JPS6233521B2 - - Google Patents

Info

Publication number
JPS6233521B2
JPS6233521B2 JP54014245A JP1424579A JPS6233521B2 JP S6233521 B2 JPS6233521 B2 JP S6233521B2 JP 54014245 A JP54014245 A JP 54014245A JP 1424579 A JP1424579 A JP 1424579A JP S6233521 B2 JPS6233521 B2 JP S6233521B2
Authority
JP
Japan
Prior art keywords
thickness
plate
average
measurement
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54014245A
Other languages
Japanese (ja)
Other versions
JPS55107911A (en
Inventor
Kazuo Watanabe
Shinichi Yoshida
Shoichi Horiuchi
Yoshikatsu Satomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Steel Corp
Original Assignee
Hitachi Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Steel Corp filed Critical Hitachi Ltd
Priority to JP1424579A priority Critical patent/JPS55107911A/en
Publication of JPS55107911A publication Critical patent/JPS55107911A/en
Publication of JPS6233521B2 publication Critical patent/JPS6233521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は、放射線などを利用して鋼板などの厚
さを測定する板厚測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the thickness of a steel plate or the like using radiation or the like.

鉄鋼などの圧延および精整工程では、製品の品
質管理の重要な要素として、厚さの連続測定を必
要としており、従来放射線を利用したアナログ方
式の厚さ計を使用していた。しかし近年、品質の
向上に対する要求が高まり、厚さ計の精度および
応答性の飛躍的向上が要求されるようになつた。
特に厚板などのプレート圧延工程においては、測
定対象物が断続的に流れて来る為、板頭の不感帯
を最小限にし、分解能を高めるためには、応答性
の向上が最大の課題であつた。
In the rolling and finishing processes of steel, etc., continuous measurement of thickness is required as an important element of product quality control, and analog thickness gauges that use radiation have traditionally been used. However, in recent years, demands for improved quality have increased, and a dramatic improvement in the accuracy and responsiveness of thickness gauges has become necessary.
In particular, in the process of rolling plates such as thick plates, the object to be measured flows intermittently, so improving responsiveness was the biggest challenge in order to minimize the dead zone at the head of the plate and increase resolution. .

以下図により具体的に説明する。 This will be explained in detail below with reference to the drawings.

第1図において、被測定物1をはさんで線源2
と検出器3が一定の間隔で配置されており、線源
2より矢印方向に放射線を発し、被測定物1を透
過した放射線が検出器3に達する。検出器3は光
電子増倍管などを用いたパルスを出力する検出器
で、高電圧が高圧電源部6から印加されており、
検出された信号は入力回路部5で伝送可能な信号
に処理され、演算処理装置8へ入力される。被測
定物1は厚板圧延などでは1000℃前後に加熱され
ており、圧延中の温度変化に対する密度の補正が
不可欠の為、温度検出器4で温度を検出し信号変
換器7をへて演算処理装置8で補正処理される。
また温度検出器4は測定位置への被測定物1の突
入検出も兼ねており、信号変換部7では600℃以
上の温度検知で板有りの判定をする板突入信号発
生部(図示せず)が含まれ測定開始信号をここか
ら発信する。入力回路部5からの板厚に対応した
パルス信号および信号変換器7からの温度信号
は、演算処理装置8で演算処理され表示記録装置
9に表示される。板厚などの各種設定値情報およ
び測定結果の情報は、演算処理装置8と上位のプ
ロセスコンピユーター10とで交信し自動測定が
なされる。
In Figure 1, a radiation source 2 is placed across the object 1 to be measured.
A radiation source 2 emits radiation in the direction of the arrow, and the radiation transmitted through the object to be measured 1 reaches the detector 3. The detector 3 is a detector that outputs pulses using a photomultiplier tube or the like, and a high voltage is applied from a high voltage power source 6.
The detected signal is processed by the input circuit section 5 into a signal that can be transmitted, and is input to the arithmetic processing device 8. The object to be measured 1 is heated to around 1000°C during thick plate rolling, etc., and it is essential to correct the density for temperature changes during rolling. Therefore, the temperature is detected by the temperature detector 4 and calculated by the signal converter 7. A processing device 8 performs correction processing.
The temperature detector 4 also serves to detect the object 1 to be measured entering the measurement position, and the signal converter 7 uses a plate entry signal generator (not shown) that determines whether a plate is present by detecting a temperature of 600°C or higher. The measurement start signal is sent from here. The pulse signal corresponding to the plate thickness from the input circuit section 5 and the temperature signal from the signal converter 7 are processed by an arithmetic processing device 8 and displayed on a display/recording device 9. Various set value information such as plate thickness and information on measurement results are communicated between the arithmetic processing unit 8 and the upper process computer 10, and automatic measurements are performed.

