JPS6233710A - Method for heating molten steel in converter - Google Patents

Method for heating molten steel in converter

Info

Publication number
JPS6233710A
JPS6233710A JP60173833A JP17383385A JPS6233710A JP S6233710 A JPS6233710 A JP S6233710A JP 60173833 A JP60173833 A JP 60173833A JP 17383385 A JP17383385 A JP 17383385A JP S6233710 A JPS6233710 A JP S6233710A
Authority
JP
Japan
Prior art keywords
oxygen
blowing
combustion
molten steel
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60173833A
Other languages
Japanese (ja)
Other versions
JPH0432124B2 (en
Inventor
Kazuyuki Tomita
富田 和幸
Masaaki Takeuchi
正明 竹内
Nobuyuki Motoma
源間 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60173833A priority Critical patent/JPS6233710A/en
Publication of JPS6233710A publication Critical patent/JPS6233710A/en
Publication of JPH0432124B2 publication Critical patent/JPH0432124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To improve the heating up efficiency of a molten steel to the max. extent by specifying the distance between the apertures of oxygen supply nozzles for secondary combustion provided to the side wall of a main lance for blowing and molten metal surface and specifying the oxygen supply conditions thereof. CONSTITUTION:The plural oxygen nozzles 2 for blowing are opened to the top end of a top blowing lance and plural pieces of the secondary oxygen nozzles 3 for combustion of CO are provided to the upper side part thereof. The nozzles are set at about 25-45 angle of inclination theta. The oxygen supply line of the secondary line for the oxygen nozzles 2 for blowing. The distance between the apertures of the secondary oxygen nozzles 3 and the molten steel surface is so set as to be made about 150-250 times the diameter of the nozzles 3. The secondary combustion oxygen of >=15% of the amt. of the oxygen to be blown from the top end of the main lance is blown at a velocity of 0.5-1.5 Mach. The combustion efficiency is thereby improved and the molten steel temp. is increased, by which the introduction of scrap, etc., is made possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は転炉における溶鋼の昇熱方法に関し、殊に吹錬
に伴なって発生するcoを2次的に燃焼させるに当たり
、その燃焼効率を向上することに本って溶鋼温度を高め
、爾後の処理工程における熱補償を図ると共に当該熱補
償の効果として、スクラップや鉄鉱石等の冷材をたくさ
ん装入した場合の不都合をDr及的に抑制しスクラップ
等の大量投入を可能とする技術に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for heating up molten steel in a converter, and in particular, to secondary combustion of co2 generated during blowing, the combustion efficiency is improved. In order to improve the temperature of the molten steel, the temperature of the molten steel is increased to compensate for the heat in the subsequent treatment process, and as a result of this heat compensation, it is possible to reduce the inconvenience caused by charging a large amount of cold material such as scrap or iron ore. This relates to technology that enables the input of large amounts of scrap, etc., while reducing the amount of waste.

[従来の技術] 周知の通り転炉における吹錬の主な目的は、■溶銑中に
多量含まれる炭素を酸素との燃焼によって除去する点と
■1記燃焼に伴なって溶鋼をA温する点にあり、後者の
目的を効果的に達成するうえでは「1次燃焼により生成
したCOの2次燃焼」は大きなウェイトを占めている。
[Prior art] As is well known, the main purposes of blowing in a converter are: (1) to remove a large amount of carbon contained in the hot metal by combustion with oxygen, and (1) to raise the temperature of the molten steel to A along with the combustion. In order to effectively achieve the latter objective, "secondary combustion of CO generated by primary combustion" plays a large role.

この様なところから転炉吹錬に当たっては、吹錬用酸素
の他、吹錬反応により生成したCOを2次的に燃焼させ
る為の2次燃焼用酸素を供給するのが有利であるとされ
ており、こうした趣旨に沿った研究も種々提案されてい
る6例えば(1)特開昭53−102205号には、主
ランスの先端部に吹錬用醸素供給ノズルを設けるだけで
なく、2次燃焼用酸素供給用の副ノズルを開口し、同一
の酸素源から供給されてくる酸素を分けて吹込むという
方法が提案されている。また他の方法として、(2)特
開昭58−221214号には、吹錬用酸素と2次燃焼
用酸素を夫々独立した別系統のノズルから供給する方法
が提案されており、この方法の場合、2次燃焼用酸素の
吹込み位置(ランスヘッドからの距#)や主ランス軸心
に対する吹込み角度等についても色々検討されている様
である。
For this reason, in converter blowing, it is considered advantageous to supply, in addition to blowing oxygen, secondary combustion oxygen for secondary combustion of the CO produced by the blowing reaction. Various studies have been proposed along these lines.6 For example, (1) JP-A No. 102205/1986 not only provides a blowing brewer supply nozzle at the tip of the main lance, but also A method has been proposed in which a sub-nozzle for supplying oxygen for subsequent combustion is opened and oxygen supplied from the same oxygen source is separately blown into the combustion chamber. As another method, (2) JP-A No. 58-221214 proposes a method in which blowing oxygen and secondary combustion oxygen are supplied from independent nozzles, respectively. In this case, various considerations have been made regarding the injection position (distance # from the lance head) of secondary combustion oxygen and the injection angle relative to the main lance axis.

