JPS6232964A - Living body ceramic material and its production - Google Patents

Living body ceramic material and its production

Info

Publication number
JPS6232964A
JPS6232964A JP60169879A JP16987985A JPS6232964A JP S6232964 A JPS6232964 A JP S6232964A JP 60169879 A JP60169879 A JP 60169879A JP 16987985 A JP16987985 A JP 16987985A JP S6232964 A JPS6232964 A JP S6232964A
Authority
JP
Japan
Prior art keywords
ratio
sintered body
tcp
bending strength
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60169879A
Other languages
Japanese (ja)
Inventor
印南 義之
山田 泰三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60169879A priority Critical patent/JPS6232964A/en
Publication of JPS6232964A publication Critical patent/JPS6232964A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、骨、歯、血管の補修に使用し得る生体材料と
してのβ−りん酸三カルシウム[Ca3(PO4) 2
]  (以下β−TCPと略称する)焼結体とその製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Field The present invention is directed to β-tricalcium phosphate [Ca3(PO4)2] as a biomaterial that can be used for repairing bones, teeth, and blood vessels.
] (hereinafter abbreviated as β-TCP) and a method for manufacturing the same.

B0発明の概要 本発明は、β−’I’CP焼結体およびその製造力 ′
法に関するものであって、該焼結体のCa/P比が1.
50〜1.58の範囲になる乙とを主な特徴とする曲げ
強度が大きいりん酸カルシウム系焼結体に関するもので
ある。
B0 Summary of the Invention The present invention provides a β-'I'CP sintered body and its manufacturing capability.
The sintered body has a Ca/P ratio of 1.
The present invention relates to a calcium phosphate-based sintered body having a high bending strength, which is characterized mainly by B in the range of 50 to 1.58.

C0従来の技術 β−TCP焼結体は、水酸アパタイト [Ca、。(PO4)6(OH)、]  (以下HAp
と略称する)の化学組成に近似17、生体親和性に1愛
れている。
C0 Conventional technology β-TCP sintered body is made of hydroxyapatite [Ca. (PO4)6(OH),] (hereinafter HAp
17 approximates the chemical composition of

また、β−TCP焼結体は前記HApに比へ熱衝撃に強
く、曲げ強度や破壊靭性値が大きいなど利用価値の高い
バイオセラミック材料と17で知られている。
In addition, the β-TCP sintered body is known as a bioceramic material 17 that has high utility value, such as being more resistant to thermal shock than the above-mentioned HAp, and having high bending strength and fracture toughness values.

D0発明が解決17ようとする問題点 しかしながら、組成上純粋なβ−TCPを合成すること
は難17<、また僅かなCa/P比の違いで機械的強度
が大きく変わるので、製造することの非常に困難なセラ
ミックであった。
Problems that the D0 invention aims to solve It was a very difficult ceramic.

E0問題点を解決するための手段 本発明においては、上記の問題点を解決するために、純
粋なβ−TCP(Ca/P比1,50)の化学組成から
れ若干Ca/P比を変化させて合成17た焼結体を得、
これらの曲げ強度を測定してCa/P比と曲げ強度の相
関性を明らかにし、曲げ強度に対し、最も良い組成を決
定した。即ち、本発明では、β−TCP焼結体に関して
は、Ca/P比を1.50〜1.58としたこと、Ca
が含有する微量金属成分としてMe/(IJe+Ca)
 (但!、MetまLlg、Ba、Srのいずわか)1
/1000以−Lを含有すること、また前記T(A p
又はCa2P2O7を微量含有することによって所期の
目的とするβ−TCP焼結体を得るものである。
Means for Solving E0 Problems In the present invention, in order to solve the above problems, the chemical composition of pure β-TCP (Ca/P ratio 1,50) is slightly changed by changing the Ca/P ratio. A synthesized 17 sintered body was obtained,
These bending strengths were measured to clarify the correlation between Ca/P ratio and bending strength, and the best composition with respect to bending strength was determined. That is, in the present invention, regarding the β-TCP sintered body, the Ca/P ratio is set to 1.50 to 1.58, and the Ca
Me/(IJe+Ca) as a trace metal component contained in
(However!, Met, Llg, Ba, Sr) 1
/1000 or more -L, and the above-mentioned T(A p
Alternatively, by containing a small amount of Ca2P2O7, the desired β-TCP sintered body can be obtained.