一方、板巾方向の厚さ検出位置を制御するため
第2図に示す如く、線源2、検出器3などが取付
けられる保持体11は、板巾方向にレール16上
を走行するようになつており、ピニオン12、ラ
ツク13、およびそれらに直結された位置発信機
14からパルスを発信し、位置制御装置17に入
力される。保持体11の停止目的位置は、演算処
理装置8から板巾変更とともに設定値として与え
られ位置制御装置17で位置発信機14から与え
られる信号と比較し、モーター15の電圧を制御
し、所望の位置に停止させる。
On the other hand, in order to control the thickness detection position in the width direction of the plate, as shown in FIG. Pulses are transmitted from the pinion 12, rack 13, and position transmitter 14 directly connected to them, and are input to the position control device 17. The target stop position of the holder 11 is given as a set value by the arithmetic processing unit 8 together with the change in board width, and the position control device 17 compares it with the signal given from the position transmitter 14, controls the voltage of the motor 15, and sets the desired position. stop in position.

以上のように構成された厚さ計において、測定
精度を決定する重要な要因となる、測定結果のバ
ラツキすなわち統計誤差は ここにσ:相対標準偏差 N:計数値(CPS) T:測定時間(S) で定義される。
In the thickness gauge configured as described above, the variation in measurement results, that is, the statistical error, is an important factor in determining measurement accuracy. Here, σ: Relative standard deviation N: Count value (CPS) T: Measurement time (S) It is defined as follows.

この統計誤差が測定精度上許容される値は、90
%信頼度で約0.05%であるから、測定時間は0.4S
は必要となる。しかしながら、0.4Sの測定時間を
許容すると、通常のラインスピードで被測定物は
1m以上も移動してしまい、不感帯が大きく実用
に供しない。このように、統計誤差と応答(測定
時間)は、相反する結果をもたらすため、いずれ
かを犠牲にしなければならないという宿命にあつ
た。
The allowable value for this statistical error in terms of measurement accuracy is 90
Since the % reliability is approximately 0.05%, the measurement time is 0.4S.
is required. However, if a measurement time of 0.4S is allowed, the object to be measured will move more than 1m at normal line speed, resulting in a large dead zone and impractical use. In this way, statistical error and response (measurement time) yield contradictory results, so it was inevitable that one or the other would have to be sacrificed.

本発明の目的は、デジタル検出方式の出現によ
る高速検出の実用化にともない、高精度、高速応
答の相反する条件を満足しうる板厚測定方法を提
供するにある。
An object of the present invention is to provide a plate thickness measuring method that can satisfy the contradictory conditions of high accuracy and high speed response, as high-speed detection has become practical due to the advent of digital detection methods.

このため本発明は、被測定物をはさみ込むよう
に一対の線源と検出器を配置し、被測定物の板厚
を測定する方法において、測定開始から設定され
た平均演算時間に達するまでは設定された基準計
数時間ごとのデータの累積平均に基づいて板厚を
測定し、前記平均演算時間に達した後は前記基準
計数時間ごとの移動平均に基づいて板厚を測定す
るようにしたものである。
For this reason, the present invention provides a method for measuring the thickness of a workpiece by arranging a pair of radiation sources and a detector so as to sandwich the workpiece. The plate thickness is measured based on the cumulative average of data for each set standard counting time, and after the average calculation time is reached, the plate thickness is measured based on the moving average for each of the standard counting times. It is.

以下、本発明の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第3図は演算処理装置8の構成図で、被測定物
の測定位置への入つたことを発信する板突入信号
発生部18、基準計数時間を決定する基準計数時
間発生部19、基準計数時間ごとのパルスを計数
するパルス計数部20、計数値を記憶するデータ
ー記憶部21、計数された基準計数時間ごとの計
数値の平均演算時間を設定する平均演算時間設定
部22、基準計数時間ごとデーター記憶部の計数
値を平均する平均演算部23から構成されてお
り、具体的動作を第4図により説明する。
FIG. 3 is a block diagram of the arithmetic processing unit 8, which includes a plate entry signal generation section 18 that transmits that the object to be measured has entered the measurement position, a reference counting time generation section 19 that determines the reference counting time, and a reference counting time. A pulse counting section 20 that counts pulses for each reference counting time, a data storage section 21 that stores the counted value, an average calculation time setting section 22 that sets the average calculation time of the counted value for each reference counting time, and data for each reference counting time. It is composed of an average calculation section 23 that averages the counts in the storage section, and its specific operation will be explained with reference to FIG.

