JPS6233760A - Manufacture of amorphous alloy film - Google Patents

Manufacture of amorphous alloy film

Info

Publication number
JPS6233760A
JPS6233760A JP17174685A JP17174685A JPS6233760A JP S6233760 A JPS6233760 A JP S6233760A JP 17174685 A JP17174685 A JP 17174685A JP 17174685 A JP17174685 A JP 17174685A JP S6233760 A JPS6233760 A JP S6233760A
Authority
JP
Japan
Prior art keywords
film
alternately
thickness
atomic
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17174685A
Other languages
Japanese (ja)
Other versions
JPH0586472B2 (en
Inventor
Tadataka Morishita
忠隆 森下
Yuji Togami
戸上 雄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP17174685A priority Critical patent/JPS6233760A/en
Publication of JPS6233760A publication Critical patent/JPS6233760A/en
Publication of JPH0586472B2 publication Critical patent/JPH0586472B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form the titled film exhibiting vertical magnetic anisotropy, by piling different kinds of metal element alternately as extremely thin atomic layer and diffusing atoms with each other from the boundary surface. CONSTITUTION:Different kind elements of >=two kinds such as Gd and Fe are vaporized alternately from crucibles 1, 1' arranged through a screen 2 to stack the elements alternately with a thickness of several atomic layers on a base plate S. Thereat, the plate S is moved alternately by a moving mechanism 5. Film thickness is measured by film thickness meters 6, 6' having about 1Angstrom resolving power. Atoms deposited on the plate S does not form film state, but form island state structure having spatial unevenness of fine particle state. Thus, the surface area in contact with different kind atomic layers is increased, and the atomic diffusion through the surface is carried out thoroughly. As a result, the vertical magnetized film of amorphous alloy having uniform property is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、異種の金属元素を極めて薄い原子層として、
交互に蒸着して積層することにより、これらの元素から
成る、垂直磁気異方性を示す非晶質合金薄膜を形成する
非晶質合金薄膜の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application 1] The present invention is directed to the formation of extremely thin atomic layers of different metal elements.
The present invention relates to a method for producing an amorphous alloy thin film that is made of these elements and exhibits perpendicular magnetic anisotropy by alternately depositing and stacking layers.

[従来の技術] 従来、暇直磁気異方性を有する非晶質合金薄膜を、蒸着
法で作製するためには、異種元素を同時に蒸発させる2
元同時蒸着法が採用されてきた。
[Prior Art] Conventionally, in order to fabricate an amorphous alloy thin film having free time direct magnetic anisotropy by a vapor deposition method, different elements are evaporated simultaneously.
The original co-evaporation method has been adopted.

同時蒸着法では。In co-evaporation method.

(1)膜の成分元素の構成比を一定に保つためには、各
元素の蒸発速度を一定に保つように制御しなくてはなら
ない。
(1) In order to keep the composition ratio of the constituent elements of the film constant, it is necessary to control the evaporation rate of each element to keep it constant.

(2)2個の蒸発源を基板の真下に配こすることができ
ない。
(2) Two evaporation sources cannot be placed directly under the substrate.

などの閤題点があった。(1)の条件を満たすためには
、時々刻々変化する蒸発源の残量を考慮した上で7に発
速度を一定に保たねばならず、複雑な制御系が要求され
る。(2)の条件では、落発した物質は常に基板に対し
て斜めに入射する。これが原因となった不必要な磁気異
方性が誘起されることや組成の不均一性が多い。
There were some important points such as: In order to satisfy the condition (1), the firing rate must be kept constant while taking into account the remaining amount of the evaporation source, which changes from time to time, and a complicated control system is required. Under condition (2), the fallen substance always enters the substrate obliquely. This often causes unnecessary magnetic anisotropy to be induced and compositional non-uniformity.

