JPS6233725B2 - - Google Patents

Info

Publication number
JPS6233725B2
JPS6233725B2 JP56159601A JP15960181A JPS6233725B2 JP S6233725 B2 JPS6233725 B2 JP S6233725B2 JP 56159601 A JP56159601 A JP 56159601A JP 15960181 A JP15960181 A JP 15960181A JP S6233725 B2 JPS6233725 B2 JP S6233725B2
Authority
JP
Japan
Prior art keywords
mica
weight
parts
resin composition
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159601A
Other languages
Japanese (ja)
Other versions
JPS5860507A (en
Inventor
Hideji Kuwajima
Takemi Watanabe
Kazuyoshi Yotsuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP56159601A priority Critical patent/JPS5860507A/en
Priority to DE3144006A priority patent/DE3144006C2/en
Priority to US06/319,094 priority patent/US4491618A/en
Priority to FR8120888A priority patent/FR2493828A1/en
Priority to CH7166/81A priority patent/CH652999A5/en
Publication of JPS5860507A publication Critical patent/JPS5860507A/en
Publication of JPS6233725B2 publication Critical patent/JPS6233725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/04Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances mica

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は絶縁線輪に関する。 従来、絶縁線輪は、はがしマイカテープ等を導
体に巻回し、これにエポキシ樹脂組成物、不飽和
ポリエステル樹脂組成物などの熱硬化性樹脂組成
物を真空含浸せしめたのち硬化させる方法や焼成
集成マイカプリプレグテープ等を導体に巻回した
後、加熱加圧成形するいわゆるプリプレグ方法に
よつて製造されている。初期の電気特性はプリプ
レグ方式が、初期の機械特性や長期課電劣化後の
電気特性は、はがしマイカテープを使用した真空
含浸方式がすぐれていた。集成マイカを使用した
もので、はがしマイカを使用したものと同等以上
の特性を有する絶縁線輪はなく、電気特性が、は
がしマイカを使用したものに匹敵するものは特公
昭50−20264号公報に示されている。この方法は
原料マイカブロツクに弗化水素酸や塩化水素の水
溶液を浸潤させるなどの複雑な製造工程、廃水処
理等が必要であるなどの欠点があり、かつ得られ
る絶縁線輪の機械特性も十分とはいえなかつた。 本発明は、このような欠点を解決し電気特性及
び機械特性にすぐれた絶縁線輪を提供するもので
ある。 本発明は、無焼成マイカを粉砕して得られた粒
径1.0mm以上で、かつアスペクト比が150以上のマ
イカりん片を30〜70重量部、粒径0.25mm以上1.0
mm未満のマイカりん片を20〜40重量部、粒径0.25
mm未満のマイカりん片を10〜30重量部含むスラリ
ーを抄造して得られる集成マイカ材料を60〜85重
量部、熱硬化性樹脂組成物を15〜30重量部ならび
に裏打材を15重量部以下含有する絶縁層を有する
絶縁線輪に関する。 絶縁層の形成方法は、プリプレグ方式、真空含
浸方式のいずれであつても差しつかえなく、また
形成する条件も制限されない。 無焼成マイカの代りに焼成マイカを使用した場
合には、絶縁線輪の機械特性、なかでも曲げ強
さ、曲げ弾性率が大きく低下する。 本発明におけるアスペクト比とは アスペクト比=マイカりん片の直径/マイカりん片の
厚さであり、粒 度分布は標準分析ふるいを使用し、湿式で分級し
たのち乾燥後重量を測定して算出した。 無焼成マイカを本発明の粒度分布及びアスペク
ト比に粉砕する方法はなかつたが、特公昭54−
8899号公報、特開昭53−39984号公報などに示さ
れる方法により、はじめて可能となつた。これら
の方法によつて、アスペクト比が大きく、かつ望
みの粒度分布を有するマイカりん片が容易に得ら
れる。 粒径1.0mm以上で、かつアスペクト比が150以上
のマイカりん片が30重量部未満ではマイカりん片
の補強効果が小さいため、絶縁線輪の機械特性が
低下し、これが70重量部を越えると絶縁線輪の機
械的特性は良いが電気特性が低下する。また粒径
1.0mm以上のマイカりん片のアスペクト比が150未
満では絶縁線輪の機械的及び電気特性をともに低
下させる。 粒径0.25mm未満のマイカりん片を10重量部未満
しか含まない場合には粒径1.0mm以上のマイカり
ん片の空隙を十分に埋めることができず、そのた
め絶縁層中の熱硬化性樹脂組成物を30重量部を超
えて必要とし、そのために絶縁線輪の機械的特性
を低下させ、さらには長期劣化後の電気特性をも
低下させる。また、これが30重量部を超えて含ま
れる場合には、マイカりん片の補強効果が小さい
ため絶縁線輪の機械的性質が低下するので好まし
くない。 上記の粒径0.25mm未満のマイカりん片と1.0mm
以上のマイカりん片のみを組み合わせた場合に
は、マイカりん片の沈降速度が前者と後者で10倍
以上異なるため、湿式抄紙機で抄造する際、片面
に大きなマイカりん片、他の面に小さなマイカり
ん片となり最密充てんすることが困難である。 これを解決するには、粒径0.25mm以上、1.0mm
未満のマイカりん片20〜40重量部が併用される。
これが、20重量部未満では添加した効果が少な
く、また40重量部を越えると得られる絶縁線輪の
機械的特性の低下が見られる。 マイカりん片を集成マイカ材料に抄造する方法
は特に制限されず、通常0.5〜2重量%のマイカ
りん片を含むスラリーとしたのち、これを長網
式、丸網式などの抄紙機を使用し抄造して得られ
る。 絶縁層の形成方法は真空含浸方式、プリプレグ
方式のいずれの方式であつても差しつかえなく、
また形成する条件にも制限はない。 必要により裏打材を有する集成マイカ材料を導
体に巻回し、これを減圧の雰囲気に置き熱硬化性
樹脂組成物を含浸又は加圧含浸後、熱硬化性樹脂
組成物を硬化させて絶縁線輪とされるか、この集
成マイカ材料に熱硬化性樹脂組成物を含浸させ
て、半硬化させて集成マイカプリプレグ材料と
し、これを導体に巻回して含浸された熱硬化性樹
脂組成物を硬化させて絶縁線輪とされる。 本発明における熱硬化性樹脂組成物としては、
硬化剤、界面活性剤、溶剤、反応性溶剤などを含
