JPS6232938B2 - - Google Patents

Info

Publication number
JPS6232938B2
JPS6232938B2 JP54048870A JP4887079A JPS6232938B2 JP S6232938 B2 JPS6232938 B2 JP S6232938B2 JP 54048870 A JP54048870 A JP 54048870A JP 4887079 A JP4887079 A JP 4887079A JP S6232938 B2 JPS6232938 B2 JP S6232938B2
Authority
JP
Japan
Prior art keywords
material layer
ferromagnetic material
temperature
layer
curie point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54048870A
Other languages
Japanese (ja)
Other versions
JPS54164389A (en
Inventor
Furanshisu Shoo Robaato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS54164389A publication Critical patent/JPS54164389A/en
Publication of JPS6232938B2 publication Critical patent/JPS6232938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は改良された電気加熱体に関し、さら
に詳細には強磁性体のキユリー温度を利用して加
熱温度を自動調整しうる電気加熱体に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improved electric heating element, and more particularly to an electric heating element that can automatically adjust the heating temperature by utilizing the Curie temperature of a ferromagnetic material. It is something.

〔従来の技術〕[Conventional technology]

従来、強磁性体のキユリー温度を利用して電流
のジユール熱による発熱を自動的にコントロール
する方式が、例えば実公昭48―35676号、特開昭
49―76058号或いは特開昭51―122983号に見られ
るように、電気加熱体や外科手術用具など産業上
多くの分野で利用されている。以下、本発明を簡
明にするため主として切断刃につき説明するが、
切断刃以外にも多くの分野で加熱温度を自動調整
する目的で使用しうることが上記従来技術からも
理解されるであろう。例えば、パイプを所望温度
に維持するための加熱体、或いは工業用材料を溶
融させるための加熱体、ことに微小流体加熱用パ
イプや微小工業材料の溶融器などとして使用する
こともできる。
Conventionally, methods for automatically controlling heat generation due to Joule heat of current using the Curie temperature of ferromagnetic materials have been proposed, for example, in Japanese Utility Model Publication No. 48-35676 and Japanese Patent Application Laid-Open No.
As seen in No. 49-76058 and Japanese Patent Application Laid-Open No. 51-122983, it is used in many industrial fields such as electric heating elements and surgical tools. Hereinafter, in order to simplify the present invention, the cutting blade will mainly be explained.
It will be understood from the above prior art that it can be used for the purpose of automatically adjusting heating temperature in many fields other than cutting blades. For example, it can also be used as a heating element for maintaining a pipe at a desired temperature or as a heating element for melting industrial materials, in particular as a microfluidic heating pipe or a melter for microindustrial materials.

本発明に利用される基本原理は、上記特開昭51
―122983号公報にも記載されているように従来公
知である。すなわち、強磁性導体における高周波
電流は、導体外周部に集中する傾向がある。その
電流密度は導体表面で最大となり、表面から内部
への距離が大きくなるにつれて減少する。この電
流密度が表面の最大電流密度の37%となる深さ
(表面から内部への距離)を、一般に「表層深
さ」と称している。この表層深さは強磁性導体の
透磁率の関数であつて、次式により示される。
The basic principle utilized in the present invention is the above-mentioned Japanese Patent Application Laid-open No. 51
It is conventionally known as described in Japanese Patent No. 122983. That is, high frequency current in a ferromagnetic conductor tends to concentrate on the outer periphery of the conductor. The current density is maximum at the conductor surface and decreases as the distance from the surface to the interior increases. The depth (distance from the surface to the inside) at which this current density is 37% of the maximum current density at the surface is generally referred to as the "surface depth." This surface depth is a function of the magnetic permeability of the ferromagnetic conductor, and is expressed by the following equation.

[式中、dは表層深さ(m)、ρは強磁性材料
の抵抗値(Ω−m)、fは電流周波数(Hz)、μは
強磁性材料の透磁率(H/m)である。]この関
係は古くから知られており、たとえばボゾース、
「フエロマグネチズム」(1951)に記載されてい
る。
[In the formula, d is the surface depth (m), ρ is the resistance value of the ferromagnetic material (Ω-m), f is the current frequency (Hz), and μ is the magnetic permeability (H/m) of the ferromagnetic material. . ] This relationship has been known for a long time; for example, Bozos,
Described in "Feromagnetism" (1951).

一般に、強磁性材料はそのキユリー点温度(以
下、単に「キユリー点」という)より低い温度に
て100,200もしくはそれ以上の透磁率を有する一
方、キユリー点より高い温度では強磁性材料の透
磁率は約1となる。上記式から判るように、強磁
性材料の表層深さはキユリー点より高い温度の場
合にはキユリー点より低い場合よりも10倍以上大
きくなりうる。
In general, ferromagnetic materials have a magnetic permeability of 100, 200 or more at temperatures below their Curie point temperature (hereinafter simply referred to as the "Curie point"), while at temperatures above the Curie point, the magnetic permeability of ferromagnetic materials is approximately 1. As can be seen from the above equation, the surface depth of a ferromagnetic material can be more than 10 times greater at temperatures above the Curie point than at temperatures below the Curie point.

他方、加熱体に供給される電力量およびその結
果加熱体内に生ずるジユール熱は、加熱体を流過
する電流と加熱体の抵抗値との関数である。この
関数は、式 P=I2R [式中、Pはジユール熱、Iは電流、Rは加熱
体の抵抗値である。] によつて表わされる。加熱体における電流の大
きさは使用に際し一定で変化しないので、この式
から判るように、加熱体内に発生するジユール熱
の量は加熱体の抵抗値の関数となる。
On the other hand, the amount of electrical power supplied to the heating element and the resulting Joule heat generated within the heating element is a function of the current passing through the heating element and the resistance of the heating element. This function is expressed by the formula P=I 2 R [where P is the Joule heat, I is the current, and R is the resistance of the heating element. ] is represented by. Since the magnitude of the current in the heating element is constant and does not change during use, as can be seen from this equation, the amount of Joule heat generated within the heating element is a function of the resistance value of the heating element.