第4図は被測定物(例えば鋼板)を平面的に見
たもので、A−Bが板巾方向、A−Dが圧延方向
を示しており、例えば板巾の中間点Cに測定位置
がセツトされ、板突入検出をする検出器4も同じ
位置に配置されている。一方基準計数時間発生部
19を0.1Sにセツトしておき、かつ平均演算時間
設定部22を0.4Sにしておく。この状態で矢印の
流れ方向に鋼板が移動し測定位置まで進行して来
ると、板検出器4が板突入を感知し、板突入信号
発生部18より信号をパルス計数部20へ発し、
aの間すなわち0.1S計数をする。0.1S経過すると
計数値はデーター記憶部21に移し、新たに0.1S
計数を続行する。この動作を板が測定位置を出、
板検出器4が板出の判断をするまでくり返えす。
一方、計数開始に同期して、0.1S間隔の時間判定
を平均演算時間設定部22で行い、0.4Sすなわち
4回目のデーターが計数されるまでは、0.1Sごと
の累積平均を平均演算部23で演算し(b1、b2
b3の間隔でそれぞれaの間計数されたデーターの
累積平均を行う。)、0.5Sすなわち5回目の計数を
完了したら、2回目の計数値から5回目までの計
数値、4回分(0.4S間)を0.1Sごとの移動平均
(b4′)で出力し、以降の厚さ演算を行う。以後こ
の動作を板出まで続行する。以上の如く、板突入
から0.1Sごとにデーターが出力され高速応答が実
現され、かつ0.4S間の平均値で求められるので、
統計誤差も最小限におさえられ、同時に高精度化
も達成される。また、b1、b2、b3の累積平均を行
うことにより、データーのバラツキは増えるが、
板頭部分の形状を知るうえで有効なデーターとな
る。
Fig. 4 is a plan view of the object to be measured (for example, a steel plate), where A-B indicates the width direction of the plate and A-D indicates the rolling direction. For example, the measurement position is at the midpoint C of the width of the plate. A detector 4 for detecting plate entry is also placed at the same position. On the other hand, the reference counting time generation section 19 is set to 0.1S, and the average calculation time setting section 22 is set to 0.4S. In this state, when the steel plate moves in the flow direction of the arrow and advances to the measurement position, the plate detector 4 detects plate entry, and the plate entry signal generator 18 issues a signal to the pulse counting unit 20.
Count during a, that is, 0.1S. After 0.1S has elapsed, the count value is transferred to the data storage section 21 and a new 0.1S
Continue counting. This movement causes the plate to leave the measurement position,
This process is repeated until the board detector 4 determines that the board is out.
On the other hand, in synchronization with the start of counting, the average calculation time setting unit 22 performs time determination at 0.1S intervals, and until 0.4S, that is, the fourth data is counted, the average calculation unit 23 calculates the cumulative average every 0.1S. (b 1 , b 2 ,
b Perform a cumulative average of the data counted during a, each at intervals of 3 . ), 0.5S, that is, when the 5th counting is completed, output the counted values from the 2nd count to the 5th, 4 times (0.4S interval) as a moving average (b 4 ′) every 0.1S, and then Perform thickness calculation. After this, continue this action until itade. As mentioned above, data is output every 0.1S from the plate entry, achieving high-speed response, and it is calculated as the average value for 0.4S, so
Statistical errors are also minimized, and at the same time high accuracy is achieved. Also, by performing cumulative averaging of b 1 , b 2 , and b 3 , the variation in data increases, but
This is useful data for understanding the shape of the board head.

以上述べた本発明による効果を第5図により具
体的に説明する。
The effects of the present invention described above will be explained in detail with reference to FIG.