むエポキシ樹脂組成物、不飽和ポリエステル樹脂
組成物などが使用され、特に制限はない。 本発明における裏打材としては特に制限はな
く、例えばポリエステル、ポリアミド、ガラス等
の有機、無機の織布、不織布、フイルム等が単独
で必要ならば組み合わせて使用され、さらにこれ
らとガラスヤーン、ポリエステル繊維ヤーン等を
組み合わせて使用しても差しつかえない。 集成マイカ材料は60〜85重量部、熱硬化性樹脂
組成物は15〜30重量部、裏打材は15重量部以下の
範囲で、これらの総量が100重量部となる量で使
用される。 集成マイカ材料は60〜85重量部の範囲で用いら
れるが、60重量部未満では絶縁線輪の耐電圧など
の電気的特性が低下し、85重量部を越えるとマイ
カりん片間の空隙が多くなり、絶縁線輪の電気的
特性、機械特性が著しく低下する。 絶縁層の熱硬化性樹脂組成物が15重量部未満の
場合には、絶縁層中に空隙を生じやすく、この空
隙がコロナ放電の原因となり絶縁線輪の電気特性
を低下させるとともに曲げ、圧縮などの絶縁層の
熱硬化性樹脂組成物が15重量部未満の場合には絶
縁層中に空隙を生じやすく、この空隙がコロナ放
電の原因となり、絶縁線輪の電機特性を低下させ
るとともに曲げ、圧縮などの応力が絶縁層に加え
られた際には応力集中が起き機械的特性も低下さ
せる。 絶縁層中の熱硬化性樹脂組成物が30重量部を越
えると機械的性質が低下するのみならず、長期劣
化後の電気的特性も低下する。 裏打材は必要に応じて集成マイカ材料と貼り合
わせて使用され、必ずしも用いなくてもよいが、
これが絶縁層中で15重量部を超えると絶縁線輪の
機械的又は電気的特性を低下させる。例えばガラ
ス繊維の織布もしくは不織布を裏打材として15重
量部を超えて使用すると機械的特性は低下しない
が電気的特性を低下させ、またポリエステルやポ
リアミドなどのフイルムや織布、不織布を裏打材
として15重量部を超えて使用すると機械的特性が
低下し、また長期劣化後の電気特性にも低下がみ
られる。前述のフイルムとガラス、ポリエステル
等の繊維ヤーンを組み合わせた場合も同様の結果
である。 以下、実施例により本発明を説明する。 実施例 1 表1記載のシート(集成マイカ材料)1に表2
記載のエポキシ樹脂組成物を60℃に加熱して
100g/m2で塗工し、かつガラスクロス(35g/
m2)を裏打材として貼り合わせ80℃で1時間加熱
半硬化させて集成マイカプリプレグ材料とした。
これを30mm幅のプリプレグテープに切断したの
ち、横9.5mm×たて36.5mm×長さ1000mmの導体
(銅製)に半分重ね合わせながら8回巻きつけた
のち100℃に加熱して押しつけ、マイカプリプレ
グ材料中の上記エポキシ樹脂組成物を流しながら
170℃に昇温して硬化させ(3時間)厚さ約3mm
の絶縁層を持つたコイルを製作した。コイルは4
本製作し常態で2本、熱劣化試験(130℃で103
間)後2本試験した。試験は2KV/秒の昇圧速度
で絶縁破壊電圧を測定し、次いで4点法曲げ試験
(外スパン550mm、内スパン250mm、試験速度5
mm/分)を行なつた。 接着剤量(エポキシ樹脂組成物)は絶縁層を
600℃で2時間加熱して求めた。結果を平均値で
表3に示した。 実施例 2 表1記載のシート2と表2記載のエポキシ樹脂
組成物を用いて実施例1と同条件でプリプレグテ
ープとした。これを実施例1で使用した導体に半
分重ね合わせながら8回巻きつけたのち実施例1
と同条件でコイルを4本製作した。実施例1と同
条件で試験し、結果を平均値で表3に示した。 比較例 1 表1記載のシート3と表2記載のエポキシ樹脂
組成物を用いて実施例1と同条件でプリプレグテ
ープとした。これを実施例1で使用した導体に半
分重ね合わせながら8回巻きつけたのち実施例1
と同条件でコイルを4本製作した。実施例1と同
条件で試験し結果を平均値で表3に示した。 比較例 2 表1記載のシート4と表2記載のエポキシ樹脂
組成物を用いて実施例1と同条件でプリプレグテ
ープとした。これを実施例1で使用した導体に半
分重ね合わせながら8回巻きつけたのち、実施例
1と同条件でコイルを4本製作した。実施例1と
同条件で試験し、結果を平均値で表3に示した。 比較例 3 表1記載のシート5と表2記載のエポキシ樹脂
組成物を用いて実施例1と同条件でプリプレグテ
ープとした。これを実施例1で使用した導体に半
分重ね合わせながら8回巻きつけたのち、実施例
1と同条件でコイルを4本製作した。実施例1と
同条件で試験し、結果を平均値で表3に示した。 実施例 3 表1記載のシート2にカラスクロス(35g/
m2)を補強材として重ね、この上から表2記載の
エポキシ樹脂組成物をメチルエチルケトンに溶解
して不揮発分20重量%としたワニスを75g/m2
(不揮発分換算15g/m2)塗工し、100℃で30分間
乾燥し30mm幅のテープに切断してプリプレグテー
プとしたのち、実施例1で使用した導体に半分重
ね合わせながら8回巻きつけたのち、100℃で0.1
mmHg、2時間乾燥し引き続き、その圧力下で80
℃に加熱した表2記載のエポキシ樹脂組成物を含
浸させた。コイルをエポキシ樹脂組成物に浸積し
た状態で圧力を常圧に戻し、1時間後コイルをと
り出しエポキシ樹脂がたれ落ちしないように2ミ
ルのマイラーフイルム((株)東レ製)で包み、110
℃で4時間、さらに170℃で3時間硬化させ、3
mm厚さの絶縁層を形成させた。実施例1と同条件
で試験し結果を平均値で表3に示した。 比較例 4 表1記載のシート5を実施例3と同条件でプリ
プレグテープとしたのち、実施例3と同条件でコ
イルとした。実施例1と同条件で試験し、結果を
平均値で表3に示した。
The present invention relates to an insulated coil. Conventionally, insulated wire rings have been produced by winding peelable mica tape or the like around a conductor, impregnating it with a thermosetting resin composition such as an epoxy resin composition or an unsaturated polyester resin composition in a vacuum, and then curing it, or by baking it and assembling it. It is manufactured by a so-called prepreg method in which a mica prepreg tape or the like is wound around a conductor and then heated and press-molded. The prepreg method was superior in initial electrical properties, but the vacuum impregnation method using peelable mica tape was superior in initial mechanical properties and electrical properties after long-term electrical deterioration. There