又、手記β−TCP焼結体の製造方法に関しては、 M
e/ (Me+Ca) (但1.MeはMg、 Ba、
 Srのいずれか)を171000以上含有するCa 
(OHI 2水溶液とH3P0.水溶液をCa/P比が
1.0〜1.65となるように混合、反応させ、瀘別、
乾燥後1050〜1150℃の温度で焼結(7てCa/
P比が1.50〜1. Fi8のβ−TCP焼結体を得
るものである。
Also, regarding the method for manufacturing the β-TCP sintered body, please refer to M
e/ (Me+Ca) (However, 1.Me is Mg, Ba,
Ca containing 171,000 or more of Sr)
(OHI 2 aqueous solution and H3P0. aqueous solution were mixed and reacted so that the Ca/P ratio was 1.0 to 1.65, filtered,
After drying, sintering at a temperature of 1050 to 1150°C (7℃ Ca/
P ratio is 1.50 to 1. A β-TCP sintered body of Fi8 is obtained.

本発明においてCa/P比を1.50〜1.58と17
なのは、この範囲の下限未満、上限を超えると曲げ強度
が低下ずろからであり、Caに添加する微量成分のMg
In the present invention, the Ca/P ratio is 1.50 to 1.58 and 17
This is because if the bending strength is below the lower limit or above the upper limit of this range, the bending strength will decrease.
.

Ba、 SrのMe/ (IJe+Ca)比を1/10
00以上としたのはこれ未満では焼結効果が悪く焼結温
度を多角する必要があるからであり、HApの添加量を
4.0(重量)%以下、又これがCa2P2O7の場合
は5(重量)%以下と(ツなのは、これら限定量を超え
ろと強度が低下するからである。
Ba, Sr Me/(IJe+Ca) ratio to 1/10
The reason for setting it above 00 is that if it is less than this, the sintering effect is bad and it is necessary to vary the sintering temperature. )% or less because the strength decreases if these limited amounts are exceeded.

F0作用 以上説明したように、本発明によって限定された組成に
なるβ−TCPは、従来のβ−TCPに比べ曲げ強度に
おいて高い値を示している。
F0 Effect As explained above, β-TCP whose composition is limited according to the present invention exhibits a higher bending strength than conventional β-TCP.

G0発明の実施例 以下数例の実施例により本発明の構成、効果を更に具体
的に説明する。
G0 Examples of the Invention The structure and effects of the present invention will be explained in more detail with reference to several examples below.

(1)実施例1 合成時のCa/P比が1.20で、Ra (OH) 2
をHa/ (Ra+ca)比で0.01含有したCa 
(OH) を水溶液IO1に、反応を完全にさせるため
に攪拌17ながら余分のPを含む、即ちCa/P比が1
.20になるような所定のn3Po7水溶液を徐々に滴
下17、常温で反応させた。
(1) Example 1 The Ca/P ratio during synthesis was 1.20, and Ra (OH) 2
Ca containing 0.01 in Ha/(Ra+ca) ratio
(OH) was added to an aqueous solution IO1 while stirring 17 to complete the reaction, including excess P, that is, the Ca/P ratio was 1.
.. A predetermined aqueous solution of n3Po7 having a concentration of 20% was gradually added dropwise to react the mixture at room temperature.

このようにして得た内容物を熟成後瀘別し、乾燥型中で
80℃で3日間乾燥した。
After aging, the contents thus obtained were filtered and dried in a drying mold at 80° C. for 3 days.

しかる後炭化珪素をヒーターに用いた電気炉を粉末のX
線回折を調べたところ、第1図に示したようにI(A 
p [Ca、。(PO4) e (OII) gl 3
%がβ−TCP中に含まねている乙とを確認17な。
After that, an electric furnace using silicon carbide as a heater was used to heat the powder.
When we investigated the line diffraction, we found that I(A
p[Ca,. (PO4) e (OII) gl 3
Confirm that % is not included in β-TCP17.

この粉末にバインダとしてPVA (ポリビニルアルコ
ール)3.0(重量)%を加え、皿かい機で混合した後
、篩を通し、金型を用いて圧力0.8ton/atで圧
縮整形17た後、電気炉を使用1ツて1100℃で焼結
17た。
3.0% (by weight) of PVA (polyvinyl alcohol) was added as a binder to this powder, mixed with a dish skimmer, passed through a sieve, and compressed using a mold at a pressure of 0.8 ton/at 17. Sintering was carried out at 1100°C using an electric furnace.