[発明が解決しようとする問題点1 そこで、本発明の目的は、これらの欠点を除去すべく、
蒸着の厚さを数原子層とし、異種原子層IIIの拡゛散
や島状構造による空間的な凹凸を利用して、非晶質薄膜
を形成する非晶質合金薄膜の製造方法を提供することに
ある。
[Problem to be solved by the invention 1 Therefore, the purpose of the present invention is to eliminate these drawbacks.
Provided is a method for producing an amorphous alloy thin film in which the thickness of the vapor deposition is several atomic layers and the amorphous thin film is formed by utilizing the diffusion of the heteroatomic layer III and the spatial unevenness due to the island structure. There is a particular thing.

[問題点を解決するための手段1 このような目的を達成するために、本発明は、少なくと
も2種以上の異種元素を、平均して数置f層の厚さに交
互に積層し、異種元素の原子層境界面から〃いに原子を
拡散させることにより、非晶質薄膜を形成することを特
徴とする。
[Means for Solving the Problems 1] In order to achieve such an object, the present invention alternately laminates at least two or more types of different elements to a thickness of several tens of f layers on average. It is characterized by forming an amorphous thin film by rapidly diffusing atoms from the atomic layer interface of the elements.

[作 用] 本発明によれば、平均の膜厚が数人の原子層を交互に積
層することにより、同時蒸着して得られた非晶質膜と類
似の磁性を示す垂直磁化膜を得ることができる。
[Function] According to the present invention, by alternately stacking several atomic layers with an average film thickness, a perpendicularly magnetized film exhibiting similar magnetism to an amorphous film obtained by simultaneous vapor deposition can be obtained. be able to.

[実施例1 以下に、図面を参照して、末完1jlを詳細に説明する
[Example 1] Hereinafter, the ending 1jl will be explained in detail with reference to the drawings.

本発明において、交〃蒸着を行なうための装置の一例を
第1図に示す、第1図において、lと1′は蒸発源を入
れるルツボである。ルツボ1の加熱には、蒸発源の種類
によって、抵抗加熱法や電子ビーム加熱法が用いられる
。2は衝立であり、これにより、2種の蒸発物が基板S
上で混ざらないようにする。4は基板Sの取付部であり
、取付部4の位lを移動機構5により矢印方向に移動可
渣とする。膜厚計6および6′は基板S上に蒸着された
膜の厚さを測定するものであり、その出力を移動機a5
に送り、基板Sの位lを実線位こから破線位tへ移す、
膜厚計6および6′には予め所定の厚さをプロプラムし
ておく、平均の膜厚を1分解濠1人程度の膜厚計で測定
することによって、数人の原子層を積層することができ
る。
In the present invention, an example of an apparatus for performing cross-evaporation is shown in FIG. 1. In FIG. 1, 1 and 1' are crucibles containing evaporation sources. For heating the crucible 1, a resistance heating method or an electron beam heating method is used depending on the type of evaporation source. 2 is a screen, which allows two types of evaporated substances to pass through the substrate S.
Make sure it doesn't mix on top. Reference numeral 4 denotes a mounting portion for the substrate S, and the position of the mounting portion 4 is movable in the direction of the arrow by a moving mechanism 5. The film thickness gauges 6 and 6' measure the thickness of the film deposited on the substrate S, and the output is sent to the mobile device a5.
, and move the position l of the board S from the solid line position k to the broken line position t,
The film thickness gauges 6 and 6' are programmed with a predetermined thickness in advance, and several atomic layers can be laminated by measuring the average film thickness with the film thickness gauge for one person per resolution. I can do it.

なお、上記の各i’fil、2,4.5および6は真空
容器3の中に収容しておく。
Incidentally, each of the above-mentioned i'fil, 2, 4.5 and 6 is housed in the vacuum container 3.

本発明では、特に、平均2〜3原子層づつ積層する。こ
のようにすると、被着した原子は膜状とはならずに微粒
子状の空間的な凹凸を有する島状構造となる。このため
、異種原子層が接する表面積は大となり、その表面を通
じて原子の拡散が十分に行なわれ、均一な性質の非晶質
合金薄膜を製造することができる。
In the present invention, in particular, 2 to 3 atomic layers are laminated on average. In this way, the deposited atoms do not form a film, but form an island structure having fine particle-like spatial irregularities. Therefore, the surface area in contact with the different atomic layers becomes large, atoms are sufficiently diffused through the surface, and an amorphous alloy thin film with uniform properties can be produced.