are no insulated wire rings made of laminated mica that have properties equal to or better than those made of peelable mica, and those with electrical properties comparable to those using peelable mica are described in Japanese Patent Publication No. 50-20264. It is shown. This method has disadvantages, such as the complicated manufacturing process of infiltrating the raw material mica block with an aqueous solution of hydrofluoric acid or hydrogen chloride, and the need for wastewater treatment, and the mechanical properties of the resulting insulated wire are insufficient. However, I could not say that. The present invention solves these drawbacks and provides an insulated wire ring with excellent electrical and mechanical properties. The present invention uses 30 to 70 parts by weight of mica flakes, which are obtained by crushing unfired mica and have a particle size of 1.0 mm or more and an aspect ratio of 150 or more, and a particle size of 0.25 mm or more to 1.0
20 to 40 parts by weight of mica flakes less than mm, particle size 0.25
60 to 85 parts by weight of a laminated mica material obtained by paper-making a slurry containing 10 to 30 parts by weight of mica scale pieces of less than mm in size, 15 to 30 parts by weight of a thermosetting resin composition, and 15 parts by weight or less of a backing material. The present invention relates to an insulated coil having an insulating layer containing the same. The method for forming the insulating layer may be either a prepreg method or a vacuum impregnation method, and the conditions for forming it are not limited. When calcined mica is used instead of uncalcined mica, the mechanical properties of the insulated wire, especially the bending strength and bending elastic modulus, are significantly reduced. What is the aspect ratio in the present invention? Aspect ratio = diameter of mica scale piece / thickness of mica scale piece, and particle size distribution was calculated by measuring the weight after drying after wet classification using a standard analysis sieve. Although there was no method for pulverizing unfired mica to the particle size distribution and aspect ratio of the present invention,
This was made possible for the first time by methods disclosed in Japanese Patent Application Laid-open No. 8899 and Japanese Patent Application Laid-Open No. 53-39984. By these methods, mica flakes having a large aspect ratio and a desired particle size distribution can be easily obtained. If the mica scale particles with a particle size of 1.0 mm or more and an aspect ratio of 150 or more are less than 30 parts by weight, the reinforcing effect of the mica scale particles is small, resulting in a decrease in the mechanical properties of the insulated wire, and if it exceeds 70 parts by weight, The mechanical properties of the insulated coil are good, but the electrical properties are degraded. Also particle size