この再度乙の焼成体についてX線回折で組成を調べたと
ころ、既述(7た第1図のX線回折ピークと略同様であ
った。
When the composition of this fired body was examined again by X-ray diffraction, it was found to be approximately the same as the X-ray diffraction peak shown in FIG. 1 described above (7).

また、この焼成体のCaとPの濃度をプラズマ発光分析
(tcp)法により定量した結果Ca/P比は1.51
であった。
In addition, the concentration of Ca and P in this fired body was quantified by plasma emission spectrometry (TCP), and the Ca/P ratio was 1.51.
Met.

曲げ強度測定は、円板状の焼結体から精密低速切断機に
より4X2X25(mm)の試験片を作製110i接3
点曲げ試験(スパン15mm、クロスヘッドスピード0
.1mm / m1n)に供した(結果は後述)。
For bending strength measurement, test pieces of 4 x 2 x 25 (mm) were prepared from a disc-shaped sintered body using a precision low-speed cutting machine.
Point bending test (span 15mm, crosshead speed 0)
.. 1mm/m1n) (results will be described later).

(11)実施例2 合成時Ca/P比が1.0で、Ba (OH) 2をH
a/ (Ba+Ca)比で0.01含有したCa (O
H) 2水溶液101に反応を完全にさせるために攪拌
しながら所定量の■、P04水溶液を滴下17、反応さ
せた。
(11) Example 2 The Ca/P ratio during synthesis was 1.0, and Ba (OH) 2 was
Ca (O
H) A predetermined amount of the P04 aqueous solution 17 was added dropwise to the 2 aqueous solution 101 while stirring to complete the reaction.

以下、前記実施例1と同一操作、同一条件によりβ−T
CP焼結体を得、曲げ強度測定のための試験片を作製し
、3点曲げ試験に供した(結果は後述)。第2図にこの
焼結体のX線回折結果を示す。
Hereinafter, β-T was obtained using the same operations and conditions as in Example 1.
A CP sintered body was obtained, and a test piece for measuring bending strength was prepared and subjected to a three-point bending test (results will be described later). FIG. 2 shows the results of X-ray diffraction of this sintered body.

乙の焼結体のCaとPの濃度をプラズマ発光分析(tc
p)法により定量した結果Ca/P比は1.45であっ
た。
The concentration of Ca and P in the sintered body was measured by plasma emission spectroscopy (TC).
The Ca/P ratio was 1.45 as determined by the method p).

(iii )実施例3 合成時のCa/P比1.6で、前記実施例1と同一操作
、同一条件でβ−TCP焼結体を得、曲げ強度試験測定
のための試験片を作製し、3点曲げ試験に供した(結果
は後述)。第3図にこの焼結体のX線回折結果を示す。
(iii) Example 3 A β-TCP sintered body was obtained using the same operations and conditions as in Example 1, with a Ca/P ratio of 1.6 during synthesis, and a test piece for measuring bending strength was prepared. , and subjected to a three-point bending test (results will be described later). FIG. 3 shows the X-ray diffraction results of this sintered body.

乙の焼結体のCaとPの濃度をプラズマ発光分析(IC
P)法に、Lり定量(7た結果Ca/P比は1.54で
あった。
The concentration of Ca and P in the sintered body was determined by plasma emission spectroscopy (IC).
The Ca/P ratio was 1.54 using the L quantification method (7).

以上3例の実施例と同様に、異なる組成の多くのP−C
a化合物を合成した結果から、合成時のCa/P比1.
0〜1.65に対し、焼結体のCa/P比は1.42〜
1.58となった。また、焼結体のCa/P比と曲げ強
度の関係は第4図(図中の温度は焼結温度)に示す通り
であった。又、第5図は焼結温度と曲げ強度の関係を示
す。
Similar to the above three examples, many P-Cs with different compositions
From the results of synthesizing compound a, the Ca/P ratio at the time of synthesis was 1.
0 to 1.65, whereas the Ca/P ratio of the sintered body is 1.42 to 1.65.
It became 1.58. Furthermore, the relationship between the Ca/P ratio and the bending strength of the sintered body was as shown in FIG. 4 (the temperature in the figure is the sintering temperature). Moreover, FIG. 5 shows the relationship between sintering temperature and bending strength.