さらに、被着した原子を島状構造とするためには、基板
Sを冷却しておくことが好ましい。
Furthermore, in order to form the deposited atoms into an island-like structure, it is preferable to cool the substrate S.

以下に、ガドリニウム(Gd)と鉄(Fe)を元素とし
て選んだ非晶質薄膜についての本発明の実施例を述べる
Examples of the present invention will be described below regarding an amorphous thin film in which gadolinium (Gd) and iron (Fe) are selected as elements.

本発明の実施例では、ガドリニウム(Gd)と鉄(Fe
)を元素として選んで非晶質膜を作製した。
In an embodiment of the present invention, gadolinium (Gd) and iron (Fe
) was selected as the element to fabricate an amorphous film.

Cd−Fe非晶質屯直磁化膜は、GdとFeの成分比を
適当に設定すると、室温付近に補償温度を示すので、磁
気記録材料としての有用性が指摘されている。:52図
にはFe (厚ざ4人)とGd (厚さ4人)を200
層繰り返した膜の磁化一温度曲線を示している。第2図
から明らかなように、本例では、室温付近に補償温度を
もち、室温付近では磁化は約100 ersu/cm3
 まで減少する。一般に、Fe−Gd非晶質膜では、補
償温度近傍では、垂直磁化膜となることが知られている
。実際、第2図の膜の磁化ヒステリシス曲線とカー効果
によるヒステリシス曲線を測定すると、第3図のように
なり、室温で垂直磁化膜であることが判る。
A Cd--Fe amorphous orthogonally magnetized film exhibits a compensation temperature near room temperature when the component ratio of Gd and Fe is appropriately set, and therefore, it has been pointed out that it is useful as a magnetic recording material. : Figure 52 shows Fe (thickness of 4 people) and Gd (thickness of 4 people) at 200
The magnetization-temperature curve of a film with repeated layers is shown. As is clear from Fig. 2, in this example, the compensation temperature is near room temperature, and the magnetization is about 100 ers/cm3 near room temperature.
decreases to Generally, it is known that an Fe-Gd amorphous film becomes a perpendicularly magnetized film near the compensation temperature. In fact, when the magnetization hysteresis curve and the hysteresis curve due to the Kerr effect of the film shown in FIG. 2 are measured, the results are as shown in FIG. 3, indicating that the film is perpendicularly magnetized at room temperature.

第2図および第3図に示した非晶質膜の作製条件は以下
の通りである。
The conditions for manufacturing the amorphous film shown in FIGS. 2 and 3 are as follows.

蒸着中の真空度   〜2 X 10= Torr基 
 板      ガラス(軟質) 基板温度      150K 〜200に蒸着速度 
     0.2〜0.4λ/秒第2図および第3図と
もに振動型磁力計を用いて測定を行なった。
Vacuum degree during vapor deposition ~2 x 10 = Torr group
Plate glass (soft) Substrate temperature 150K ~ 200K and deposition rate
Measurements of 0.2 to 0.4 λ/sec were performed using a vibrating magnetometer in both FIGS. 2 and 3.

次に、原子層の厚みを変えることにより、膜の成分比を
変えることができる例を示す、すでに述ベたように、補
償温度は膜の成分比に敏感に依存するので、Fe(厚さ
4人)、Gd(厚さ6人)を200層重ねた膜の磁化一
温度曲線を測定すると、Gdの厚さをl膜厚くするだけ
で、補償温度は高温に移動している。この結果は、各元
素の膜厚を設定することにより、予め定めた補償温度を
有する垂直磁化膜を作製できることを示唆している。
Next, we will show an example in which the component ratio of the film can be changed by changing the thickness of the atomic layer.As already mentioned, the compensation temperature is sensitively dependent on the component ratio of the film, When measuring the magnetization-temperature curve of a film made of 200 layers of Gd (6 layers thick), the compensation temperature moves to a higher temperature simply by increasing the thickness of Gd by 1 layer. This result suggests that by setting the film thickness of each element, a perpendicularly magnetized film having a predetermined compensation temperature can be fabricated.