[発明が解決しようとする問題点] ところが前記(1)の方法では、2次燃焼効率に大きな
影響を及ぼす2次燃焼用酸素吐出位置のコントロールが
極めて困難であり、十分な昇熱効果を得ることができな
い、即ち2次燃焼効率は、ランスと湯面間の距離が大き
い程高くなることが確認されており、2次燃焼効率を高
める為には主ランスの位置を高くすることが第1条件と
されているが、その様なランス配置で吹錬を行なうとソ
フトブロー気味になってスロッピング等の問題が発生し
、吹錬操業性が著しく阻害される。
[Problems to be Solved by the Invention] However, in the method (1) above, it is extremely difficult to control the oxygen discharge position for secondary combustion, which has a large effect on secondary combustion efficiency, and it is difficult to obtain a sufficient heating effect. It has been confirmed that the secondary combustion efficiency increases as the distance between the lance and the hot water surface increases, and the first step to increasing the secondary combustion efficiency is to raise the main lance position. However, if blowing is carried out with such a lance arrangement, problems such as slopping will occur due to soft blowing, which will significantly impede blowing operability.

また前記(2)の方法では、2次燃焼効率に最も大きな
影響を及ぼすと考えられる2次燃焼用酸素ノズルと局面
との間の距離、並びに2次燃焼用酸素の流量と流速等に
ついての検討が全く行なわれれおらず、2次燃焼による
’tl熱効果が十分に生かされているとは3元ない。
In addition, in method (2) above, consideration is given to the distance between the secondary combustion oxygen nozzle and the surface, as well as the flow rate and flow velocity of secondary combustion oxygen, which are considered to have the greatest influence on secondary combustion efficiency. There is no possibility that the 'tl thermal effect of secondary combustion is being fully utilized.

この様に現状の技術水準では、「COの2次燃焼効率の
如何が溶鋼温度の上昇程度に大きい影響を与える」とい
うことが概念的に確認されているに留まり、2次燃焼効
率を高める為に2次燃焼用酸素を具体的にどの様な条件
下で供給すればよいか、といった点に関する限りは、七
分な研究がなされているとは言えない0本発明はこうし
た状況を憂慮し、2次燃焼効率を効果的に高めることの
できる2次燃焼用酸素供給条件を明確にし、最少限の酸
素供給量で最良の昇熱効果を得ることのできる技術を提
供しようとするものである。
As described above, at the current state of the art, it has only been conceptually confirmed that ``the secondary combustion efficiency of CO has a large effect on the degree of rise in molten steel temperature.'' As far as the specific conditions under which secondary combustion oxygen should be supplied, it cannot be said that sufficient research has been carried out.The present invention is concerned with this situation, and This paper aims to clarify the oxygen supply conditions for secondary combustion that can effectively increase the secondary combustion efficiency, and to provide a technology that can obtain the best heating effect with the minimum amount of oxygen supplied.

[問題点を解決する為の手段] 上記の様な目的を達成することのできた本発明の溶鋼昇
熱方法とは、吹錬用主ランスの側壁に設けられた少なく
とも1つの2次燃焼用酸素供給ノズルから湯面に向けて
2次燃焼用酸素を吹付け、転炉排ガスを燃焼させて溶鋼
温度を上PLさせる方法において、1iii記2次燃焼
用酸素供給ノズルの開口部と湯面間の距離が該ノズル径
の150〜250倍となる様に設定し、主ランス先端か
らの吹付は酸素量に対して15%以上の2次燃焼用酸素
をマツハ0,5〜1.5の速度で吹付けるところに要旨
を有するものである。
[Means for Solving the Problems] The molten steel heating method of the present invention that has achieved the above-mentioned objects is based on at least one secondary combustion oxygen provided on the side wall of the main lance for blowing. In the method of blowing oxygen for secondary combustion from the supply nozzle toward the hot metal surface to burn the converter exhaust gas and raise the temperature of the molten steel, the space between the opening of the secondary combustion oxygen supply nozzle and the hot metal surface as described in 1iii. The distance is set to be 150 to 250 times the nozzle diameter, and the main lance sprays secondary combustion oxygen of 15% or more based on the amount of oxygen at a speed of Matsuha 0.5 to 1.5. The gist lies in the way it is sprayed.

〔作用] 本発明者らは、2次燃焼効率の向上に伴なう溶鋼の昇熱
促進という究極目的に向かって研究を行ない、(1)場
面と2次燃焼用酸素(以下2次酸素という)ノズル開口
部間の距離を該ノズル径の150〜250倍に設定する
こと、(2)2次酸素の供給量を吹錬用#素(以下1次
酸素という)量の15%以上とすること、及び(3)2
次酸素の流速をマツハ0.5〜1.5とすること、の3
点に到達したものであり、個々の詳細な設定根拠につい
ては後記実施例で明らかにするが、概要は下記の通りで
ある。
[Function] The present inventors conducted research toward the ultimate goal of accelerating the heating of molten steel by improving secondary combustion efficiency, and found that (1) the scene and secondary combustion oxygen (hereinafter referred to as secondary oxygen) ) The distance between the nozzle openings is set to 150 to 250 times the nozzle diameter, (2) The amount of secondary oxygen supplied is 15% or more of the amount of # element for blowing (hereinafter referred to as primary oxygen). and (3)2.
(3) Set the flow rate of oxygen to 0.5 to 1.5.
The detailed basis for each setting will be clarified in the examples below, but the outline is as follows.

