peroxide crosslinking reaction retarder; RE()( Dibenzothiazole disulfide) Organic peroxide master batch; MB () (EPM
() to 100 parts by weight, 40 parts of PO(),
Example 1 A thermoplastic elastomer compound was manufactured according to the formulation shown in Table 1 according to the following procedure.
The physical property evaluation results are also shown in Table 1. The manufacturing procedure for the thermoplastic elastomer compound is to preheat to 170°C.
EPDM (), PP (), NBR () in a pressure kneader (manufactured by Moriyama Seisakusho, capacity 1) preheated to
Alternatively, NBR () was added, kneading was continued for 2 minutes, PP () was brought under molten state, and organic peroxide masterbatch MB () was added. After addition,
Continue kneading for another 6 minutes until the organic peroxide is 100%
A thermoplastic elastomer compound was obtained. A portion of the resulting blend was press-molded and then evaluated for physical properties. The remaining mixture was processed into square pellets using a cube pelletizer, molded into a plate-shaped test piece using an injection molding machine, and the sticky state of the surface was observed. (Experiment No. 1-6) Comparative Example I As a comparative example, a case where NBR is not used is shown.
A thermoplastic elastomer compound was produced according to the formulation shown in Table 2 in exactly the same manner as in Example 1 except for the addition of NBR, and its physical properties were evaluated. (Experiment Nos. 7 to 10), and the formulations of Experiment Nos. 7 to 9 are referred to as TPE() to TPE(), respectively. Comparative Example 2 As a comparative example, a case where an olefin thermoplastic elastomer and NBR are simply mixed is shown. That is, the thermoplastic elastomer blend obtained in Comparative Example 1 and NBR () were simply mixed together in a pressure kneader according to the blending recipe shown in Table 3, and the physical properties of the resulting blend were evaluated. (Experiment number 11~
13) The formulations of experiment numbers 1 to 3 were controlled so that the proportions of each component were the same as those of the formulations of experiment numbers 11 to 13, respectively. Comparative Example 3 EPDM (), PP (), NBR () and
By adding PO() at the same time, approximately 360 〓 (approximately 180
℃) for 8 minutes to produce a thermoplastic elastomer blend. The physical properties of the obtained formulation were evaluated in the same manner as in Example 1, and the results are shown in Table 4. Experiment number 1 of corresponding Example 1
The oil resistance and tensile strength (M 100 , T B ) are considerably inferior to those of . The test methods for the test items shown in Tables 1 to 4 are listed below. Hardness JIS K-6301 (Type A) M 100 (100% stress); JIS K6301 T B (stress at break); E B (elongation at break); Oil resistance △V; white kerosene, room temperature, 3hrs Volume change rate after immersion (according to JIS K6301) Oil resistance △W: White kerosene, room temperature, weight change rate after immersion for 3 hours (according to JIS K6301) ETQ; Koka type flow tester, 200℃, 300Kg load, nozzle 1mmφ Flow rate per second of 2mm sticky; Yamashiro Seiki, 1OZ injection molding machine, cylinder temperature 200℃, injection molded sheet. Determine the stickiness of the molded product by feeling it with your hands.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】[Claims]  モノオレフむン共重合䜓ゎム、アクリロニト
リル・ブタゞ゚ン共重合䜓ゎムおよびポリオレフ
むンプラスチツクスを混緎りし、ポリオレフむン
プラスチツクスが融解した埌、架橋剀を分散させ
ながら䜜甚させ、モノオレフむン共重合䜓ゎムず
アクリロニトリル・ブタゞ゚ン共重合䜓ゎムを郚
分的に共架橋させたこずを特城ずする成圢品のベ
ト぀きがなく耐油性が改良された熱可塑性゚ラス
トマヌ配合物。
1. Knead the monoolefin copolymer rubber, acrylonitrile-butadiene copolymer rubber, and polyolefin plastics, and after the polyolefin plastics has melted, apply the crosslinking agent while dispersing it to combine the monoolefin copolymer rubber with the acrylonitrile-butadiene copolymer rubber. A thermoplastic elastomer compound which is characterized by partially co-crosslinking butadiene copolymer rubber and which prevents molded products from becoming sticky and has improved oil resistance.
JP7693679A 1979-06-20 1979-06-20 Thermoplastic elastomer composition Granted JPS562332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7693679A JPS562332A (en) 1979-06-20 1979-06-20 Thermoplastic elastomer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7693679A JPS562332A (en) 1979-06-20 1979-06-20 Thermoplastic elastomer composition

Publications (2)

Publication Number Publication Date
JPS562332A JPS562332A (en) 1981-01-12
JPS6234059B2 true JPS6234059B2 (en) 1987-07-24

Family

ID=13619606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7693679A Granted JPS562332A (en) 1979-06-20 1979-06-20 Thermoplastic elastomer composition

Country Status (1)

Country Link
JP (1) JPS562332A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255948A (en) * 1985-05-09 1986-11-13 Japan Synthetic Rubber Co Ltd Thermoplastic elastomer blend
JP2570358B2 (en) * 1988-02-03 1997-01-08 䜏友化孊工業株匏䌚瀟 Thermoplastic elastomer composition
CN106366459A (en) * 2016-08-27 2017-02-01 昆山力普电子橡胶有限公叞 Modified rubber material for wearable intelligent electronic equipment
JP7340958B2 (en) * 2019-05-28 2023-09-08 䞉井化孊株匏䌚瀟 Composition for power transmission belts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100443A (en) * 1977-12-30 1979-08-08 Uniroyal Inc Themoplastic elastomer and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100443A (en) * 1977-12-30 1979-08-08 Uniroyal Inc Themoplastic elastomer and method of making same

Also Published As

Publication number Publication date
JPS562332A (en) 1981-01-12

Similar Documents

Publication Publication Date Title
US4143099A (en) Method of preparing a thermoplastic elastomeric blend of monoolefin copolymer rubber and polyolefin resin
AU604691B2 (en) Method of producing thermoplastic elastomer compositions
US4088714A (en) Cross-linked melt-flowable thermoplastic elastomer blend comprising EPR or EPDM, polyethylene and polypropylene
JPH04234448A (en) Dynamically, partially crosslinked thermoplastic elastomer containing polybutene-1
WO1998046675A1 (en) Olefinic thermoplastic elastomer composition
AU599643B2 (en) Method of manufacture of thermoplastic elastomer compositions
US4965319A (en) Polymer composition
JPH08291239A (en) Thermoplastic elastomer composition
JP2570358B2 (en) Thermoplastic elastomer composition
US7411017B2 (en) Thermoplastic elastomer and molded article thereof
AU598808B2 (en) Thermoplastic elastomer composition
US8349949B2 (en) Modifiers for thermoplastic alloys and alloys produced using such modifiers
JPS6234059B2 (en)
JPS6259139B2 (en)
US3536653A (en) Ethylene-propylene rubber compositions containing amorphous polypropylene and extender oil
JP3669858B2 (en) Thermoplastic elastomer composition
JPH01103639A (en) Olefinic thermoplastic elastomer composition
JPS6036164B2 (en) ethylene copolymer
JP2691172B2 (en) Thermoplastic elastomer composition with excellent weather resistance
RU2669836C1 (en) Composition of dynamic vulcanized thermoplastic elastomer based on nitrile-containing rubbers, method of its production, and also product on its basis and method of its production
JP4507606B2 (en) Thermoplastic elastomer composition
JPH04130106A (en) Thermoplastic elastomer composition
JPS61255948A (en) Thermoplastic elastomer blend
JP2000072933A (en) Olefin elastomer composition
CA1339967C (en) Polymer composition