そこで、強磁性材料で作成された加熱体におい
ては、温度がキユリー点以下であつて、キユリー
点に向かつて上昇する場合、強磁性材料層の透磁
率が次第に減少し、これに伴い強磁性材料層に対
する表層深さが次第に大きくなり、この結果強磁
性材料層における高周波電流の流れる断面積を次
第に増大させると共に発生するジユール熱も次第
に低減させながら強磁性材料層の温度をキユリー
点まで上昇させる。このようにして強磁性材料層
の温度がキユリー点に達すると、強磁性材料層の
透磁率は最小となる。かくして、強磁性材料層の
温度がキユリー点より高くなつた場合には、キユ
リー点より低い場合に比べ、強磁性材料層に供給
される電力が少なくなり、発生するジユール熱の
減少に伴つて加熱体の温度低下を生じる。このジ
ユール熱の減少は、強磁性材料層の温度がキユリ
ー点に低下するまで持続し、強磁性材料層の温度
がキユリー点以下になると、透磁率が増大して表
層深さが減少し、この結果強磁性材料層における
高周波電流の流れは断面積を次第に減少させると
共に発生するジユール熱も増大させ、再び強磁性
材料層の温度をキユリー点に向かつて上昇させる
ことになる。
Therefore, in a heating body made of ferromagnetic material, when the temperature is below the Curie point and increases toward the Curie point, the magnetic permeability of the ferromagnetic material layer gradually decreases, and as a result, the ferromagnetic material The surface depth of the layer gradually increases, and as a result, the cross-sectional area through which high-frequency current flows in the ferromagnetic material layer gradually increases, and the generated Joule heat is gradually reduced, raising the temperature of the ferromagnetic material layer to the Curie point. In this manner, when the temperature of the ferromagnetic material layer reaches the Curie point, the magnetic permeability of the ferromagnetic material layer becomes minimum. Thus, when the temperature of the ferromagnetic material layer rises above the Curie point, less power is supplied to the ferromagnetic material layer than when it is below the Curie point, and heating increases as the Joule heat generated decreases. Causes a drop in body temperature. This reduction in Joule heat continues until the temperature of the ferromagnetic material layer drops to the Curie point. When the temperature of the ferromagnetic material layer falls below the Curie point, the magnetic permeability increases and the surface depth decreases, causing this As a result, the flow of high-frequency current in the ferromagnetic material layer gradually reduces the cross-sectional area and increases the generated Joule heat, again raising the temperature of the ferromagnetic material layer toward the Curie point.

さらに、強磁性材料層を流れる電流は所定の大
きさに設定できる。従つて、上記の基本原理に基
づき、強磁性材料の加熱体は、そのキユリー点を
境として所定の温度範囲内で自動温度調整するこ
とができる。
Furthermore, the current flowing through the ferromagnetic material layer can be set to a predetermined magnitude. Therefore, based on the above-mentioned basic principle, the temperature of a heating body made of ferromagnetic material can be automatically adjusted within a predetermined temperature range around its Curie point.

このような基本原理に従つて構成された外科手
術用メスが特開昭51―122983号公報に開示された
技術である。すなわち、このメスは、強磁性材料
からなる刃部分と、この刃部分と一端において接
続される以外は絶縁層によつて絶縁された導電路
とから構成された加熱体が記載されており、この
加熱体の強磁性材料のキユリー点を境とする透磁
率の変化により、刃先の温度をキユリー点近くの
或る範囲内で自動温度調整するものである。
A surgical scalpel constructed according to such a basic principle is a technology disclosed in Japanese Patent Application Laid-Open No. 122983/1983. That is, this scalpel is described as having a heating body composed of a blade part made of a ferromagnetic material and a conductive path that is insulated by an insulating layer except that it is connected to the blade part at one end. The temperature of the cutting edge is automatically adjusted within a certain range near the Curie point by changing the magnetic permeability of the ferromagnetic material of the heating body around the Curie point.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、これら従来の強磁性材料のみか
らなる加熱体においては、その自動温度調整能力
は、温度がキユリー点より高い際の電気抵抗値
(その結果、発生するジユール熱の量)が依然と
して強磁性材料の比較的高い抵抗値によつて左右
されるので、発生するジユール熱を低減するのに
限界を有し、このことは極く微小範囲内で温度を
より効率的に自動調整することを困難とし、従来
の加熱体の欠点を意味する。
However, in these conventional heating bodies made only of ferromagnetic materials, their automatic temperature adjustment ability is limited by the electrical resistance (and therefore the amount of Joule heat generated) when the temperature is higher than the Curie point. Because it depends on the relatively high resistance value of the , refers to the drawbacks of conventional heating elements.

従つて、本発明の目的は、加熱体の種々の領域
に予知不能な状態で接する物体の温度変化に呼応
して、上記基本原理に基づく自動温度調整作用を
より迅速かつ効率的に行うことにある。
Therefore, an object of the present invention is to more quickly and efficiently perform automatic temperature adjustment based on the above-mentioned basic principle in response to temperature changes of objects that come into contact with various regions of a heating body in an unpredictable manner. be.

〔問題点を解決するための手段〕[Means for solving problems]

この目的は、本発明によれば、加熱体を高透磁
率の強磁性材料と実効透磁率が低くかつ高い導電
性および熱伝導性を有する材料の層とからなる積
層体とすることによつて達成される。
This object is achieved according to the invention by making the heating body a laminate consisting of a ferromagnetic material with high magnetic permeability and a layer of material with low effective magnetic permeability and high electrical and thermal conductivity. achieved.