(り湯面と2次酸素供給ノズル開口部間の距離を該ノズ
ル径の150〜250倍に設定した点 2次m素の供給によってCOの燃焼を効率良く進める為
には、該酸素の吹込みによって形成される火炎の先端部
が湯面の直上付近となる様にするのが最善であり(詳細
は後述)、下記(2) 、 (3)に示す好適2次酸素
量及び同流速のもとで火炎の先端位置をこうした好適位
置に保持する為には。
(The distance between the hot water surface and the opening of the secondary oxygen supply nozzle is set to 150 to 250 times the nozzle diameter.) It is best to ensure that the tip of the flame formed by the injection is near just above the molten metal surface (details will be described later). In order to maintain the tip of the flame at such a suitable position.

上記の間隔を2次酸素供給ノズル径の150〜250倍
の範囲に設定する必要がある。しかしてこの間隔が15
0倍未満では2次酸素の一部が脱酸反応に消費されて昇
温の目的が十分に発揮されず、一方250倍を超える場
合は湯面からかなり離れた高い位置でCOの燃焼が起こ
ることになる為溶鋼への熱伝達が期待できず、昇熱が不
十分となる。
It is necessary to set the above-mentioned interval in a range of 150 to 250 times the diameter of the secondary oxygen supply nozzle. However, the distance between the levers is 15
If it is less than 0 times, a part of the secondary oxygen will be consumed in the deoxidizing reaction, and the purpose of temperature increase will not be fully achieved. On the other hand, if it is more than 250 times, CO combustion will occur at a high position far away from the hot water surface. As a result, heat transfer to the molten steel cannot be expected, resulting in insufficient heat rise.

(2)2次酸素供給擾を1次酸素の15%以上とした点 1次酸素の吹込みによって生じるCOガスの燃焼は、吹
錬炉の内部雰囲気中における酸素濃度即ち吹込まれる2
次酸素量による影響を受け、この量が不足するとCO燃
焼率を十分に高めることができず、目的達成の為には1
次酸素量に対して15%以−ヒ、より好ましくは20%
以上の2次酸素を供給しなければならない。
(2) The point where the secondary oxygen supply rate is 15% or more of the primary oxygen.The combustion of CO gas caused by the injection of primary oxygen is determined by the oxygen concentration in the internal atmosphere of the blowing furnace, that is, the injected 2
Influenced by the amount of secondary oxygen, if this amount is insufficient, the CO combustion rate cannot be sufficiently increased, and in order to achieve the goal, 1
15% or more, more preferably 20% based on the amount of oxygen
or more secondary oxygen must be supplied.

(3)2次酸素の流速をマツハ0.5〜1.5に定めた
点 この流速は2次酸素供給ノズルの出口直後の流速を意味
するものであり、流速がマツハ1.5を超えると2次酸
素の供給によって形成されるべき火炎が当該2次酸素自
身に吹き飛ばされて実質的な火炎が形成されなくなる。
(3) The flow rate of secondary oxygen is set at 0.5 to 1.5. This flow rate refers to the flow rate immediately after the outlet of the secondary oxygen supply nozzle, and if the flow rate exceeds 1.5, The flame that should be formed by the supply of secondary oxygen is blown away by the secondary oxygen itself, and no substantial flame is formed.

その結果COの燃焼効率は非常に低いものとなり、溶鋼
昇熱効果が十分に発揮されるには至らない。一方流速が
マツハ0.5未満では、2次酸素の吹込みによって形成
される火炎が短し)のとなって湯面まで届かなくなり、
溶鋼昇熱作用が有効に発揮されなくなる。
As a result, the combustion efficiency of CO becomes extremely low, and the effect of heating up the molten steel cannot be sufficiently exhibited. On the other hand, if the flow rate is less than 0.5, the flame formed by the injection of secondary oxygen will be too short and will not reach the hot water surface.
The molten steel heating action will no longer be effective.

上記(1)〜(3)の要件は湯面付近に存在するCOと
2次酸素との反応効率を高め溶鋼の昇熱を効果的に進め
るうえで個々に見ても欠くことのできない要件であるが
、これらによる効果は相互に影響を及ぼし合うものであ
り、これらの要件のうち1つが欠けても本発明の目的を
ll成することはできず、これら3つの要件が相剰的に
好結果をもたらし、比較的少礒の2次酸素量であっても
効二V良く溶鋼の昇熱を達成することができる。
Requirements (1) to (3) above are indispensable requirements individually in order to increase the reaction efficiency between CO and secondary oxygen present near the molten metal surface and to effectively heat up the molten steel. However, these effects mutually influence each other, and even if one of these requirements is missing, the object of the present invention cannot be achieved, and if these three requirements are mutually favorable. As a result, even with a relatively small amount of secondary oxygen, heating of molten steel can be achieved with high efficiency.