If the aspect ratio of mica flakes of 1.0 mm or more is less than 150, both the mechanical and electrical properties of the insulated wire will deteriorate. If less than 10 parts by weight of mica scale pieces with a particle size of less than 0.25 mm are included, the voids of mica scale pieces with a particle size of 1.0 mm or more cannot be sufficiently filled, and therefore the thermosetting resin composition in the insulating layer This requires more than 30 parts by weight of the insulated wire, which deteriorates the mechanical properties of the insulated wire and further deteriorates the electrical properties after long-term deterioration. Further, if it is contained in an amount exceeding 30 parts by weight, the reinforcing effect of the mica scale pieces is small, and the mechanical properties of the insulated wire ring are deteriorated, which is not preferable. The above particle size is less than 0.25mm mica flakes and 1.0mm
When only the above mica scale pieces are combined, the settling speed of the former and the latter differs by more than 10 times, so when making paper with a wet paper machine, large mica scale pieces are on one side, and small mica scale pieces are on the other side. It becomes mica flakes and is difficult to pack closely. To solve this problem, particle size should be 0.25mm or more, 1.0mm
Less than 20 to 40 parts by weight of mica flakes are used together.
If it is less than 20 parts by weight, the effect of adding it will be small, and if it exceeds 40 parts by weight, the mechanical properties of the resulting insulated wire wheel will deteriorate. There are no particular restrictions on the method of forming mica scale pieces into a laminated mica material, and the method is usually to make a slurry containing 0.5 to 2% by weight of mica scale pieces, and then use a fourdrinier type, circular wire type, etc. paper machine. Obtained by papermaking. The method for forming the insulating layer can be either the vacuum impregnation method or the prepreg method.
Furthermore, there are no restrictions on the conditions for formation. If necessary, a laminated mica material with a backing material is wound around a conductor, and this is placed in a reduced pressure atmosphere and impregnated with a thermosetting resin composition or pressure impregnated, and then the thermosetting resin composition is cured to form an insulated wire ring. Alternatively, the assembled mica material is impregnated with a thermosetting resin composition and semi-cured to obtain an assembled mica prepreg material, which is then wound around a conductor and the impregnated thermosetting resin composition is cured. It is considered an insulated wire ring. The thermosetting resin composition in the present invention includes:
Epoxy resin compositions, unsaturated polyester resin compositions, etc. containing hardening agents, surfactants, solvents, reactive solvents, etc. are used, and there are no particular limitations. The backing material in the present invention is not particularly limited, and for example, organic or inorganic woven fabrics, nonwoven fabrics, films, etc. such as polyester, polyamide, glass, etc. may be used alone or in combination if necessary, and furthermore, these may be used in combination with glass yarn, polyester fibers, etc. It is okay to use a combination of yarns, etc. The aggregate mica material is used in an amount of 60 to 85 parts by weight, the thermosetting resin composition is used in an amount of 15 to 30 parts by weight, and the backing material is used