5−Aは板頭部の断面を示す図で、0.4Sの単純
平均で測定すると板頭より、4aすなわち0.4S間
遅れて5−aに示す形状の結果でデーターを出力
する。0.4Sの0.1Sごとの移動平均では5−bに示
すように、0.4S経過後は5−aよりも分解された
データーとなるが、板頭部の不感帯は改善されな
い。5−cは本発明を実行したときの、データー
を示す図で、前2例の欠点が改善され、板頭の不
感帯が最小限になり、厚さ変化に対する分解能も
満足される。
5-A is a diagram showing a cross section of the top of the board, and when measured using a simple average of 0.4S, the data is output as a result of the shape shown in 5-a with a delay of 4a, that is, 0.4S, from the top of the board. With the moving average of 0.4S every 0.1S, as shown in 5-b, after 0.4S, the data becomes more resolved than in 5-a, but the dead zone at the top of the board is not improved. 5-c is a diagram showing data when the present invention is implemented, in which the drawbacks of the previous two examples are improved, the dead zone of the board head is minimized, and the resolution with respect to thickness changes is also satisfied.

5−d〜5−fは5−Aに示す断面形状の厚さ
変化が、板頭ではなく、板の中間部に生じた場合
の単純平均と本発明の移動平均の相違を示す図
で、単純平均では5−d,5−eに示すように、
厚さ変化に対する分解能が悪いばかりでなく、平
均する位置と厚さ変動個所のタイミングずれによ
り、データーが同じ厚さ変動に対し、5−d,5
−eの如く全く様子が違つたものとなる。本発明
による5−fでは、この様な欠点は全て改善され
良好な結果が得られる。
5-d to 5-f are diagrams showing the difference between the simple average and the moving average of the present invention when the thickness change in the cross-sectional shape shown in 5-A occurs not at the head of the board but at the middle part of the board, In the simple average, as shown in 5-d and 5-e,
Not only is the resolution for thickness changes poor, but also the timing difference between the averaging position and the thickness variation location causes the data to be 5-d, 5 for the same thickness variation.
-e, the appearance is completely different. In 5-f according to the present invention, all such defects are improved and good results are obtained.

以上のように、測定開始時点からの累積平均
と、基準計数時間ごとの移動平均の演算方式を組
合せて行うことにより、実現不可能であつた板頭
部の不感帯がなくなり、厚さ変動に対する分解も
著しく向上し、同時に演算時間による遅れを最小
限にとどめた。高精度でかつ高速応答の厚さ計が
実現出来る。尚説明では、基準計数時間を0.1Sに
し、平均演算時間を0.4Sで示したが、この時間に
限ることなく本発明は実現出来ることは云うまで
もない。
As described above, by combining the calculation method of the cumulative average from the start of measurement and the moving average for each standard counting time, the dead zone at the top of the plate, which was impossible to realize, is eliminated, and thickness fluctuations can be resolved. This has significantly improved performance, and at the same time, delays due to calculation time have been kept to a minimum. A thickness gauge with high accuracy and high speed response can be realized. In the explanation, the reference counting time was set to 0.1S and the average calculation time was set to 0.4S, but it goes without saying that the present invention can be realized without being limited to these times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放射線厚さ計の全体構成を示すブロツ
ク図、第2図は検出系の詳細図、第3図は本発明
方法を実施するための演算処理装置のブロツク
図、第4図は本発明に係る測定方法を示す図、第
5図は従来と本発明における測定結果を示す図で
ある。 1……被測定物、2……線源、3……検出器、
4……板検出器、5……入力回路部、6……高圧
電源部、7……信号変換器、8……演算処理装
置、9……表示記録装置、10……プロセスコン
ピユーター、18……板突入信号発生部、19…
…基準計数時間発生部、20……パルス計数部、
21……データー記憶部、22……平均演算時間
設定部、23……平均演算部。
Fig. 1 is a block diagram showing the overall configuration of the radiation thickness meter, Fig. 2 is a detailed diagram of the detection system, Fig. 3 is a block diagram of the arithmetic processing device for carrying out the method of the present invention, and Fig. 4 is the main FIG. 5 is a diagram showing the measurement method according to the invention, and FIG. 5 is a diagram showing measurement results in the conventional method and the present invention. 1... object to be measured, 2... radiation source, 3... detector,
4... Plate detector, 5... Input circuit section, 6... High voltage power supply section, 7... Signal converter, 8... Arithmetic processing unit, 9... Display recording device, 10... Process computer, 18... ...Plate entry signal generating section, 19...
...Reference counting time generating section, 20...Pulse counting section,
21...Data storage section, 22...Average calculation time setting section, 23...Average calculation section.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物をはさみ込むように一対の線源と検
出器を配置し、被測定物の板厚を測定する方法に
おいて、測定開始から設定された平均演算時間に
達するまでは設定された基準計数時間ごとのデー
タの累積平均に基づいて板厚を測定し、前記平均
演算時間に達した後は前記基準計数時間ごとの移
動平均に基づいて板厚を測定するようにしたこと
を特徴とする板厚測定方法。
1 In a method of measuring the thickness of a workpiece by arranging a pair of radiation sources and a detector so as to sandwich the workpiece, a set reference count is used from the start of measurement until reaching the set average calculation time. The plate thickness is measured based on the cumulative average of data for each hour, and after the average calculation time is reached, the plate thickness is measured based on the moving average for each reference counting time. Thickness measurement method.
JP1424579A 1979-02-13 1979-02-13 Method of average calculation for thickness meter Granted JPS55107911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1424579A JPS55107911A (en) 1979-02-13 1979-02-13 Method of average calculation for thickness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1424579A JPS55107911A (en) 1979-02-13 1979-02-13 Method of average calculation for thickness meter