第1.2図は本発明で使用する上吹きランス1を例示す
るもので、第1図は先端部の概略縦断面図、第2図は概
略底面図を示す9図示する如く本発明で使用するランス
lは先端部に1つ若しくは複数(図では5個)の吹錬用
酸素ノズル2が開口される他、その上方側部にはco燃
焼用の2次酸素ノズル3が複数個(図では8個)開口さ
れ、このノズル3はランスlの軸心Pに対する傾斜角0
を25〜40度の範囲に設定するのが最もIt−fまし
く、酸素の供給系統は吹錬用酸素供給系統とは別ライン
として設け、COの2次燃焼に最も適した速度に制御し
得る様に構成される。
Figure 1.2 illustrates the top blowing lance 1 used in the present invention, Figure 1 is a schematic vertical sectional view of the tip, and Figure 2 is a schematic bottom view. The lance l has one or more (five in the figure) oxygen nozzles 2 for blowing opened at its tip, and has a plurality of secondary oxygen nozzles 3 for co combustion on the upper side thereof (five in the figure). 8) are opened, and this nozzle 3 has an inclination angle of 0 with respect to the axis P of the lance l.
It is most preferable to set the temperature in the range of 25 to 40 degrees, and the oxygen supply system is set up as a separate line from the oxygen supply system for blowing, and the speed is controlled to be the most suitable for the secondary combustion of CO. configured to obtain.

そしてこのランスlを第3図(a略縦断面図)に示す如
く転炉4内へ装入し、湯面に向けて酸素を吹付けること
によって吹錬が行なわれる。尚本例では転炉1として底
部に底吹きノズル5を併設したものを示したが、底吹き
ノズル5は必ずしも設けなくともかまわない、またラン
ス1の形状も図示したものに限定される訳ではなく、吹
錬用酸素ノズル2や2次酸素ノズル3の数や形状、或は
両ノズル2.3間の高さ方向の間隔り等を含めて必要に
より任意に変更することができる。
Then, this lance 1 is inserted into the converter 4 as shown in FIG. 3 (a schematic longitudinal sectional view), and blowing is performed by blowing oxygen toward the surface of the molten metal. In this example, the converter 1 is shown as having a bottom blowing nozzle 5 attached to the bottom, but the bottom blowing nozzle 5 does not necessarily need to be provided, and the shape of the lance 1 is not limited to that shown in the figure. However, the number and shape of the blowing oxygen nozzles 2 and the secondary oxygen nozzles 3, the distance between the two nozzles 2.3 in the height direction, etc. can be changed arbitrarily as necessary.

[実施例] 本発明者等は、COの2次燃焼効率に(1)2次酸素の
流量及び流速並びに(2)2次酸素吐出位ごと湯面の間
の距離等の諸条件が少なからず影響を及ぼすという認識
のもとで、これらの関係を定延的に把握すべく、第4図
に示す様な小型燃焼試験炉(図中6は燃焼室、7は酸素
吹込みノズル、8は排気孔、9は1次整流板、10は2
次整流板を示す)を使用し、LDG (Co : 70
%、C02=15%、N2 :15%)雰囲気中におい
て種々のノズルを用いて酸素ガス吹込み試験を行なった
[Example] The present inventors have determined that the secondary combustion efficiency of CO depends on a number of conditions such as (1) the flow rate and flow velocity of secondary oxygen, and (2) the distance between the secondary oxygen discharge level and the hot water surface. In order to grasp these relationships indefinitely, we constructed a small combustion test furnace as shown in Figure 4 (6 in the figure is the combustion chamber, 7 is the oxygen injection nozzle, and 8 is the oxygen injection nozzle). Exhaust hole, 9 is the primary rectifier plate, 10 is 2
(shown below), LDG (Co: 70
%, CO2 = 15%, N2: 15%) An oxygen gas blowing test was conducted using various nozzles in an atmosphere.

その結果燃焼室6内におけるCOガスの燃焼は、同室6
内の02濃度、即ちノズル8から吹込まれる2次燃焼用
酸素量により著しい影響を受け、高レベルの2次燃焼効
率を確保する為には、1次酸素量に対する2次酸素量の
比率を少なくとも15%、より好ましくは20%以上と
すべきであることが明らかとなった。
As a result, the combustion of CO gas in the combustion chamber 6 is
The concentration of 02 in the air is significantly affected by the amount of secondary combustion oxygen injected from the nozzle 8. In order to ensure a high level of secondary combustion efficiency, the ratio of the amount of secondary oxygen to the amount of primary oxygen must be adjusted. It has become clear that it should be at least 15%, more preferably 20% or more.