in an amount of 15 parts by weight or less, so that the total amount thereof is 100 parts by weight. The laminated mica material is used in a range of 60 to 85 parts by weight, but if it is less than 60 parts by weight, the electrical properties such as withstand voltage of the insulated wire will deteriorate, and if it exceeds 85 parts by weight, there will be many voids between mica flakes. As a result, the electrical and mechanical properties of the insulated wire are significantly reduced. If the thermosetting resin composition in the insulating layer is less than 15 parts by weight, voids are likely to be formed in the insulating layer, and these voids may cause corona discharge, reduce the electrical properties of the insulated wire, and cause bending, compression, etc. If the thermosetting resin composition in the insulating layer is less than 15 parts by weight, voids are likely to occur in the insulating layer, and these voids may cause corona discharge, reduce the electrical properties of the insulated wire, and cause bending and compression. When such stress is applied to the insulating layer, stress concentration occurs and the mechanical properties also deteriorate. If the thermosetting resin composition in the insulating layer exceeds 30 parts by weight, not only the mechanical properties will deteriorate, but also the electrical properties after long-term deterioration. The backing material is used by laminating it with the laminated mica material as necessary, and does not necessarily have to be used.
If it exceeds 15 parts by weight in the insulating layer, the mechanical or electrical properties of the insulated wire will deteriorate. For example, if more than 15 parts by weight of glass fiber woven or non-woven fabric is used as a backing material, the mechanical properties will not deteriorate, but the electrical properties will deteriorate; If more than 15 parts by weight is used, the mechanical properties will deteriorate, and the electrical properties will also deteriorate after long-term deterioration. Similar results are obtained when the above-mentioned film is combined with fiber yarns such as glass and polyester. The present invention will be explained below with reference to Examples. Example 1 Sheet (laminated mica material) 1 described in Table 1 and Table 2
The described epoxy resin composition was heated to 60°C.
Coated with 100g/ m2 and glass cloth (35g/m2)
m 2 ) was laminated as a backing material and semi-cured by heating at 80° C. for 1 hour to obtain a laminated mica prepreg material.
After cutting this into 30mm wide prepreg tape, wrap it 8 times around a 9.5mm wide x 36.5mm tall x 1000mm long conductor (made of copper), overlapping half of it, then heat it to 100℃ and press it to create a mica prepreg tape. While flowing the above epoxy resin composition in the material
Raise the temperature to 170℃ and cure (3 hours) to a thickness of approximately 3mm.
A coil with an insulating layer was fabricated. There are 4 coils
Two pieces of this product were tested under normal conditions, and two pieces were tested after a heat deterioration test ( 103 hours at 130°C). The test measured the dielectric breakdown voltage at a boost rate of 2KV/sec, followed by a 4-point bending test (outer span 550mm, inner span 250mm, test speed 5