Publications (2)

Publication Number Publication Date
JPS55107911A JPS55107911A (en) 1980-08-19
JPS6233521B2 true JPS6233521B2 (en) 1987-07-21

Family

ID=11855695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1424579A Granted JPS55107911A (en) 1979-02-13 1979-02-13 Method of average calculation for thickness meter

Country Status (1)

Country Link
JP (1) JPS55107911A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3135272C2 (en) * 1981-09-05 1986-10-09 Trützschler GmbH & Co KG, 4050 Mönchengladbach Method and device for determining the height of textile fiber bales
JPS61195304A (en) * 1985-02-26 1986-08-29 Yokogawa Electric Corp Instrument for measuring characteristic of sheet-like object
JPH0695028B2 (en) * 1985-09-03 1994-11-24 トヨタ自動車株式会社 Karman vortex sensor output signal processor
JPH061170B2 (en) * 1987-05-01 1994-01-05 新日本製鐵株式会社 Strip shape detection method in continuous annealing furnace
JPH02161307A (en) * 1988-12-15 1990-06-21 Matsushita Electric Works Ltd Inspecting method for waving of plate
CN103994741B (en) * 2014-05-12 2016-08-31 京东方科技集团股份有限公司 A kind of method and apparatus measuring thicknesses of layers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541653A (en) * 1977-06-06 1979-01-08 Mitsubishi Rayon Co Method and apparatus for detecting abnormality in sheet material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541653A (en) * 1977-06-06 1979-01-08 Mitsubishi Rayon Co Method and apparatus for detecting abnormality in sheet material

Also Published As

Publication number Publication date
JPS55107911A (en) 1980-08-19

Similar Documents

Publication Publication Date Title
US3378676A (en) System employing plural time-spaced average computations for measuring a second variable characteristic imparted to a material initially having a first variable characteristic
JPS6233521B2 (en)
US3859846A (en) Ultrasonic interface meter
JPH0460723B2 (en)
JPH07128041A (en) Method for measuring plate thickness
JP2536970B2 (en) Plate thickness measurement method
JP2543059B2 (en) Tracking data extraction method
JPH03159634A (en) Method and apparatus for operational processing of pulse value in pulse monitor
JP2577456B2 (en) Thickness measuring device
KR19980037893A (en) High precision length measuring device and measuring method using the same
SU812366A1 (en) Apparatus for monitoring tube wall width difference
JPH05141944A (en) Radiation thickness gauge
JPH109852A (en) Straightness measuring method
JPS6063406A (en) Radiation thickness gauge
SU840741A1 (en) Device for measuring transport facility speed
SU1138679A1 (en) Device for diagnosing flaws in cyclic-action machines and mechanisms
SU662793A1 (en) Device for measuring the length of rolled stock moved by rolls
SU690512A1 (en) Device for indicating and registering planned and real production yield
SU650683A1 (en) Device for determining mean value rolling force
SU977934A1 (en) Apparatus for measuring moving rolled stock length
JPH0123048B2 (en)
JPS61262413A (en) Sheet temperature control device for rolling sheet material taking sheet thickness change
JPH01193650A (en) Speed calculation system for vehicle
JPH02272311A (en) Radiation thickness measuring instrument
SU756186A1 (en) Rolled-stock length meter