ちなみに第5図は、2次酸素流量の1次酸素流量に対す
る比率及び流速を色々に変えた場合におけるCO燃焼性
の良否を調べた結果を示すグラフであり、吹込み流速に
よって若干の違いはあるものの、前記比率を15%以上
、好ましくは20%以上に設定してやれば、COの燃焼
を効率良く進めることができることが分かる。但しこの
図からも容易に理解できる様に、2次酸素の流速がマツ
ハ1.5を超えると火炎自体が形成されなくなり、2次
酸素は炉内のCOガスの燃焼にはあまり寄与せず溶鋼の
脱炭に消費されることとなる。但し流速がマツハ0.5
未満では、火炎が短かすぎて2次酸素とCOの反応が湯
面から離れた位置で起こる為、溶鋼の昇熱にあまり寄与
しなくなる。
By the way, Figure 5 is a graph showing the results of examining the quality of CO combustibility when the ratio of the secondary oxygen flow rate to the primary oxygen flow rate and the flow rate were varied, and there are slight differences depending on the blowing flow rate. However, it can be seen that if the ratio is set to 15% or more, preferably 20% or more, CO combustion can be efficiently promoted. However, as can be easily understood from this figure, when the flow rate of secondary oxygen exceeds Matsuha 1.5, the flame itself is no longer formed, and the secondary oxygen does not contribute much to the combustion of CO gas in the furnace and the molten steel will be consumed for decarburization. However, the flow velocity is Matsuha 0.5
If the temperature is less than 100 m, the flame is too short and the reaction between secondary oxygen and CO occurs at a position far from the molten metal surface, so it does not contribute much to the heat rise of the molten steel.

即ち2次酸素の吹込みによって形成される火炎は例えば
第6図に略示する様な形状([但しく2次酸素/1次酸
素)X100=20%]、流速:マッハ1.0.2次酸
素ノズル径:Dmm) となり。
That is, the flame formed by the injection of secondary oxygen has a shape as schematically shown in FIG. 6 ([Secondary oxygen/Primary oxygen) x 100 = 20%], flow rate: Mach 1.0.2 Oxygen nozzle diameter: Dmm)

湯面に対する火炎の位置によって溶湯に対するシL熱効
果は変わってくるが、本発明者等が実験により確認した
ところでは、第6図における火炎終了点が湯面のやや−
L方へくる様にノズルの位置を設定することによって最
良の昇熱効果が発揮される。ちなみに図中■の位置は、
火炎が未形成であり2次酸素が燃焼していない領域、■
の位tは、火炎は形成されるものの未燃焼の酸素が相当
量残っており2次燃焼効率の低い領域であり、このあた
りに湯面が存在していても溶鋼に対する昇熱効果は期待
できない、一方(3)の位置は、2次燃焼が十分に行な
われており且つ燃焼熱が溶鋼の昇熱に効率良く伝えられ
る領域であるから、このあたりに湯面を存在せしめるこ
とが有効である。しかし■の位とになると、2次燃焼が
既に完了している為、熱1逢は少なく、湯面がち該位置
に存在する場合は昇熱効率が不ヒ分となる領域である。
Although the thermal effect on the molten metal changes depending on the position of the flame relative to the molten metal surface, the inventors have confirmed through experiments that the flame end point in Fig. 6 is slightly below the molten metal surface.
The best heating effect can be achieved by setting the position of the nozzle so that it is in the L direction. By the way, the position of ■ in the diagram is
Area where flame is not formed and secondary oxygen is not burned,■
At position t, although a flame is formed, a considerable amount of unburned oxygen remains and the secondary combustion efficiency is low, and even if there is a hot water level around this area, no heating effect on the molten steel can be expected. On the other hand, position (3) is an area where secondary combustion is sufficiently carried out and combustion heat is efficiently transferred to raise the temperature of molten steel, so it is effective to have a molten metal level around this area. . However, at the position (■), since the secondary combustion has already been completed, the amount of heat generated is small, and if the hot water level is at that position, the heating efficiency is insufficient.

これらの考察をまとめると、2次燃焼効率及び溶鋼の)
L熱効率を考慮したとき最も好ましい湯面位置(より正
しく表現すれば湯面に対する火炎位置)は第6図のXで
示した 域と考えられる。
To summarize these considerations, the secondary combustion efficiency and molten steel)
When L thermal efficiency is considered, the most preferable hot water surface position (or more correctly expressed, the flame position relative to the hot water surface) is considered to be the area indicated by X in Figure 6.

また第7図は、2次酸素のノズル出口直後における流速
と火炎位置との関係[(2次酸素Fi、量/1次酸素流
量)X100=20%]を示すグラフで、火炎の長さ及
び形成位置は該流速とそのノズル径によって決まり、ノ
ズル径を一定とすると流速が大きくなるにつれて火炎の
吹飛び距離が長くなると共に火炎終了点はノズルから遠
ざかってくる。
Fig. 7 is a graph showing the relationship between the flow velocity of secondary oxygen immediately after the nozzle exit and the flame position [(secondary oxygen Fi, amount/primary oxygen flow rate) The formation position is determined by the flow velocity and its nozzle diameter; if the nozzle diameter is held constant, as the flow velocity increases, the distance the flame is blown away increases and the flame end point moves away from the nozzle.

更に第8図(A)〜(C)は、直径りが11.9+s層
の2次酸素ノズルを使用し、流速をマツ/\0.4゜1
.5に設定した場合における火炎の温度分布を示すグラ
フであり、これらの図を対比すれば明白な様に2次酸素
の流速を遅くすればする程火炎温度は高くなり、昇熱効
率の向上に大きく寄与し得るものと考えられる。
Furthermore, in Fig. 8 (A) to (C), a secondary oxygen nozzle with a diameter of 11.9 + s layer is used, and the flow rate is set to 1/\0.4゜1.
.. This is a graph showing the temperature distribution of the flame when the setting is set to It is thought that this could make a contribution.