mm/min). The amount of adhesive (epoxy resin composition)
It was determined by heating at 600°C for 2 hours. The results are shown in Table 3 as average values. Example 2 A prepreg tape was prepared using Sheet 2 listed in Table 1 and the epoxy resin composition listed in Table 2 under the same conditions as Example 1. After wrapping this 8 times around the conductor used in Example 1, overlapping half of it, Example 1
Four coils were manufactured under the same conditions. Tests were conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values. Comparative Example 1 A prepreg tape was prepared using Sheet 3 listed in Table 1 and the epoxy resin composition listed in Table 2 under the same conditions as in Example 1. After wrapping this 8 times around the conductor used in Example 1, overlapping half of it, Example 1
Four coils were manufactured under the same conditions. Tests were conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values. Comparative Example 2 A prepreg tape was prepared using Sheet 4 listed in Table 1 and the epoxy resin composition listed in Table 2 under the same conditions as in Example 1. This was wound around the conductor used in Example 1 eight times with half overlap, and then four coils were manufactured under the same conditions as Example 1. Tests were conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values. Comparative Example 3 A prepreg tape was prepared using Sheet 5 listed in Table 1 and the epoxy resin composition listed in Table 2 under the same conditions as in Example 1. This was wound around the conductor used in Example 1 eight times with half overlap, and then four coils were manufactured under the same conditions as Example 1. Tests were conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values. Example 3 Crow cloth (35g/
m 2 ) as a reinforcing material, and on top of this, 75 g/m 2 of varnish made by dissolving the epoxy resin composition listed in Table 2 in methyl ethyl ketone to make the non-volatile content 20% by weight.
(15 g/m 2 in terms of non-volatile content) was coated, dried at 100°C for 30 minutes, cut into 30 mm wide tapes to make prepreg tape, and then wrapped 8 times around the conductor used in Example 1, overlapping half of the tape. After that, 0.1 at 100℃
mmHg, 2 hours drying and then under that pressure 80
It was impregnated with the epoxy resin composition listed in Table 2 heated to .degree. With the coil immersed in the epoxy resin composition, the pressure was returned to normal pressure, and after 1 hour, the coil was taken out and wrapped in 2 mil mylar film (manufactured by Toray Industries, Inc.) to prevent the epoxy resin from dripping.
Cure for 4 hours at 170℃, then cure for 3 hours at 170℃.
An insulating layer with a thickness of mm was formed. Tests were conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values. Comparative Example 4 Sheet 5 shown in Table 1 was made into a prepreg tape under the same conditions as in Example 3, and then into a coil under the same conditions as in Example 3. Tests were conducted under the same conditions as in Example 1, and the results are shown in Table 3 as average values.