本発明においては、極端に薄い蒸着膜の性質として、原
子層間の拡散や、島状蒸着面による凹凸のために、両元
素は基板S上で無秩序に混合されて非晶質膜の構造を呈
する0本発明の製作過程では法発速度を制御する必要が
なく、膜厚だけを測定すればよいので、制御系が簡単化
され、信頼性も高い、膜中の各元素の成分比は、各原子
層の厚みにより変えることができる。
In the present invention, due to the properties of the extremely thin vapor deposited film, due to the diffusion between atomic layers and the unevenness caused by the island-like vapor deposition surface, both elements are mixed randomly on the substrate S and exhibit the structure of an amorphous film. 0 In the manufacturing process of the present invention, there is no need to control the firing rate and only the film thickness needs to be measured, so the control system is simplified and reliability is high. It can be changed depending on the thickness of the atomic layer.

さらに、第1図から判るように、蒸着時は常に基板Sの
真下に蒸発源が位置するので、斜め入射による影響を避
けることができる。
Furthermore, as can be seen from FIG. 1, the evaporation source is always located directly below the substrate S during vapor deposition, so that the influence of oblique incidence can be avoided.

[発明の効果] 以り説明したように、本発明によれば、平均の膜厚が数
人の原子層を交互に積層することにより、同時蒸着して
得られた非晶質膜と類似の磁性を示す垂直磁化膜を得る
ことができる。
[Effects of the Invention] As explained above, according to the present invention, by alternately stacking several atomic layers, an average film thickness similar to that of an amorphous film obtained by simultaneous vapor deposition can be obtained. A perpendicularly magnetized film exhibiting magnetism can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するのに用いる装置の一例を示す
構成図、 第2図はFe−Gd非晶質膜の磁化一温度曲線を示す特
性図、 第3図はFe−Gd非晶質膜の磁化ヒステリシス曲線と
カー効果によるヒステリシス曲線を示す特性図である。 1.1′・・・ルツボ、 2・・・衝立、 3・・・真空容器、 4・・・基板取付部、 5・・・移動機構、 6.6′・・・膜厚計、 S・・・基板。 特許出願人  日 本 放 送 協会 代 理 人  弁理士 谷  義 − :#発a月Σ芙方ヒ1ろための 役EL焦4>行うAlの才jI八団 第1図 石庄イ乙(Bma/cq吃り
Fig. 1 is a configuration diagram showing an example of an apparatus used to carry out the present invention, Fig. 2 is a characteristic diagram showing the magnetization-temperature curve of an Fe-Gd amorphous film, and Fig. 3 is a Fe-Gd amorphous film characteristic diagram. FIG. 3 is a characteristic diagram showing a magnetization hysteresis curve of a quality film and a hysteresis curve due to the Kerr effect. 1.1'... Crucible, 2... Screen, 3... Vacuum container, 4... Substrate attachment part, 5... Moving mechanism, 6.6'... Film thickness gauge, S. ··substrate. Patent Applicant Japan Broadcasting Association Agent Patent Attorney Yoshi Tani -: #Start a month /cq stuttering

Claims (1)

【特許請求の範囲】[Claims] 少なくとも2種以上の異種元素を、平均して数原子層の
厚さに交互に積層し、前記異種元素の原子層境界面から
互いに原子を拡散させることにより、非晶質薄膜を形成
することを特徴とする非晶質合金薄膜の製造方法。
An amorphous thin film is formed by alternately stacking at least two or more different elements to a thickness of several atomic layers on average, and diffusing atoms from the atomic layer interface of the different elements. A method for producing a characteristic amorphous alloy thin film.
JP17174685A 1985-08-06 1985-08-06 Manufacture of amorphous alloy film Granted JPS6233760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17174685A JPS6233760A (en) 1985-08-06 1985-08-06 Manufacture of amorphous alloy film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17174685A JPS6233760A (en) 1985-08-06 1985-08-06 Manufacture of amorphous alloy film