以−Lの予備実験データを基にして、250トン転炉を
用いて実際の吹錬実験を行なった。尚主ランスとしては
第1.2図に示した基本構造を有するものを使用した。
Based on the preliminary experimental data described above, an actual blowing experiment was conducted using a 250-ton converter. The main lance used had the basic structure shown in Figure 1.2.

まず第9図は、下記実験条件のもとで[2次酸素iA−
/1次酸素量]の比を腫々変えた場合におけるCOの燃
焼効率を、炉内CO2の上昇率として求めた結果をグラ
フ化したものである。
First, Figure 9 shows [Secondary Oxygen iA-
This is a graph showing the results of CO combustion efficiency determined as the rate of increase in CO2 in the furnace when the ratio of [Amount of primary oxygen] was varied drastically.

(実験条件) ランス先端と場面の間の互層: 2,200m層1次(
吹錬)酸素ノズル径(D):44m履2次酸素ノズル径
     :201 同  傾斜角度((J)   :30度2次酸素流速(
マツへ)    :1.2ノズルヘツドと2次酸素ノズ
ル間の距離:1.500+s■ 第9図からも明らかな様にCOの2次燃焼効率を高める
為には[2次酸素/1次酸素]の流量比を15%以上、
より好ましくは20%以上にする必要がある。
(Experimental conditions) Alternating layers between the lance tip and the scene: 2,200m layer primary (
Blowing) Oxygen nozzle diameter (D): 44 m Secondary oxygen nozzle diameter: 201 Same Incline angle ((J): 30 degrees Secondary oxygen flow rate (
1.2 Distance between nozzle head and secondary oxygen nozzle: 1.500+s As is clear from Figure 9, in order to increase the secondary combustion efficiency of CO, [secondary oxygen/primary oxygen] Flow rate ratio of 15% or more,
More preferably, it needs to be 20% or more.

次に第10図は、[2次酸素/1次酸素]流量比を20
%に設定し、2次酸素の流速を種々変えた他は前記と同
様にして炉内のCO2上昇率を調べた結果をグラフ化し
たものである。
Next, in Figure 10, the [secondary oxygen/primary oxygen] flow rate ratio is 20.
%, and the flow rate of secondary oxygen was varied in various ways.

第10図の結果からみると2次酸素の流速が高くなるほ
どC0zh昇率は明らかに低下しており、CO燃焼効率
を高める為にはその流速をマツハ1.5以下、より好ま
しくは1.25以下に抑えるべきであることが分かる。
From the results in Figure 10, it is clear that the higher the flow rate of secondary oxygen is, the lower the C0zh rise rate becomes.In order to increase the CO combustion efficiency, the flow rate should be lower than Matsuha 1.5, more preferably 1.25. It can be seen that it should be kept below.

但し該流速が低くなりすぎると燃焼が促進しても、その
燃焼熱が有効に湯面に伝わらず排ガス温度のみ上昇させ
る結果となるので、当該流速の下限はマツハ0.5と定
めた。
However, if the flow rate becomes too low, even if combustion is promoted, the combustion heat will not be effectively transferred to the hot water surface, resulting in only an increase in the exhaust gas temperature, so the lower limit of the flow rate was set at 0.5.

また前記第7図でも説明した様に、2次酸素によって形
成される火炎の位置は2次酸素ノズルの口径及び2次酸
素の流速によって変わってくるが、最も標準的な転炉吹
錬条件(下記の通り)のもとで、ランスヘッドと2次酸
素ノズル開口端の間の距、1 (L)を変えた場合のC
O燃焼効率(C○2上昇率)の関係を調へたところ、第
11図に示す結果が得られた。
Furthermore, as explained in Fig. 7 above, the position of the flame formed by secondary oxygen varies depending on the diameter of the secondary oxygen nozzle and the flow rate of secondary oxygen, but under the most standard converter blowing conditions ( C when the distance between the lance head and the opening end of the secondary oxygen nozzle, 1 (L), is changed under (as shown below)
When the relationship between O combustion efficiency (C○2 increase rate) was investigated, the results shown in FIG. 11 were obtained.

(実験条件) ランス先端と湯面の間の距f11 + 2,200m腸
1次(吹?り酸素ノズル径(1))+44重量2次酸素
ノズル径     :20m鳳同  傾斜角度(0) 
  :30度 2次酸素流速(マツハ)    :1.2(2次酸素/
1次酸素)   :20%第11図からも明らかである
様に、2次酸素ノズルと湯面の間の距離には好適範囲が
あり、この範囲を外れた場合は満足し得るCO反応率を
得ることができず、該好適範囲は150D〜250D(
より好ましくは180D〜240Dの範囲)と考えられ
る。
(Experimental conditions) Distance between the lance tip and the hot water surface f11 + 2,200 m Primary (blowing oxygen nozzle diameter (1)) + 44 weight Secondary oxygen nozzle diameter: 20 m Inclination angle (0)
: 30 degrees Secondary oxygen flow rate (Matsuha) : 1.2 (Secondary oxygen/
Primary oxygen): 20% As is clear from Figure 11, there is a suitable range for the distance between the secondary oxygen nozzle and the hot water surface, and if it is outside this range, a satisfactory CO reaction rate may not be achieved. The preferred range is 150D to 250D (
More preferably, it is in the range of 180D to 240D).