この第4図から明らかなように、焼結体の曲げ強度は、
焼結温度1100℃、Ca/P比1.54の場合に最も
高く、1600kg/carを示した。X線回折により
Ca/P比が1.5以下ではCa2P2O□が検出され
(第2図参照) 、1.5以上ではHApが検出され(
第1図、第3図参照)た。
As is clear from Fig. 4, the bending strength of the sintered body is
The highest value was obtained when the sintering temperature was 1100°C and the Ca/P ratio was 1.54, at 1600 kg/car. By X-ray diffraction, Ca2P2O□ is detected when the Ca/P ratio is less than 1.5 (see Figure 2), and HAp is detected when it is more than 1.5 (see Figure 2).
(See Figures 1 and 3).

一方、第4図、第5図に比較例として挙げたジャルコら
[M、 Jarch、J、Mater、Sci、11 
2027(1976)lの提案はCa/P比が1.65
付近、即ちHApのCa/P比1.67近くのデータを
示したものであって、本発明で限定する1、50付近即
ちβ−TCPのCa/P比1.50近くのデータはない
On the other hand, Jarch et al. [M, Jarch, J., Mater, Sci., 11
The proposal for 2027 (1976)l has a Ca/P ratio of 1.65.
This data shows data near the Ca/P ratio of HAp, that is, near 1.67, and there is no data near 1.50, that is, the Ca/P ratio of β-TCP, which is limited in the present invention, near 1.50.

又、同15<第4図、第5図に比較例として挙げた赤尾
ら(東京医科歯科大学医用温材研究報告第15巻昭和5
6年)の提案はCa/P比1.50〜1.67まで行っ
ているけれども、Ca/P比1.50付近については、
詳細に調べておらず、かつCa/P比1.5以下でCa
2P2O□が現われ、大幅に強度が低下することは示さ
れていない。
In addition, Akao et al. (Tokyo Medical and Dental University Medical Thermal Materials Research Report Vol. 15, 1939
6) proposed a Ca/P ratio of 1.50 to 1.67, but for a Ca/P ratio of around 1.50,
It has not been investigated in detail, and the Ca/P ratio is less than 1.5.
2P2O□ appears and no significant decrease in strength is shown.

本発明と赤尾らの提案との異なる点は、第5図により明
らかである。第5図は横軸に焼結温度、縦軸に曲げ強度
がとられ、それぞれのCa/P比について示1ノである
。即ち、赤尾らの提案ては、Ca1P比を変えた組成例
の総てが1150〜1300℃の高温域で焼結が行われ
ており、Ca/P比が1.51゜1.56では1250
℃という高温で焼結が行われている。ところが、本発明
では上記1250℃よりはるかに低い1100℃で焼結
が行われ、しかも曲げ強度はCa/P比1.54で平均
1600kg/c/を出している。
The difference between the present invention and the proposal by Akao et al. is clear from FIG. In FIG. 5, the horizontal axis shows the sintering temperature, and the vertical axis shows the bending strength, and each Ca/P ratio is shown as 1. That is, in Akao et al.'s proposal, all of the composition examples with different Ca1P ratios were sintered at a high temperature range of 1150 to 1300°C, and when the Ca/P ratio was 1.51° to 1.56, sintering was performed at 1250°C.
Sintering is carried out at a high temperature of °C. However, in the present invention, sintering is performed at 1100°C, which is much lower than the above-mentioned 1250°C, and the bending strength is 1600 kg/c/ on average at a Ca/P ratio of 1.54.

更に、赤尾らの提案では、β−TCP試料の合成ばCa
 (OR) 2とH3PO4のみで行われている。これ
に対し本発明では、多くの実験を重ねた結果Mg、 H
a。
Furthermore, in the proposal of Akao et al., if the β-TCP sample is synthesized, Ca
(OR) 2 and H3PO4 are used only. On the other hand, in the present invention, as a result of many experiments, Mg, H
a.