Publications (2)

Publication Number Publication Date
JPS6233760A true JPS6233760A (en) 1987-02-13
JPH0586472B2 JPH0586472B2 (en) 1993-12-13

Family

ID=15928920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17174685A Granted JPS6233760A (en) 1985-08-06 1985-08-06 Manufacture of amorphous alloy film

Country Status (1)

Country Link
JP (1) JPS6233760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532657B1 (en) * 2002-11-18 2005-12-02 주식회사 야스 Apparatus for controlling deposition zone of homogeneously mixed layer in multi source co-deposition
US7629025B2 (en) 2001-02-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431807A (en) * 1977-08-17 1979-03-08 Hitachi Ltd Steel-plate-made turbine frame
JPS5929304A (en) * 1982-08-11 1984-02-16 富士通株式会社 Method of forming transparent conductive film
JPS5931970A (en) * 1982-08-17 1984-02-21 Canon Inc Two-color developing method
JPS5988814A (en) * 1982-11-12 1984-05-22 Agency Of Ind Science & Technol Manufacture of amorphous vertically magnetizable film mainly consisting of rare earth metal and iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431807A (en) * 1977-08-17 1979-03-08 Hitachi Ltd Steel-plate-made turbine frame
JPS5929304A (en) * 1982-08-11 1984-02-16 富士通株式会社 Method of forming transparent conductive film
JPS5931970A (en) * 1982-08-17 1984-02-21 Canon Inc Two-color developing method
JPS5988814A (en) * 1982-11-12 1984-05-22 Agency Of Ind Science & Technol Manufacture of amorphous vertically magnetizable film mainly consisting of rare earth metal and iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629025B2 (en) 2001-02-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
KR100532657B1 (en) * 2002-11-18 2005-12-02 주식회사 야스 Apparatus for controlling deposition zone of homogeneously mixed layer in multi source co-deposition

Also Published As

Publication number Publication date
JPH0586472B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
EP0483373B1 (en) Magnetoresistance effect element
JP3386747B2 (en) Sputtering target
DE4408274C2 (en) Magnetoresistance effect element
JPH04363005A (en) Magnetic lamination and magnetoresistance effect element
US6004654A (en) Magnetic multilayer film, magnetoresistance element, and method for preparing magnetoresistance element
Paul et al. Correlation of magnetotransport and structure in sputtered Co/Cu multilayers
JPS6233760A (en) Manufacture of amorphous alloy film
Getzlaff et al. Magnetic interactions in different oxidation states of thin cobalt films
JPS63186844A (en) Amorphous material
JPH0273511A (en) Magnetic recording medium
Keitoku et al. Grain structure and magnetic anisotropy of Fe film evaporated obliquely from two sources
KR970007795B1 (en) Magnetio recording medium
Sharp et al. Unidirectional anisotropy in multilayer films of Cr and NiFe
JPS61294629A (en) Magnetic recording medium
EP0867728A2 (en) Magnetoresistive effect sensor and method for producing the same
Coehoorn et al. The phase of the oscillatory exchange coupling in coherent fcc (Fe-Co-Ni)/Cu (001) multilayers
Zemčík et al. Mössbauer spectroscopy of creep-annealed soft magnetic amorphous alloys
JP2871990B2 (en) Magnetoresistive element thin film
JP2957235B2 (en) Magnetic multilayer film
Schlomka et al. Structural and magnetic properties of ion beam sputtered NiMnSb films
Nenadović et al. Diffusion in Au-Ni thin films
JPS5941810A (en) Magnetic thin-film and manufacture thereof
Montandon et al. Stages of film growth during deposition of bismuth nanoparticles
Pierron-Bohnes et al. Respective Roles of Surface, Grain Boundary and Volume Diffusions in Driving Structural, Microstructural and Magnetic Properties of MBE Alloy Thin Films
JPS61250827A (en) Magnetic recording medium