以上の結果より、最良の吹錬条件として(2次酸素/1
次酸素)流量比:20%、ランス高さ:2.200層層
、2次酸素流速:マッハ1.2.2次酸素ノズルとラン
スヘッドの間の距@:l、500mmを夫々設定し、多
数の実験を行ない、COの2次燃焼率及び溶鋼の昇熱度
について従来法と比較したところ、第12図に示す如く
であり、末完I91によれば2次燃焼率を約10%、溶
鋼昇熱度をスクラップ比にして約4%夫々向上し得るこ
とが確認された。
From the above results, the best blowing conditions (secondary oxygen/1
Secondary oxygen) flow rate ratio: 20%, lance height: 2.200 layers, secondary oxygen flow rate: Mach 1.2. Distance between secondary oxygen nozzle and lance head @:l, 500 mm, respectively. We conducted a number of experiments and compared the secondary combustion rate of CO and the degree of heating of molten steel with the conventional method, as shown in Figure 12.According to Shukan I91, the secondary combustion rate was about 10%, It was confirmed that the degree of heating can be improved by about 4% in terms of scrap ratio.

第13図は2次酸素独立制御型ノズルを用いた2次吹込
みパターンの一例を示したもので、COガス発生率の最
も高い時期(吹錬開始後2〜14分)においては2次酸
素の供給量を増大し、溶鋼昇熱効果の向」−を図ってい
る。尚本例では予備脱P及び予備脱Sを行なっていない
溶銑を吹錬対象とする例を示したが、脱P・脱S済みの
溶銑を使用する場合は、脱P・脱S期がなく直ちに脱C
に入るので2次酪素流量を高める時期を若干早める方が
好ましい。
Figure 13 shows an example of a secondary blowing pattern using a secondary oxygen independent control nozzle. The aim is to increase the supply amount of molten steel and improve the heating effect of molten steel. In this example, hot metal that has not been subjected to preliminary deP or S is used for blowing, but when using hot metal that has already been deP or S, there is no deP or S phase. Remove C immediately
Therefore, it is preferable to increase the secondary butyric flow rate a little earlier.

[発明の効果] 本発明は以上の様に構成されているが、要は2次酸素供
給ノズルと湯面の間の距離、2次酸素の供給量及び流速
を夫々特定することによって、2次酸素によるCOの燃
焼効率及びその燃焼に件なう溶鋼の昇熱効率を最大限に
高めることができ、スクラ・ンプ比の増大成は吹止め温
度の上昇といった刹益を享受し得ることになった。
[Effects of the Invention] The present invention is configured as described above, but the point is that by specifying the distance between the secondary oxygen supply nozzle and the hot water surface, the supply amount and flow rate of secondary oxygen The combustion efficiency of CO by oxygen and the heating efficiency of molten steel related to the combustion can be maximized, and an increase in the scrubbing ratio can enjoy benefits such as an increase in blowstop temperature. .

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は本発明で使用するランスを例示するもので
、第1図は先端部の概略縦断面図、第2図は底面図、第
3図は吹錬状況を示す説明図、第4図は予備実験で用い
た試験炉を示す概略縦断面図、第5図は2次酸素の流速
及び(2次酸素/1次酸素)流量比がcoの燃焼性に及
ぼす影響を示すグラフ第6図はCOの2次燃焼時に生ず
る火炎のモデル図、第7図は2次燃焼時の火炎に及ぼす
2次酸素流速及び2次酸素ノズル−湯面間距離の関係を
示すグラフ、第8図は2次酸素ノズル開口端からの距離
と火炎温度の関係を示すグラフ、第9図は(2次酸素/
1次酸素)流量比が炉内CO2上昇率(CO反応率)に
及ぼす影響を示すグラフ、第10図は2時酸素の流速が
同じくCO21昇率に及ぼす影響を示すグラフ、第11
図は、ランス−2次酸素ノズル間距離(及びランスヘッ
ド−2次酸素ノズル間距離)が002上昇率に及ぼす影
響を示すグラフ、第12図は2次燃焼効率と溶鋼昇熱度
(スクラップ比)につき従来例と本発明法を対比して示
すグラフ、第13図は本発明を実施する際における2時
酸素の供給パターンを例示する説明図である。 l・・・ランス
Figures 1.2 illustrate the lance used in the present invention; Figure 1 is a schematic vertical sectional view of the tip, Figure 2 is a bottom view, Figure 3 is an explanatory diagram showing the blowing situation, Figure 4 is a schematic vertical cross-sectional view showing the test furnace used in the preliminary experiment, and Figure 5 is a graph showing the influence of the flow rate of secondary oxygen and the flow rate ratio (secondary oxygen/primary oxygen) on the combustibility of co. Figure 6 is a model diagram of the flame generated during secondary combustion of CO, Figure 7 is a graph showing the relationship between the secondary oxygen flow rate and the distance between the secondary oxygen nozzle and the melt surface on the flame during secondary combustion, and Figure 8. is a graph showing the relationship between the distance from the opening end of the secondary oxygen nozzle and the flame temperature, and Figure 9 is a graph showing the relationship between the distance from the opening end of the secondary oxygen nozzle and the flame temperature.
Figure 10 is a graph showing the effect of the primary oxygen) flow rate ratio on the CO2 rise rate (CO reaction rate) in the furnace.
The figure is a graph showing the influence of the distance between the lance and the secondary oxygen nozzle (and the distance between the lance head and the secondary oxygen nozzle) on the 002 increase rate. Figure 12 shows the secondary combustion efficiency and the degree of heating up of molten steel (scrap ratio) FIG. 13 is an explanatory diagram illustrating the 2 o'clock oxygen supply pattern when implementing the present invention. l...Lance