Srを添加する乙とにより溶解度が下ること、焼結温度
が下がること、強度が上がることを艶出iノ、Me/ 
(Me+Ca)  (但しMeはMg、 Ba、 Sr
のいずれか)を171000以」−含有させることであ
る。そして、実験としてMg/ (Mg+Ca)比0.
01. Ha/ (Ba+Ca)比0.01゜Sr/ 
(Sr+Ca J比0.01を添加した組成で前記実験
例1と同一操作、同一条件で試験片を作製し、曲げ試験
を17た結果そわぞれ1650kg/c/。
Adding Sr lowers the solubility, lowers the sintering temperature, and increases the strength.
(Me+Ca) (Me is Mg, Ba, Sr
) of 171,000 or more. As an experiment, the Mg/(Mg+Ca) ratio was 0.
01. Ha/ (Ba+Ca) ratio 0.01°Sr/
(Test specimens were prepared using the same operation and under the same conditions as in Experimental Example 1 with a composition in which Sr+Ca J ratio of 0.01 was added, and the bending test was performed for 17 hours. The result was 1650 kg/c/cm.

1600kg/cTl、  ]−690kg/e/であ
り、1100℃の低音焼結で最大の曲げ強度を得ること
ができたのである。
1600 kg/cTl, ]-690 kg/e/, and the maximum bending strength could be obtained by low-temperature sintering at 1100°C.

H0発明の詳細 な説明したように、本発明によれば、β−Tcpの組成
中に溶解度、焼結温度を下げ、かつ曲げ強度をLげると
との可能なMg、 Ba、 Srの添加とCa/T’比
を曲げ強度を得るために最適な1.50〜1.58の範
囲とし、かつ焼結湿度を1050〜1150℃と従来の
比較例より低下させることにより、曲げ強度が1600
kg/e/以上のβ−TCPを得ることができた。この
ものは生体セラミック材料として歯、骨、血管等の各種
の用途に利用することができる。
As described in detail of the H0 invention, according to the present invention, Mg, Ba, and Sr can be added to the composition of β-Tcp to lower the solubility and sintering temperature and to increase the bending strength. By setting the and Ca/T' ratio in the optimal range of 1.50 to 1.58 to obtain bending strength, and lowering the sintering humidity to 1050 to 1150°C compared to the conventional comparative example, the bending strength was 1600°C.
It was possible to obtain β-TCP of kg/e/or more. This material can be used as a bioceramic material for various purposes such as teeth, bones, blood vessels, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1により得たβ−TCP焼結体
のX線回折図、第2図は本発明の実施例2により得たβ
−TCP焼結体のX線回折図、第3図は本発明の実施例
3により得たβ−TCP焼結体のX線回折図、第4図は
本発明実施例と比較例とのβ−TCPのCa/P比と曲
げ強度の関係を示す線図、第5図は本発明実施例と比較
例とのβ−TCPの焼結温度と曲げ強度の関係を示す線
図である。 代理人 弁理士 佐 藤 正 年 第411
Figure 1 is an X-ray diffraction diagram of the β-TCP sintered body obtained in Example 1 of the present invention, and Figure 2 is the β-TCP sintered body obtained in Example 2 of the present invention.
3 is an X-ray diffraction diagram of the β-TCP sintered body obtained in Example 3 of the present invention, and Figure 4 is an X-ray diffraction diagram of the β-TCP sintered body obtained in Example 3 of the present invention. FIG. 5 is a diagram showing the relationship between the Ca/P ratio of -TCP and the bending strength. FIG. Agent Patent Attorney Masaru Sato Year 411th

Claims (4)