【表】【table】

【表】【table】

【表】 表3において、エポキシ樹脂組成物量は、絶縁
層を600℃で2時間加熱し、その重量減少量から
求めた。曲げ強さは、4点法で外スパン550mm、
内スパン250mm、試験速度5m/分で行なつた。絶
縁破壊電圧は、2KV/秒の昇圧速度で絶縁破壊電
圧を求めた。劣化後の絶縁破壊電圧は、熱劣化を
熱風循環式電熱乾燥機中で130℃で103時間行ない
絶縁破壊電圧を求めた。 本発明になる絶縁線輪は、マイカりん片が大き
く、かつそのアスペクト比が高い集成マイカ材料
を用いるため、絶縁層の機械的性質が高められ、
さらに大きいマイカりん片の隙間を小さいマイカ
りん片で埋めることができ、その絶縁層の電気的
特性も高められる。 また、大きいマイカりん片の隙間を小さいマイ
カりん片で埋めた集成マイカ材料を用いることに
より絶縁層の接着剤量を減少させても絶縁線輪の
初期特性(電気的特性及び機械的特性)が低下し
ないばかりか、長時間劣化後の特性(例えば長期
課電劣化特性)においてもすぐれ、はがしマイカ
製品を用いた絶縁線輪に匹敵するか、これらを上
回るものも得ることができる。
[Table] In Table 3, the amount of the epoxy resin composition was determined from the amount of weight loss after heating the insulating layer at 600° C. for 2 hours. Bending strength is 550mm outer span using 4-point method.
The inner span was 250 mm and the test speed was 5 m/min. The dielectric breakdown voltage was determined at a voltage increase rate of 2 KV/sec. The dielectric breakdown voltage after deterioration was determined by performing thermal deterioration at 130°C for 10 3 hours in a hot air circulating electric dryer. The insulating wire ring according to the present invention uses a composite mica material with large mica flakes and a high aspect ratio, so the mechanical properties of the insulating layer are improved,
Furthermore, the gaps between larger mica flakes can be filled with smaller mica flakes, and the electrical properties of the insulating layer can also be improved. In addition, by using a laminated mica material in which the gaps between large mica flakes are filled with small mica flakes, the initial properties (electrical properties and mechanical properties) of the insulated wire ring can be maintained even if the amount of adhesive in the insulating layer is reduced. Not only does it not deteriorate, but it also has excellent characteristics after long-term deterioration (for example, long-term electrification deterioration characteristics), and can rival or even exceed insulated wire rings using peelable mica products.