従つて、本発明は、被加熱体の温度を所定範囲
に自動調整する積層電気加熱体において、前記所
定範囲の上限温度近くに透磁率のキユリー転移点
を有する強磁性材料層と、この強磁性材料層に電
気接触すると共にこの強磁性材料層よりも高い導
電率と高い熱伝導率とを有する導電性材料層とに
より積層体を構成し、前記積層体に高周波電流源
を接続することを特徴とする積層電気加熱体を提
供する。
Accordingly, the present invention provides a laminated electric heating element that automatically adjusts the temperature of a heated body within a predetermined range, including a ferromagnetic material layer having a Curie transition point of magnetic permeability near the upper limit temperature of the predetermined range; A laminate is formed by a conductive material layer that is in electrical contact with the material layer and has higher electrical conductivity and higher thermal conductivity than the ferromagnetic material layer, and a high-frequency current source is connected to the laminate. A laminated electric heating body is provided.

この積層電気加熱体において、温度変化に対し
より迅速かつ高精度に自動調整するべく、導電性
材料層を強磁性材料層よりも高い熱伝導率を有す
る導電体、特に銅または銀で構成すれば好適であ
る。
In this laminated electric heating body, in order to automatically adjust to temperature changes more quickly and with high precision, the conductive material layer may be made of a conductor having higher thermal conductivity than the ferromagnetic material layer, in particular copper or silver. suitable.

この積層電気加熱体は、冒頭記載のように各種
の分野で加熱体として使用しうるが、電気加熱体
の一縁部を鋭利にして切断刃を形成すれば各種の
切断器として、殊に外科手術用メスとして使用す
ることもできる。
This laminated electric heating element can be used as a heating element in various fields as mentioned at the beginning, but if one edge of the electric heating element is sharpened to form a cutting blade, it can be used as a various cutting device, especially in surgery. It can also be used as a surgical scalpel.

なお、強磁性材料層の外側表面に、電気絶縁材
の層と、前記強磁性材料層の長さの少なくとも一
部に沿つて前記絶縁材上に配置された導電性材料
層とをさらに設け、この導電性材料層を強磁性材
料層へその一端部近くでのみ接続して導電性材料
層から強磁性材料層への導電路を形成すれば、自
動温度調整の効果を高める上で好適である。
further comprising a layer of electrically insulating material on an outer surface of the layer of ferromagnetic material and a layer of electrically conductive material disposed on the insulating material along at least a portion of the length of the layer of ferromagnetic material; It is preferable to connect this conductive material layer to the ferromagnetic material layer only near one end thereof to form a conductive path from the conductive material layer to the ferromagnetic material layer in order to enhance the effect of automatic temperature control. .

すなわち、本発明によれば、高周波電流の量に
応じて加熱温度を狭い範囲内で自動調整するに際
し、前記範囲の上限温度近くに透磁率のキユリー
転移点を有する強磁性材料の1つの導電路に高周
波電流の一部を流し、かつ前記1つの導電路に隣
接してこれと電気接触すると共に前記1つの導電
路よりも低い実効透磁率と高い導電率および熱伝
導率とを有する他の導電路に高周波電流の他の一
部を流すことにより、各導電路に流れる高周波電
流の相対的割合を導電路の温度の関数として変化
させることができる。
That is, according to the present invention, when automatically adjusting the heating temperature within a narrow range according to the amount of high-frequency current, one conductive path of a ferromagnetic material having a Curie transition point of magnetic permeability near the upper limit temperature of the range is used. another conductive conductor that is adjacent to and in electrical contact with said one conductive path and has a lower effective magnetic permeability and higher electrical and thermal conductivities than said one conductive path; By passing another portion of the high frequency current through the paths, the relative proportion of high frequency current flowing through each conductive path can be varied as a function of the temperature of the conductive path.

〔作用〕[Effect]

本発明の積層加熱体においては、強磁性材料層
より低い抵抗値を有する導電性材料層を使用し、
しかもこの強磁性材料層の厚さをキユリー点より
低い温度での表層深さより若干大となるようにし
て、キユリー点より低い温度でのジユール熱とキ
ユリー点より高い温度でのジユール熱の比が著し
く増大するよう設定する。
In the laminated heating body of the present invention, a conductive material layer having a lower resistance value than the ferromagnetic material layer is used,
Furthermore, by making the thickness of this ferromagnetic material layer slightly larger than the surface depth at temperatures below the Curie point, the ratio of the Joule heat at temperatures below the Curie point to the Joule heat at temperatures above the Curie point is reduced. Set to increase significantly.

すなわち、前記強磁性材料層と導電性材料層と
からなる積層体につき、この積層体の温度がキユ
リー点以下であつて、キユリー点に向つて上昇す
る場合、強磁性材料層の透磁率が次第に減少し、
これに伴い強磁性材料層における高周波電流の流
れる断面積を次第に増大させると共に発生するジ
ユール熱も次第に低減させながら積層体の温度を
キユリー点まで上昇させる。このようにして積層
体の温度がキユリー点に達すると、強磁性材料層
の透磁率が減少することに伴い表層深さが強磁性
材料層の厚さを越える結果、導電性材料層への電
流の分流量が増大し、強磁性材料層における電流
割合が減少してジユール熱が急減し、キユリー点
よりも高い温度となつた積層体をその温度がキユ
リー点になるまで冷却する。このようにして、積
層体の温度がキユリー点以下になると、強磁性材
料層の透磁率が増大して表層深さが減少し、この
結果強磁性材料層における高周波電流の流れる断
面積を次第に減少させると共に発生するジユール
熱も増大させ、再び強磁性材料層の温度をキユリ
ー点に向つて上昇させ、前述した積層体の加熱・
冷却サイクルが反復される。
That is, for a laminate consisting of the ferromagnetic material layer and the conductive material layer, when the temperature of the laminate is below the Curie point and increases toward the Curie point, the magnetic permeability of the ferromagnetic material layer gradually decreases. Decreased,
Along with this, the cross-sectional area through which the high-frequency current flows in the ferromagnetic material layer is gradually increased, and the generated Joule heat is gradually reduced while raising the temperature of the laminate to the Curie point. In this way, when the temperature of the laminate reaches the Curie point, the magnetic permeability of the ferromagnetic material layer decreases and the surface layer depth exceeds the thickness of the ferromagnetic material layer, resulting in a current flowing to the conductive material layer. The divided flow rate increases, the current ratio in the ferromagnetic material layer decreases, and the Joule heat decreases rapidly, cooling the stack, which has reached a temperature higher than the Curie point, until its temperature reaches the Curie point. In this way, when the temperature of the laminate falls below the Curie point, the magnetic permeability of the ferromagnetic material layer increases and the surface depth decreases, which gradually reduces the cross-sectional area through which high-frequency current flows in the ferromagnetic material layer. At the same time, the Joule heat generated is also increased, and the temperature of the ferromagnetic material layer is raised again toward the Curie point.
The cooling cycle is repeated.