【特許請求の範囲】[Claims] (1)Ca/Pが1.50〜1.58であり、Me/(
Me+Ca)(但しMeはMg、Ba、Srのいずれか
)を1/1000以上含有し、かつ、Ca_1_0(P
O_4)_6(OH)_2またはCa_2P_2O_7
を微量含有することを特徴とするβ−りん酸三カルシウ
ム[Ca_3(PO_4)_2]焼結体。
(1) Ca/P is 1.50 to 1.58, Me/(
Contains 1/1000 or more of Me+Ca) (where Me is either Mg, Ba, or Sr), and Ca_1_0(P
O_4)_6(OH)_2 or Ca_2P_2O_7
A β-tricalcium phosphate [Ca_3(PO_4)_2] sintered body characterized by containing a trace amount of.
(2)上記Ca_1_0(PO_4)_6(OH)_2
の含有量が4.0(重量)%以下であることを特徴とす
る特許請求の範囲第1項記載のβ−りん酸三カルシウム [Ca_3(PO_4)_2]焼結体。
(2) Above Ca_1_0(PO_4)_6(OH)_2
The β-tricalcium phosphate [Ca_3(PO_4)_2] sintered body according to claim 1, wherein the content is 4.0% (by weight) or less.
(3)上記Ca_2P_2O_7の含有量が5.0(重
量)%以下であることを特徴とする特許請求の範囲第1
項記載のβ−りん酸三カルシウム[Ca_3(PO_4
)_2]焼結体。
(3) Claim 1, characterized in that the content of Ca_2P_2O_7 is 5.0% (by weight) or less.
β-Tricalcium phosphate [Ca_3(PO_4
)_2] Sintered body.
(4)Me/(Me+Ca)(但しMeはMg、Ba、
Srのいずれか)が1/1000以下の金属元素を含む
Ca(OH)_2水溶液と、H_3PO_4水溶液をC
a/Pが1.0〜1.65となるように混合、反応させ
、瀘別、乾燥した後1050〜1150℃の温度で焼結
してCa/Pを1.50〜1.58とすることを特徴と
するβ−りん酸三カルシウム[Ca_3(PO_4)_
2]焼結体の製造方法。
(4) Me/(Me+Ca) (Me is Mg, Ba,
A Ca(OH)_2 aqueous solution containing a metal element with 1/1000 or less of Sr) and an H_3PO_4 aqueous solution were
Mix and react so that a/P becomes 1.0 to 1.65, filter, dry, and then sinter at a temperature of 1050 to 1150°C to make Ca/P 1.50 to 1.58. β-tricalcium phosphate [Ca_3(PO_4)_
2] Method for manufacturing a sintered body.
JP60169879A 1985-08-02 1985-08-02 Living body ceramic material and its production Pending JPS6232964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60169879A JPS6232964A (en) 1985-08-02 1985-08-02 Living body ceramic material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60169879A JPS6232964A (en) 1985-08-02 1985-08-02 Living body ceramic material and its production

Publications (1)

Publication Number Publication Date
JPS6232964A true JPS6232964A (en) 1987-02-12

Family

ID=15894647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60169879A Pending JPS6232964A (en) 1985-08-02 1985-08-02 Living body ceramic material and its production

Country Status (1)

Country Link
JP (1) JPS6232964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111875A (en) * 1986-10-30 1988-05-17 京セラ株式会社 Calcium phosphate living body prosthesis material and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111875A (en) * 1986-10-30 1988-05-17 京セラ株式会社 Calcium phosphate living body prosthesis material and its production

Similar Documents

Publication Publication Date Title
US5137534A (en) Method for producing dental and medical bone prosthesis and bone prosthesis produced thereby
US5322675A (en) Method of preparing calcium phosphate
Laurence et al. Formation of hydroxyapatite in cement systems
JPS6050743B2 (en) Apatite sintered body and its manufacturing method
JPS6287406A (en) Production of beta-tricalcium phosphate
赤尾勝 et al. Fracture toughness of sintered hydroxyapatite and. BETA.-tricalcium phosphate.
JPS6232964A (en) Living body ceramic material and its production
JPH0214866A (en) Solution of calcium phosphate compound ceramic precursor and production thereof
RU2391316C1 (en) Method of making ceramic biodegradable material consisting of calcium pyrophosphate and tricalcium phosphate
JP3262233B2 (en) Method for producing calcium phosphate
Khayrutdinova et al. The effect of phosphate groups on the structure and properties of bone cements based on calcium sulfate
US4772573A (en) High-strength sintered article of calcium phosphate compound, raw material for production of said sintered article, and method for production of said sintered article
JPH034506B2 (en)
KR101132991B1 (en) Sintered body of titanium compound
Bigi et al. Characterization of synthetic apatites for bioceramic implants
JP2775644B2 (en) Wet production of α-type tricalcium phosphate cement
KR100446701B1 (en) Bioceramic composition
JPH01115360A (en) Inorganic living body material and preparation thereof
JP2696345B2 (en) Calcium phosphate ceramic sintered body
JPS63100006A (en) Process for preparation of calcium phosphate and composite body thereof
JP3216324B2 (en) Method for producing quaternary calcium phosphate
JPH01320251A (en) Pasty hardenable composition
JPH0477684B2 (en)
JPH03210271A (en) Production of biomaterial of calcium phosphate system
FI68217B (en) STARKT ISOTROPT SINTRAT TVAOFASIGT KERAMISKT MATERIAL