Claims (1)

【特許請求の範囲】[Claims] 1 無焼成マイカを粉砕して得られた粒径1.0mm
以上で、かつアスペクト比が150以上のマイカり
ん片を30〜70重量部、粒径0.25mm以上1.0mm未満
のマイカりん片を20〜40重量部、粒径0.25mm未満
のマイカりん片を10〜30重量部含むスラリーを抄
造して得られる集成マイカ材料を60〜85重量部、
熱硬化性樹脂組成物を15〜30重量部ならびに裏打
材を15重量部以下(集成マイカ材料、熱硬化性樹
脂組成物および裏打材は上記の範囲内で総量が
100重量部となる量とされる)含有する絶縁層を
有する絶縁線輪。
1 Particle size 1.0mm obtained by crushing unfired mica
30 to 70 parts by weight of mica flakes with an aspect ratio of 150 or more, 20 to 40 parts by weight of mica flakes with a particle size of 0.25 mm or more and less than 1.0 mm, and 10 parts by weight of mica flakes with a particle size of less than 0.25 mm. 60 to 85 parts by weight of a laminated mica material obtained by paper-making a slurry containing ~30 parts by weight;
15 to 30 parts by weight of the thermosetting resin composition and 15 parts by weight or less of the backing material (the total amount of the laminated mica material, thermosetting resin composition, and backing material is within the above range)
100 parts by weight)
JP56159601A 1980-11-08 1981-10-06 Insulating coil Granted JPS5860507A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56159601A JPS5860507A (en) 1981-10-06 1981-10-06 Insulating coil
DE3144006A DE3144006C2 (en) 1980-11-08 1981-11-05 Electrically insulating mica tape and its use
US06/319,094 US4491618A (en) 1980-11-08 1981-11-06 Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils
FR8120888A FR2493828A1 (en) 1980-11-08 1981-11-06 MATERIALS IN MICA RECONSTITUTED, MATERIALS PRE-IMPREGNATED IN MICA RECONSTITUTED, PRODUCTS IN MICA RECONSTITUTED AND ISOLATED WINDINGS
CH7166/81A CH652999A5 (en) 1980-11-08 1981-11-09 METHOD FOR PRODUCING RECONSTRUCTED MICA MATERIALS, RECONSTITUTED Mica PREPREG MATERIALS AND RECONSTITUTED Mica Products and Use of the Mica Material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159601A JPS5860507A (en) 1981-10-06 1981-10-06 Insulating coil

Publications (2)

Publication Number Publication Date
JPS5860507A JPS5860507A (en) 1983-04-11
JPS6233725B2 true JPS6233725B2 (en) 1987-07-22

Family

ID=15697259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159601A Granted JPS5860507A (en) 1980-11-08 1981-10-06 Insulating coil

Country Status (1)

Country Link
JP (1) JPS5860507A (en)

Also Published As

Publication number Publication date
JPS5860507A (en) 1983-04-11

Similar Documents

Publication Publication Date Title
EP2203535B1 (en) Electrical insulation tape with controlled bonding and resin impregnation properties
JPS63110929A (en) Coil for being provided in slots of stator or rotor of electric machine
US2320866A (en) Flexible insulating material
US4418241A (en) Insulated coil
EP0915484A1 (en) Mica tape and insulated coil using the same
RU2332736C1 (en) Mica-loaded tape with maximum mica content
CN1131529C (en) High voltage electric appliance
US5989702A (en) Sandwich insulation for increased corona resistance
US4576856A (en) Reconstituted mica materials, reconstituted mica prepreg materials, reconstituted mica products and insulated coils
CA2130161C (en) Sandwich insulation for increased corona resistance
KR20190004265A (en) Resin-compatible laminate structure
JPS6233725B2 (en)
US4308312A (en) Dielectric films with increased voltage endurance
JPS6233726B2 (en)
US4836769A (en) Water-cooled winding for electromagnetic stirrer
JPS6136329B2 (en)
US20070089899A1 (en) Mica tape having maximized mica content
JPS6245687B2 (en)
JPS5899249A (en) Manufacture of coil for rotary electric machinery
JPS5925327B2 (en) mica prepreg material
JPH06237559A (en) Coil insulation of rotating electric machine
JPS58144563A (en) Manufacture of coil conductor
JPS63105412A (en) Hybrid mica prepreg tape for coil insulation
JPS605211B2 (en) insulated coil
JPS6015305Y2 (en) dry transformer winding