しかるに、本発明の積層加熱体において、積層
体の一方を構成する導電性材料層は、強磁性材料
層よりも抵抗値が著しく小さいものを使用するこ
とにより、キユリー点よりも高い温度での積層体
の電流抵抗値は従来の強磁性材料のみよりなるも
のより極めて小さくなり、それに比例して発生ジ
ユール熱も大幅に少なくなる。従つて、本発明に
よれば、従来の強磁性材料層からなる加熱体より
も自動温度調整能力が一段と向上する。
However, in the laminated heating body of the present invention, the conductive material layer constituting one side of the laminated body has a significantly lower resistance value than the ferromagnetic material layer, so that lamination at a temperature higher than the Curie point is possible. The current resistance value of the body is much smaller than that of conventional materials made only of ferromagnetic materials, and the generated Joule heat is also significantly reduced in proportion to this. Therefore, according to the present invention, the automatic temperature adjustment ability is further improved than that of the conventional heating element made of a ferromagnetic material layer.

上記したように、本発明によれば、高導電性で
かつ高熱伝導性の導電性材料層と強磁性材料層と
の連携により、表層深さが強磁性材料層を越える
キユリー点より高い温度において、高導電性の導
電性材料層(たとえば胴の層)を流れる高周波電
流の比率が増大し、その結果積層加熱体の発生ジ
ユール熱が顕著に減少する。この作用効果は加熱
されるべき物品とは無関係に得られる。すなわ
ち、本発明の思想および範囲内において、多くの
分野での各種加熱体および加熱温度の自動温度調
整が可能であることが予解されよう。
As described above, according to the present invention, due to the cooperation between the conductive material layer having high electrical conductivity and high thermal conductivity and the ferromagnetic material layer, at a temperature higher than the Curie point where the surface layer depth exceeds the ferromagnetic material layer, , the proportion of high-frequency current flowing through the highly conductive conductive material layers (for example the shell layer) is increased, so that the Joule heat generated in the laminated heating body is significantly reduced. This effect is obtained independently of the article to be heated. That is, it is expected that automatic temperature adjustment of various heating elements and heating temperatures in many fields is possible within the spirit and scope of the present invention.

〔実施例〕〔Example〕

以下、添付第1図および第2図を参照して、本
発明を切断刃としての実施例につき詳細に説明す
る。
Hereinafter, with reference to the attached FIGS. 1 and 2, the present invention will be described in detail with respect to an embodiment as a cutting blade.

第1図および第2図において、刃の支持部9は
適当なプラスチツク材料で作成され、手術器具の
把手部11に取付けられる。器具の切断刃15を
形成する切断刃13は刃の支持部9に取付けられ
て、把手部11に近い始端17から把手部11に
遠い末端19まで延在している。この積層体13
は、第2図の断面で示すように、鋭い切断刃15
を確保し得るような硬度を有しかつ非磁性鋼又は
焼入れ炭素鋼のような好ましくは低い透磁率を有
する中央層21を備える。
1 and 2, the blade support 9 is made of a suitable plastic material and attached to the handle 11 of the surgical instrument. The cutting blade 13 forming the cutting blade 15 of the instrument is attached to the blade support 9 and extends from a starting end 17 near the handle 11 to an end 19 distal to the handle 11. This laminate 13
As shown in the cross section of FIG.
The central layer 21 has a hardness such as to ensure a high magnetic field and preferably has a low magnetic permeability, such as non-magnetic steel or hardened carbon steel.

中央層21の両側に配置した隣接層23は、た
とえば胴または銀のような低い透磁率と高い熱
的・電気的伝導度とを有する材料であつて、切断
刃15に沿つて温度変化を減ずるように切断刃の
長さに沿い高温領域から低温領域まで優れた熱伝
導を行う。更にこれら層21と23は、後述する
ように、高周波電流で発生するジユール熱が生じ
ないような高い導電率を有する導電路を形成す
る。このように組合せた層21と23とは、有効
な低透磁率及び高い電気的・熱的伝導部分からな
る導電性材料層を形成する。
Adjacent layers 23 located on either side of the central layer 21 are of a material with low magnetic permeability and high thermal and electrical conductivity, such as shell or silver, to reduce temperature variations along the cutting blade 15. This provides excellent heat conduction from high temperature to low temperature areas along the length of the cutting blade. Furthermore, these layers 21 and 23 form a conductive path having a high electrical conductivity so that Joule heat generated by high frequency currents is not generated, as will be described later. The layers 21 and 23 thus combined form an electrically conductive material layer consisting of an effective low magnetic permeability and high electrically and thermally conductive portion.

積層体13は、高い透磁率及び所望の動作温度
範囲の上限近くにキユリー点を有するたとえば鉄
ニツケル合金のような強磁性材料の薄い層25
(以下、強磁性材料層という)が層21,23に
隣接して配置される。低い導電率及び高い磁気飽
和値も、強磁性材料層25の材料の望ましい特性
である。
The laminate 13 comprises a thin layer 25 of a ferromagnetic material, such as an iron-nickel alloy, having a high magnetic permeability and a Curie point near the upper limit of the desired operating temperature range.
(hereinafter referred to as a ferromagnetic material layer) is arranged adjacent to layers 21 and 23. Low electrical conductivity and high magnetic saturation values are also desirable properties of the material of the ferromagnetic material layer 25.

強磁性材料層25と導電体29との間には始端
17から末端19まで実質的に強磁性材料層25
の全長にわたつて電気絶縁層27を配置し、この
導電体29は強磁性材料層25に接続する。この
ようにして、信号源32から積層体13に加えら
れる高周波信号は導電体29に沿つて末端19へ
供給され、次いで帰路層(積層体の各層21,2
3および25)を介して信号源32に導かれる。
信号源32によつて供給される高周波電流の周波
数または振幅は、切断刃15の動作温度を調整す
るように変化させることができる。
Between the ferromagnetic material layer 25 and the conductor 29, there is a ferromagnetic material layer 25 substantially from the starting end 17 to the end 19.
An electrically insulating layer 27 is arranged over the entire length of the ferromagnetic material layer 25, and this conductor 29 is connected to the ferromagnetic material layer 25. In this way, a high frequency signal applied to the stack 13 from the signal source 32 is fed along the conductor 29 to the end 19 and then to the return layer (each layer 21, 2 of the stack).
3 and 25) to a signal source 32.
The frequency or amplitude of the high frequency current provided by signal source 32 can be varied to adjust the operating temperature of cutting blade 15.

第1図の積層構造は中心線30に対し導電体2
9を片側に設けて対称的に構成し、末端19で強
磁性材料層を含む積層体に接続すると共に始端1
7の近くで信号源の1つを導電体29に接続し、
他の1つは積層体に接続すればよい。
The laminated structure in FIG.
9 on one side, connected to the stack containing the ferromagnetic material layer at the end 19, and connected to the starting end 1.
connect one of the signal sources to the conductor 29 near 7;
The other one may be connected to the laminate.

強磁性材料層25の動作温度範囲における透磁
率は、導電性材料層21及び23の実効透磁率よ
りもずつと大きくなるよう、たとえば、 200乃至1000倍程度になるよう容易に選択する
ことができる。他方、導電性材料層21,23の
実効導電率は、強磁性材料層25におけるよりも
遥かに大きい値(たとえば10乃至20倍程度)とな
るよう容易に選択し得る。高周波電流の流れる表
層深さは、電流が流れる材料の導電率に比例し、
透磁率および加えられる高周波電流の周波数とに
反比例する。強磁性材料層25の寸法およびその
透磁率は、充分高い周波数の電流で付勢されたと
き表皮効果が電流を実質的に強磁性材料層25に
集中するように選択することができる。
The magnetic permeability of the ferromagnetic material layer 25 in the operating temperature range can be easily selected to be gradually larger than the effective magnetic permeability of the conductive material layers 21 and 23, for example, about 200 to 1000 times. . On the other hand, the effective conductivity of the conductive material layers 21, 23 can easily be selected to be much larger (for example, on the order of 10 to 20 times) than in the ferromagnetic material layer 25. The surface depth through which high-frequency current flows is proportional to the conductivity of the material through which the current flows.
It is inversely proportional to the magnetic permeability and the frequency of the applied high frequency current. The dimensions of the ferromagnetic material layer 25 and its magnetic permeability may be selected such that the skin effect substantially concentrates the current in the ferromagnetic material layer 25 when energized with a current of a sufficiently high frequency.

積層体13の温度がキユリー点に向つて上昇す
るに従い、強磁性材料層25の材料の透磁率は1
に向つて減少し、高周波電流の流れる表層深さが
増大し、強磁性材料層25の厚さを越える。これ
は、強磁性材料層25を流れる高周波電流の割合
をより小さくする一方、導電性材料層21,23
を流れる高周波電流の割合をより大きくする結果
となる。温度がキユリー点に向つて上昇するとき
起る強磁性材料層25の表皮効果により、導電性
材料層21,23へ流れる電流は増大し、また温
度がキユリー点から低下する際には、導電性材料
層21,23を流れ電流は減少する。
As the temperature of the laminate 13 increases toward the Curie point, the magnetic permeability of the material of the ferromagnetic material layer 25 decreases to 1.
The depth of the surface layer through which the high frequency current flows increases and exceeds the thickness of the ferromagnetic material layer 25. This makes the proportion of high frequency current flowing through the ferromagnetic material layer 25 smaller, while the conductive material layers 21, 23
This results in a larger proportion of high-frequency current flowing through. Due to the skin effect of the ferromagnetic material layer 25, which occurs when the temperature increases toward the Curie point, the current flowing to the conductive material layers 21 and 23 increases, and when the temperature decreases from the Curie point, the conductive material layer 25 increases. The current flowing through the material layers 21 and 23 decreases.

積層体13の各層で発生するジユール熱は、そ
の層の電気抵抗およびその層を流れる高周波電流
の強さの関数である。強磁性材料層25の電気抵
抗値は導電性材料層21,23の実効電気抵抗よ
り実質的に高い。従つて、温度変化の関数として
起る積層体13の各層21,23及び25間の高
周波電流分布変化は、高周波電流により発生する
ジユール熱の対応変化をもたらし、低い温度では
加熱の増加を、また高い温度では加熱の減少を起
す。
The Joule heat generated in each layer of the laminate 13 is a function of the electrical resistance of that layer and the strength of the high frequency current flowing through that layer. The electrical resistance value of the ferromagnetic material layer 25 is substantially higher than the effective electrical resistance of the conductive material layers 21 and 23. Therefore, a change in the radio frequency current distribution between each layer 21, 23 and 25 of the laminate 13 as a function of a temperature change results in a corresponding change in the Joule heat generated by the radio frequency current, increasing the heating at lower temperatures and Higher temperatures cause a reduction in heating.

よつて、本発明の積層体21,23,25の第
1の利点は、全てが強磁性材料から成る構造を利
用した従来の装置で得られる自動温度調整よりも
優れた自動温度調整作用を与えることである。
Thus, a first advantage of the laminates 21, 23, 25 of the present invention is that they provide superior self-temperature regulation over that obtained with conventional devices that utilize structures made entirely of ferromagnetic materials. That's true.

強磁性合金のみを利用した従来の加熱体よりも
優れた本発明の積層体の第2の利点は、導電性材
料層21,23の実効熱伝導率を強磁性材料層2
5におけるよりもずつと高く選択し得ることであ
る。
The second advantage of the laminate of the present invention over conventional heating bodies that utilize only ferromagnetic alloys is that the effective thermal conductivity of the conductive material layers 21 and 23 is lower than that of the ferromagnetic material layer 2.
5 can be chosen much higher than in 5.

このように、導電性材料層21,23は、組織
との接触によつて冷却されていない切断刃領域か
ら冷却されつつある領域への熱伝導を著しく増大
させることができる。これにより自動温度調整作
用を向上させる。たとえば銅、非磁性鋼と銅など
の低透磁率の導電性材料層は典型的な鉄ニツケル
強磁性合金よりも約30倍も高い熱伝導率を有する
ので、この電流の分流効果による温度調整の改善
は全てが強磁性材料で作成された従来の同様な構
造よりも著しく大きい。
In this way, the conductive material layers 21, 23 can significantly increase the heat transfer from the areas of the cutting blade that are not being cooled by contact with tissue to the areas that are being cooled. This improves the automatic temperature adjustment effect. For example, layers of low-permeability conductive materials such as copper, non-magnetic steel, and copper have thermal conductivities approximately 30 times higher than typical iron-nickel ferromagnetic alloys, making temperature regulation possible through this current shunting effect. The improvement is significantly greater than previous similar structures made entirely of ferromagnetic materials.

切断部材自体がそこに流れる高周波電流により
電気加熱される第1図及び第2図に示した実施例
において、導電性材料層を設けた他の利点は、中
央層をより鋭利かつ、より耐久性の切断刃を設け
得るような硬度に選択し得ることである。たとえ
ば、もし中央層21を#302ステンレス鋼で作成
するとすれば、これは切断刃自体が電流を流して
直接にジユール熱を発生する従来の加熱体におけ
るように切断刃全体を典型的な鉄ニツケル強磁性
合金で構成したロツクウエルC硬度約10のものと
比較し、ロツクウエルC硬度30を有するであろ
う。
In the embodiment shown in Figures 1 and 2, where the cutting member itself is electrically heated by a high frequency current flowing through it, another advantage of providing a layer of conductive material is that it makes the central layer sharper and more durable. The hardness can be selected to be such that a cutting edge of 100 mm can be provided. For example, if the center layer 21 is made of #302 stainless steel, this means that the entire cutting blade is made of typical iron-nickel steel, as in conventional heating elements where the cutting blade itself conducts electrical current and directly generates heat. It would have a Rockwell C hardness of 30, compared to a Rockwell C hardness of about 10 constructed from a ferromagnetic alloy.

また、第3図の断面で示したような、切断刃の
周囲にこの種の導電性材料層として高周波電流用
導電体を配置した本発明の他の実施例によれば、
前述した積層体と同様な利点が得られることにも
注目すべきである。この実施例において、積層体
36は2つの層39と37とからなつており、そ
の1つの層37は鉄ニツケル合金のような低い導
電率と、高い磁気飽和と所定温度のキユリー点と
を有する高い透磁率の強磁性材料より成り、他方
の層39は銅もしくは銀のような低い透磁率と高
い電気的・熱的伝導度とを有する材料より成つて
いる。積層体36は絶縁層38によつて切断部材
40から電気絶縁されている。この絶縁層38
は、熱伝導性材料で構成される。なお、切断部材
40は、切断刃15を有し、セラミツクもしくは
ガラスなどの非導電性材料で作成してもよい。す
べて高周波電流は、熱伝導によつて切断部材を加
熱するよう片側の積層体36から他側の積層体3
6へと流れる。このような、導電性積層体におい
て発生するジユール熱による加熱体の自動温度調
整は、上述のメカニズムによつて達成される。
According to another embodiment of the present invention, as shown in the cross-section of FIG.
It should also be noted that similar advantages to the laminate described above are obtained. In this embodiment, the stack 36 consists of two layers 39 and 37, one layer 37 having a low electrical conductivity, such as an iron-nickel alloy, and a high magnetic saturation and a Curie point at a given temperature. It is made of a ferromagnetic material with high magnetic permeability, and the other layer 39 is made of a material with low magnetic permeability and high electrical and thermal conductivity, such as copper or silver. Laminate 36 is electrically insulated from cutting member 40 by insulating layer 38 . This insulating layer 38
is constructed of thermally conductive material. Note that the cutting member 40 has the cutting blade 15 and may be made of a non-conductive material such as ceramic or glass. All high frequency currents are passed from the laminations 36 on one side to the laminations 3 on the other side so as to heat the cutting member by thermal conduction.
Flows to 6. Such automatic temperature adjustment of the heating element by Joule heat generated in the conductive laminate is achieved by the above-mentioned mechanism.

前述した実施例から明らかなように、本発明に
係る積層加熱体は、基本的に所定範囲の上限温度
近くに透磁率のキユリー転移点を有する強磁性材
料層と、この強磁性材料層に電気接触すると共に
この強磁性材料層よりも高い導電率と高い熱伝導
率とを有する導電性材料層とからなる積層体で構
成することができる。この場合、強磁性材料とし
て三成分合金(ニツケル45%/鉄46%/モリブデ
ン9%)が使用でき、導電性材料としてモリブデ
ンを好適に使用することができる。また、強磁性
材料として、Hymu80(市販品)、合金42(ニツ
ケル42%/鉄58%)および合金39(ニツケル39
%/鉄61%)を使用することもできる。また、導
電性材料として、銅およびベリリウム―銅合金を
使用することもできる。そして、これらの材料を
選択して構成される積層体は、たとえば幅2.5
mm、長さ76.2mm、厚さ0.4mmの導電性材料層の片
面に0.05mmの強磁性材料層を圧延被覆することに
よつて容易に製作することができる。
As is clear from the embodiments described above, the laminated heating body according to the present invention basically includes a ferromagnetic material layer having a Curie transition point of magnetic permeability near the upper limit temperature of a predetermined range, and an electrically conductive layer in this ferromagnetic material layer. It can be constituted by a laminate consisting of a layer of conductive material that is in contact and has a higher electrical conductivity and a higher thermal conductivity than the ferromagnetic material layer. In this case, a ternary alloy (nickel 45%/iron 46%/molybdenum 9%) can be used as the ferromagnetic material, and molybdenum can be suitably used as the conductive material. In addition, as ferromagnetic materials, Hymu80 (commercially available), Alloy 42 (nickel 42%/iron 58%) and Alloy 39 (nickel 39
%/61% iron) can also be used. Copper and beryllium-copper alloys can also be used as conductive materials. The laminate made of these materials has a width of 2.5 mm, for example.
It can be easily manufactured by rolling a ferromagnetic material layer of 0.05 mm on one side of a conductive material layer with a length of 76.2 mm and a thickness of 0.4 mm.

また、このように製作された積層体に対して
は、たとえば9〜10MHzの高周波電流を供給し
て、200〜300℃の範囲内の所定値で自動温度調整
機能を発揮することが確認された。
In addition, it was confirmed that the laminate produced in this way exhibits an automatic temperature adjustment function at a predetermined value within the range of 200 to 300 degrees Celsius by supplying a high frequency current of, for example, 9 to 10 MHz. .

〔発明の効果〕〔Effect of the invention〕

前述したように、本発明によれば、被加熱体の
設定すべき温度に対し、この設定温度と略等しい
温度で透磁率のキユリー転移点を有する強磁性材
料層と、高い導電率と高い熱伝導率とを有する高
導電性材料層とを積層し、この積層体に高周波電
流を供給することにより、前記積層体の温度を強
磁性材料のキユリー点温度に極めて効率良く自動
温度調節することができる。この場合、強磁性材
料層の厚さは、前記積層体がキユリー点より低い
温度にある際強磁性材料の透磁率の増大に伴う表
層深さより若干大きく設定し、また積層体がキユ
リー点より高い温度にある際強磁性材料の透磁率
の減少に伴う表層深さが前記強磁性材料層の全部
に達し、かつ高周波電流の一部が高導電性材料層
に分流するような厚さに設定することが重要であ
る。従つて、このように構成された積層体は、前
述した強磁性材料のキユリー点を中心とする温度
変化に対し、強磁性材料に供給される高周波電流
の割合に応じて発生すジユール熱が変化し、好適
な加熱・冷却サイクルが繰返されて、自動温度調
節効果が発揮される。
As described above, according to the present invention, a ferromagnetic material layer having a Curie transition point of magnetic permeability at a temperature substantially equal to the set temperature of the heated body, and a layer of high conductivity and high heat By laminating high-conductivity material layers having high conductivity and supplying a high-frequency current to this laminated body, the temperature of the laminated body can be automatically and extremely efficiently adjusted to the Curie point temperature of the ferromagnetic material. can. In this case, the thickness of the ferromagnetic material layer is set to be slightly larger than the surface layer depth due to the increase in magnetic permeability of the ferromagnetic material when the laminate is at a temperature lower than the Curie point, and The thickness is set such that the surface layer depth due to the decrease in magnetic permeability of the ferromagnetic material reaches the entire ferromagnetic material layer when the temperature is high, and a part of the high frequency current is shunted to the highly conductive material layer. This is very important. Therefore, in a laminate constructed in this way, the Joule heat generated changes depending on the proportion of high-frequency current supplied to the ferromagnetic material in response to temperature changes around the Curie point of the ferromagnetic material. Then, the suitable heating/cooling cycle is repeated, and the automatic temperature control effect is exhibited.

上記した自動調整式加熱システムは、止血と同
時に手術を行う外科手術用、或いは狭い範囲内の
加熱温度を必要とする多くの工業的プロセス等に
有益である。
The self-adjusting heating system described above is useful in surgical applications where hemostasis is performed simultaneously, and in many industrial processes that require heating temperatures within a narrow range.

プロセス等に有益である。 It is useful for processes etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による切断装置の平面
図、第2図は第1図の装置の2―2線断面図、第
3図は本発明の他の実施例の断面図である。 11……把手部、13……積層体、15……切
断刃、17……始端、19……末端、21,23
……導電性材料層、25……強磁性材料層、27
……電気絶縁層、29……導電体、30……中心
線、36……積層体、37……層、38……絶縁
層、39……層、40……切断部材。
1 is a plan view of a cutting device according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line 2--2 of the device shown in FIG. 1, and FIG. 3 is a sectional view of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 11... Handle part, 13... Laminated body, 15... Cutting blade, 17... Starting end, 19... End, 21, 23
... Conductive material layer, 25 ... Ferromagnetic material layer, 27
...electrical insulating layer, 29... conductor, 30... center line, 36... laminate, 37... layer, 38... insulating layer, 39... layer, 40... cutting member.

Claims (1)

【特許請求の範囲】[Claims] 1 被加熱体の温度を所定範囲に自動調整する積
層電気加熱体において、前記所定範囲の上限温度
近くに透磁率のキユリー転移点を有する強磁性材
料層と、この強磁性材料層に電気接触すると共に
この強磁性材料層よりも高い導電率と高い熱伝導
率とを有する導電性材料層とにより積層体を構成
し、前記積層体に高周波電流源を接続することを
特徴とする積層電気加熱体。
1. In a laminated electric heating body that automatically adjusts the temperature of a heated body within a predetermined range, a ferromagnetic material layer having a Curie transition point of magnetic permeability near the upper limit temperature of the predetermined range is in electrical contact with this ferromagnetic material layer. and a conductive material layer having higher electrical conductivity and higher thermal conductivity than the ferromagnetic material layer, forming a laminate, and a high-frequency current source is connected to the laminate. .
JP4887079A 1978-04-20 1979-04-20 Improvement type electric heater and its method and its structure Granted JPS54164389A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US89838878A 1978-04-20 1978-04-20

Publications (2)

Publication Number Publication Date
JPS54164389A JPS54164389A (en) 1979-12-27
JPS6232938B2 true JPS6232938B2 (en) 1987-07-17

Family

ID=25409375

Family Applications (2)

Application Number Title Priority Date Filing Date
JP4887079A Granted JPS54164389A (en) 1978-04-20 1979-04-20 Improvement type electric heater and its method and its structure
JP61245140A Granted JPS62129048A (en) 1978-04-20 1986-10-15 Improved electric heating cutter blade and automatic temperature control method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP61245140A Granted JPS62129048A (en) 1978-04-20 1986-10-15 Improved electric heating cutter blade and automatic temperature control method

Country Status (6)

Country Link
JP (2) JPS54164389A (en)
BR (1) BR7902444A (en)
DE (1) DE2914401A1 (en)
FR (1) FR2428279A1 (en)
GB (1) GB2022974A (en)
NL (1) NL7903018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320664U (en) * 1989-07-06 1991-02-28
JP2015091384A (en) * 2009-04-17 2015-05-14 ドメイン・サージカル,インコーポレーテッド Inductive thermal surgical tool

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481057A (en) * 1980-10-28 1984-11-06 Oximetrix, Inc. Cutting device and method of manufacture
CA2107459C (en) * 1991-04-05 1999-05-04 Steven A. Daniel Instrument for cutting, coagulating and ablating tissue
US6230603B1 (en) * 1996-04-29 2001-05-15 Zbigniew Kubala Cutting blade for resistance-heated elastomer cutters
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
WO2013106036A2 (en) 2011-04-08 2013-07-18 Preston Manwaring Impedance matching circuit
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
WO2013040255A2 (en) 2011-09-13 2013-03-21 Domain Surgical, Inc. Sealing and/or cutting instrument
IN2014MN00995A (en) 2011-12-06 2015-04-24 Domain Surgical Inc
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122983A (en) * 1975-03-14 1976-10-27 Shaw Robert F Incising device and method thereof
JPS51122987A (en) * 1975-03-14 1976-10-27 Shaw Robert F Incising device and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122983A (en) * 1975-03-14 1976-10-27 Shaw Robert F Incising device and method thereof
JPS51122987A (en) * 1975-03-14 1976-10-27 Shaw Robert F Incising device and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320664U (en) * 1989-07-06 1991-02-28
JP2015091384A (en) * 2009-04-17 2015-05-14 ドメイン・サージカル,インコーポレーテッド Inductive thermal surgical tool

Also Published As

Publication number Publication date
GB2022974A (en) 1979-12-19
JPH0351179B2 (en) 1991-08-06
JPS54164389A (en) 1979-12-27
FR2428279A1 (en) 1980-01-04
BR7902444A (en) 1979-10-23
JPS62129048A (en) 1987-06-11
NL7903018A (en) 1979-10-23
DE2914401A1 (en) 1979-10-31

Similar Documents

Publication Publication Date Title
US4185632A (en) Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same
US4091813A (en) Surgical instrument having self-regulated electrical proximity heating of its cutting edge and method of using the same
JPS6232938B2 (en)
EP0110692A1 (en) Autoregulating electric heater
US5480397A (en) Surgical instrument with auto-regulating heater and method of using same
EP0107927B1 (en) Autoregulating electrically shielded heater
JP2558584B2 (en) Instruments for cutting, coagulating and removing body tissue
US4695713A (en) Autoregulating, electrically shielded heater
CA1083457A (en) Surgical instrument having self-regulated electrical induction heating of its cutting edge and method of using the same
EP0130671A2 (en) Multiple temperature autoregulating heater
JP5122664B2 (en) Tubular resistance heater with electrically insulating high thermal conductivity core for tissue welder
CN107109562B (en) Fe based soft magnetic alloy thin band and the magnetic core for using it
US11701160B2 (en) Planar ferromagnetic coated surgical tip and method for making
DE3775284D1 (en) SELF-REGULATING HIGH-PERFORMANCE HEATING ELEMENT.
CN106450785B (en) Electromagnetic metamaterial structure for generating local hot spots
JPS6128339B2 (en)
JP4727363B2 (en) Magnetic heating element and temperature control method thereof
WO2017130384A1 (en) Treatment instrument and treatment system
Euler Electrical Conductivity of Compacted Metal Powders
JP2000212642A (en) Heat treatment and formation of preform
Adler et al. Self-Regulating Induction Heating Using the Curie Temperature in FeNi/Cu Composite Alloys