Claims (1)

【特許請求の範囲】[Claims] 転炉吹錬を行なうに当たり、吹錬用主ランスの側壁に設
けられた少なくとも1つの2次燃焼用酸素供給ノズルか
ら湯面に向けて2次燃焼用酸素を吹付け、転炉排ガスを
燃焼させて溶鋼温度を上昇させる方法において、前記2
次燃焼用酸素供給ノズルの開口部と湯面間の距離が該ノ
ズル径の150〜250倍となる様に設定し、主ランス
先端からの吹付け酸素量に対して15%以上の2次燃焼
用酸素をマッハ0.5〜1.5の速度で吹付けることを
特徴とする転炉における溶鋼昇熱方法。
When performing converter blowing, oxygen for secondary combustion is sprayed toward the hot water surface from at least one oxygen supply nozzle for secondary combustion provided on the side wall of the main lance for blowing, and the exhaust gas of the converter is combusted. In the method of increasing the molten steel temperature by
The distance between the opening of the oxygen supply nozzle for secondary combustion and the melt surface is set to be 150 to 250 times the diameter of the nozzle, and the secondary combustion is 15% or more of the amount of oxygen blown from the tip of the main lance. 1. A method for heating up molten steel in a converter, characterized by spraying commercial oxygen at a speed of Mach 0.5 to 1.5.
JP60173833A 1985-08-07 1985-08-07 Method for heating molten steel in converter Granted JPS6233710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60173833A JPS6233710A (en) 1985-08-07 1985-08-07 Method for heating molten steel in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60173833A JPS6233710A (en) 1985-08-07 1985-08-07 Method for heating molten steel in converter

Publications (2)

Publication Number Publication Date
JPS6233710A true JPS6233710A (en) 1987-02-13
JPH0432124B2 JPH0432124B2 (en) 1992-05-28

Family

ID=15968000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60173833A Granted JPS6233710A (en) 1985-08-07 1985-08-07 Method for heating molten steel in converter

Country Status (1)

Country Link
JP (1) JPS6233710A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915995A1 (en) * 1996-05-01 1999-05-19 LTV Steel Company Multipurpose lance
WO2011066550A1 (en) * 2009-11-30 2011-06-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dynamic control of lances utilizing co-flow fluidic techniques
US8323558B2 (en) 2009-11-30 2012-12-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dynamic control of lance utilizing counterflow fluidic techniques
US8377372B2 (en) 2009-11-30 2013-02-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dynamic lances utilizing fluidic techniques

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915995A1 (en) * 1996-05-01 1999-05-19 LTV Steel Company Multipurpose lance
EP0915995A4 (en) * 1996-05-01 1999-07-28 Ltv Steel Co Inc Multipurpose lance
WO2011066550A1 (en) * 2009-11-30 2011-06-03 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dynamic control of lances utilizing co-flow fluidic techniques
US8323558B2 (en) 2009-11-30 2012-12-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dynamic control of lance utilizing counterflow fluidic techniques
US8377372B2 (en) 2009-11-30 2013-02-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dynamic lances utilizing fluidic techniques

Also Published As

Publication number Publication date
JPH0432124B2 (en) 1992-05-28

Similar Documents

Publication Publication Date Title
CN100462446C (en) Method for melting and decarburization of iron carbon alloy
AU715437B2 (en) A burner
JPS6233710A (en) Method for heating molten steel in converter
JPH10500455A (en) Method of producing steel in electric arc furnace and electric arc furnace therefor
JP4206736B2 (en) Top blowing lance and converter operation method using it
JPH065406Y2 (en) Converter blowing lance
JP2851552B2 (en) Oxygen blowing lance
CN1095876C (en) Method for injection of oxygen in electric arc furnace in the production of steel
JPH0941020A (en) Operation of converter
JP2851553B2 (en) Oxygen blowing lance
JP2851554B2 (en) Oxygen blowing lance
JP2001059111A (en) Gas blowing lance and operation of top-bottom combined converter using this lance
JP2003268434A (en) Top-blown lance and process for refining molten iron using this
SU1004476A1 (en) Fuel-oxygen tuyere
JPH06240329A (en) Top blowing oxygen lance for refining molten metal and method for refining molten metal
SU1578209A1 (en) Method of melting steel on converter
JPH0989223A (en) High-temperature air burner
SU1765183A1 (en) Method for melting steel in hearth steel-melting unit
JPS62161911A (en) Lance for converter blowing
JPS6260807A (en) Converter operating method and oxygen blowing lance
JPS636188Y2 (en)
JPH0469204B2 (en)
JPH09157725A (en) Method for melting ferrous scrap
JPS62188711A (en) Melt reduction steel making method
JPH0293012A (en) Method for hating iron scrap in converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees