JPS62129048A - Improved electric heating cutter blade and automatic temperature control method - Google Patents

Improved electric heating cutter blade and automatic temperature control method

Info

Publication number
JPS62129048A
JPS62129048A JP61245140A JP24514086A JPS62129048A JP S62129048 A JPS62129048 A JP S62129048A JP 61245140 A JP61245140 A JP 61245140A JP 24514086 A JP24514086 A JP 24514086A JP S62129048 A JPS62129048 A JP S62129048A
Authority
JP
Japan
Prior art keywords
layer
temperature
cutting blade
ferromagnetic material
curie point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61245140A
Other languages
Japanese (ja)
Other versions
JPH0351179B2 (en
Inventor
ロバート・フランシス・シヨー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS62129048A publication Critical patent/JPS62129048A/en
Publication of JPH0351179B2 publication Critical patent/JPH0351179B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • General Induction Heating (AREA)
  • Laser Surgery Devices (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は改良された電気加熱切断刃およびその自動温
度調整方法に関し、さらに詳細には強磁性体のキュリー
温度を利用して加熱温度を自動調整しうる電気加熱切1
折刃およびその自動温度調整方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an improved electrically heated cutting blade and a method for automatically adjusting its temperature, and more specifically, to an improved method for automatically adjusting the heating temperature using the Curie temperature of a ferromagnetic material. Adjustable electric heating cutter 1
This invention relates to a folding blade and its automatic temperature adjustment method.

〔従来の技術〕[Conventional technology]

従来、強磁性体のキュリー温度を利用して電流のジュー
ル熱による発熱を自動的にコントロールする方式が、た
とえば実公昭48−35676号、特開昭49−760
58号或いは特開昭51−122983号に見られるよ
うに、電気加熱切断刃として外科手術用具などの分野で
利用されている。
Conventionally, methods for automatically controlling heat generation due to Joule heat of current using the Curie temperature of ferromagnetic materials have been proposed, for example, in Japanese Utility Model Publication No. 48-35676 and Japanese Patent Application Laid-open No. 49-760.
As seen in No. 58 or Japanese Patent Application Laid-Open No. 51-122983, it is used as an electrically heated cutting blade in fields such as surgical tools.

本発明に利用される基本原理は、上記特開昭51−1’
22983号公報にも記載されているように従来公知で
ある。すなわち、強磁性導体における高周波電流は、導
体外周部に集中する傾向がある。その電流密度は導体表
面で最大となり、表面から内部への距離が大きくなるに
つれて減少する。この電流密度が表面の最大電流密度の
37%となる深さく表面から内部への距離)を、一般に
「表層深さ」と称している。この表層深さは強磁性導体
の透磁率の関数であっ〔式中、dは表層深さ、ρは強磁
性材料の抵抗値、fは電流周波数、μは強磁性材料の透
磁率である。〕 この関係は古くから知られており、たとえばボゾース、
[フェロマグネチズムJ(1951)に記載されている
The basic principle utilized in the present invention is the above-mentioned Japanese Patent Application Laid-Open No. 51-1'
This is conventionally known as described in Japanese Patent No. 22983. That is, high frequency current in a ferromagnetic conductor tends to concentrate on the outer periphery of the conductor. The current density is maximum at the conductor surface and decreases as the distance from the surface to the interior increases. The distance from the surface to the interior at which this current density is 37% of the maximum current density at the surface is generally referred to as the "surface layer depth." This surface depth is a function of the magnetic permeability of the ferromagnetic conductor [where d is the surface depth, ρ is the resistance of the ferromagnetic material, f is the current frequency, and μ is the magnetic permeability of the ferromagnetic material. ] This relationship has been known for a long time; for example, Bozos,
[Described in Ferromagnetism J (1951).

一般に、強磁性材料はそのキュリー点温度(以下、単に
「キュリー点」と云う)より低い温度にて100.20
0もしくはそれ以上の透磁率を有する一方、キュリー点
より高い温度では強磁性材料の透磁率は約1となる。上
記式から判るように、強磁性材料の表層深さはキュリー
点より高い温度の場合にはキュリー点より低い場合より
も10倍以上大きくなりうる。
Generally, a ferromagnetic material has a temperature of 100.20 at a temperature lower than its Curie point temperature (hereinafter simply referred to as "Curie point").
While having a magnetic permeability of zero or greater, at temperatures above the Curie point the magnetic permeability of ferromagnetic materials is approximately one. As can be seen from the above equation, the surface depth of the ferromagnetic material can be more than 10 times greater at temperatures above the Curie point than at temperatures below the Curie point.

他方、加熱体に供給される電力量およびその結果加熱体
内に生ずるジュール熱は、加熱体を流過する電流と加熱
体の抵抗値との関数である。
On the other hand, the amount of electrical power supplied to the heating element and the resulting Joule heat generated within the heating element is a function of the current flowing through the heating element and the resistance of the heating element.

この関数は、式 〔式中、Pはジュール熱、■は電流、Rは加熱体の抵抗
値である。〕 によって表わされる。加熱体における電流の大きさは使
用に際し一定で変化しないので、この式から判るように
、加熱体内に発生するジュール熱の量は加熱体の抵抗値
の関数となる。
This function is expressed by the formula [where P is Joule heat, ■ is current, and R is the resistance value of the heating element. ] Represented by Since the magnitude of the current in the heating element is constant and does not change during use, as can be seen from this equation, the amount of Joule heat generated within the heating element is a function of the resistance value of the heating element.

そこで、強磁性材料で作成された加熱体においては、温
度がキュリー点を越えて上昇すると表層厚さが増大し、
その結果電流が流れる断面積が増大して抵抗値を減少さ
せる。かくして、温度がキュリー点より高い場合にはキ
ュリー点より低い場合に比べ、加熱体に供給される電力
が少なくなって発生するジュール熱を減少させる。この
ジュール熱の減少は、加熱体の温度がキュリー点より低
くなって加熱体における表層深さがキュリー点より低い
際の強磁性材料における透磁率の増大により減少するま
で持続する。
Therefore, in heating bodies made of ferromagnetic materials, when the temperature rises above the Curie point, the surface layer thickness increases,
As a result, the cross-sectional area through which the current flows increases and the resistance value decreases. Thus, when the temperature is higher than the Curie point, less electric power is supplied to the heating element than when the temperature is lower than the Curie point, thereby reducing the generated Joule heat. This reduction in Joule heating continues until the temperature of the heating body falls below the Curie point and is reduced due to the increase in magnetic permeability in the ferromagnetic material when the surface depth in the heating body is below the Curie point.

さらに、加熱体を流れる電流は所定の大きさに設定でき
る。従って、上記の基本原理に基づき、強磁性材料の加
熱体は、そのキュリー点を境として所定の温度範囲内で
自動温度調整することができる。
Furthermore, the current flowing through the heating element can be set to a predetermined magnitude. Therefore, based on the above basic principle, the temperature of a heating body made of ferromagnetic material can be automatically adjusted within a predetermined temperature range around its Curie point.

このような基本原理に従って構成された外科手術用メス
が特開昭51−122983号公報に開示された技術で
ある。すなわち、切断刃と熱結合した強磁性材料のキュ
リー点を境とする透磁率の変化により、切断刃の温度を
キュリー点近くの成る範囲内で自動温度調整するもので
ある。
A surgical scalpel constructed according to such a basic principle is disclosed in Japanese Patent Application Laid-Open No. 51-122983. That is, the temperature of the cutting blade is automatically adjusted within a range near the Curie point by changing the magnetic permeability of the ferromagnetic material thermally coupled to the cutting blade, with the Curie point as the boundary.

〔発明がIW決しようとする問題点〕[Problems that the invention attempts to resolve]

しかしながら、これら従来の強磁性材料においては、そ
の自動温度調整能力はキュリー点より高い際の電流抵抗
値(その結果、発生ずるジュール熱の呈)が依然として
強磁性材料の比較的高い抵抗値によって左右されるので
限界を有し、このことは極く微少範囲内で温度をより鋭
敏に自動調整する際の欠点を意味する。
However, in these conventional ferromagnetic materials, their self-temperature-regulating ability is still affected by the relatively high resistance of the ferromagnetic materials, whose current resistance above the Curie point (and thus the resulting Joule heating) This means that there is a drawback in automatically adjusting the temperature more sensitively within an extremely small range.

従って、本発明の目的は、加熱切断刃の種々の領域に予
知不能な状態で接する冷却体の変化に呼応して、上記基
本原理に基づく自動温度調整効率をより鋭敏に高めるこ
とにある。
Therefore, it is an object of the present invention to more sensitively increase the efficiency of automatic temperature adjustment based on the above basic principle in response to changes in the cooling body that contacts various regions of the heated cutting blade in an unpredictable manner.

〔問題点を解決するための手段〕[Means for solving problems]

この目的は、本発明によれば、強磁性構造体を高透磁率
の強磁性材料と実効透磁率が低くかつ高い導電性および
熱伝導性を有する材料の層とからなる複合積層体によっ
て達成される。
This object is achieved according to the invention by a composite laminate of a ferromagnetic structure consisting of a ferromagnetic material of high permeability and a layer of material with low effective permeability and high electrical and thermal conductivity. Ru.

従って、本発明は、被加熱部の温度を所定範囲に自動調
整する積層電気加熱切断刃において、前記所定範囲の上
限温度近くに透磁率のキュリー転移点を有する強磁性材
料の層と、この強磁性材料層に電気接触すると共にこの
強磁性材料よりも高い導電率と高い熱伝導率とを有する
導電性材料の層と、前記2つの層に連結された高周波電
流源とを備え、前記積層体がキュリー点より低い温度に
ある際電流の表層深さが前記強磁性材料層の厚さより小
さくなり、かつ積層体がキュリー点より高い温度にある
際電流の表層深さが強磁性材料層の厚さより大となるこ
とを特徴とする積層電気加熱切断刃を提供する。
Therefore, the present invention provides a laminated electrically heated cutting blade that automatically adjusts the temperature of a heated part within a predetermined range, including a layer of a ferromagnetic material having a Curie transition point of magnetic permeability near the upper limit temperature of the predetermined range; a layer of conductive material in electrical contact with the layer of magnetic material and having higher electrical conductivity and higher thermal conductivity than the ferromagnetic material, and a high frequency current source coupled to the two layers; When the temperature is lower than the Curie point, the surface depth of the current is smaller than the thickness of the ferromagnetic material layer, and when the stack is at a temperature higher than the Curie point, the surface depth of the current is smaller than the thickness of the ferromagnetic material layer. To provide a laminated electrically heated cutting blade which is characterized by being larger than the width.

この積層電気加熱切断刃において、温度変化をより鋭敏
に自動調整するべく、導電性材料の層を強磁性材料層よ
りも高い熱伝導率を有する特に銅または銀で構成すれば
好適である。
In this laminated electrically heated cutting blade, in order to automatically adjust temperature changes more sensitively, it is preferable that the conductive material layer is made of copper or silver, which has a higher thermal conductivity than the ferromagnetic material layer.

この積層電気加熱切断刃は、−縁部を鋭利にして殊に外
科手術用メスとして使用することができる。
This laminated electrically heated cutting blade can be used in particular as a surgical scalpel with sharpened edges.

なお、強磁性材料層の外側表面に配置された電気絶縁材
の層と、前記強磁性材料層の長さの少なくとも一部に沿
って前記絶縁材上に配置された導電性材料の層とをさら
に設け、この導電性材料の層を強磁性材料層へその一端
部近くでのみ接続して導電性材料の層から強磁性材料層
への導電路を形成すれば、自動温度調整の効果を高める
上で一層好適である。
A layer of electrically insulating material disposed on the outer surface of the layer of ferromagnetic material and a layer of electrically conductive material disposed on the insulating material along at least a portion of the length of the layer of ferromagnetic material. Further, if this layer of conductive material is connected to the layer of ferromagnetic material only near one end thereof to form a conductive path from the layer of conductive material to the layer of ferromagnetic material, the effectiveness of automatic temperature regulation is enhanced. The above is more suitable.

かくして、本発明の他の面によれば、高周波電流の量に
応じて加熱温度を狭い範囲内で自動調整するに際し、前
記範囲の上限温度近くに透磁率のキュリー転移点を有す
る1つの導電路に高周波電流の一部を流し、かつ前記1
つの導電路に隣接してこれと電気接触すると共に前記1
つの導電路よりも低い実効透磁率と高い導電率および熱
伝導率とを有する他の導電路に高lvl波電流の他の一
部を流し、さらに各導電路に流れる高周波電流の相対的
割合を導電路の温度の関数として変化させる切断刃の加
熱温度の自動温度調整方法も提供される。
Thus, according to another aspect of the invention, when automatically adjusting the heating temperature within a narrow range depending on the amount of high-frequency current, one conductive path having a Curie transition point of magnetic permeability near the upper limit temperature of the range is provided. A part of the high frequency current is applied to the
adjacent to and in electrical contact with one conductive path and said one conductive path;
Another part of the high lvl wave current is passed through other conductive paths having lower effective magnetic permeability and higher electrical conductivity and thermal conductivity than the one conductive path, and the relative proportion of the high frequency current flowing through each conductive path is A method of automatic temperature regulation of the heating temperature of a cutting blade is also provided that varies as a function of the temperature of the conductive path.

さらに、複合積層体のその他の材料を注意深く選定すれ
ば、切断刃のいろいろの領域間の熱の分路を増すことに
よりさらに自動調整作用を高めることができる。また複
合体のその他の材料を注意深く選定すると切断刃の鋭さ
と耐久性を増すこともできる。
Additionally, careful selection of the other materials in the composite laminate can further enhance the self-adjusting action by increasing the shunting of heat between the various regions of the cutting blade. Careful selection of other materials in the composite can also increase the sharpness and durability of the cutting blade.

〔作用〕[Effect]

本発明の積層加熱切断刃においては、キュリー点より低
い温度での表層深さが強磁性材料層の厚さよりも小さく
なる一方、キュリー点より高い温度では表層深さが強磁
性材料層の厚さよりも大きくなる。従って、キュリー点
より高くなった際、電流が流れる表層深さは強磁性材料
層だけではなく導電性層をも含むことになり、この層は
強磁性材料層よりも抵抗値がずっと低い。その結果、キ
ュリー点よりも高い温度にて積層加熱切断刃における電
流抵抗値は従来のこの種の切断刃におけるよりもずっと
低くなり、それに比例して発生ジュール熱もずっと少な
くなる。かくして、本発明によれば、従来の切断刃より
も自動温度調整能力がずっと向上する。
In the laminated heated cutting blade of the present invention, the surface layer depth is smaller than the thickness of the ferromagnetic material layer at temperatures lower than the Curie point, while the surface layer depth is smaller than the thickness of the ferromagnetic material layer at temperatures higher than the Curie point. also becomes larger. Therefore, when raised above the Curie point, the surface depth through which the current flows will include not only a layer of ferromagnetic material but also a conductive layer, which has a much lower resistance than the layer of ferromagnetic material. As a result, at temperatures above the Curie point, the current resistance in the laminated heating cutting blade is much lower than in conventional cutting blades of this type, and proportionally less Joule heat is generated. Thus, the present invention provides much improved self-temperature control capabilities than conventional cutting blades.

上記したように、本発明によれば、高導電性かつ高熱伝
導性の層と強磁性材料の層との連携により、表層深さが
強磁性材料層よりも厚くなるキュリー点より高い温度に
おいて、高導電性層(たとえば銅の層)を流れる高周波
電流の比率が増大し、その結集積層加熱切断刃の発生ジ
ュール熱が顕著に減少する。この作用効果は加熱される
べき部分とは無関係に得られる。
As described above, according to the present invention, due to the cooperation between the highly electrically conductive and highly thermally conductive layer and the ferromagnetic material layer, at temperatures above the Curie point where the surface layer depth becomes thicker than the ferromagnetic material layer, The proportion of high frequency current flowing through the highly conductive layer (eg copper layer) is increased and the Joule heat generated by the combined laminated heating cutting blade is significantly reduced. This effect is obtained independently of the part to be heated.

〔実施例〕〔Example〕

以下、添付第1図および第2図を参照して、本発明を切
断刃としての実施例につき詳細に説明する。
Hereinafter, with reference to the attached FIGS. 1 and 2, the present invention will be described in detail with respect to an embodiment as a cutting blade.

第1図および第2図において、刃の支持部9は適当なプ
ラスチック材料で作成され、手術器具の把手部11に取
付けられる。器具の切断刃15を形成する構造体13は
刃の支持部9に取付けられて、把手部11に近い始端1
7から把手部工1に遠い末端19まで延在している。こ
の積層構造体13は、第2図の断面で示すように、鋭い
切断刃15を確保し得るような硬度を有しかつ非磁性鋼
又は焼入れ炭素鋼のような好ましくは低い透磁率を有す
る中央層21を備える。
In Figures 1 and 2, the blade support 9 is made of a suitable plastic material and is attached to the handle 11 of the surgical instrument. A structure 13 forming the cutting blade 15 of the instrument is attached to the blade support 9 and has a starting end 1 close to the handle 11.
7 to the end 19 remote from the handle part 1. This laminated structure 13 is made of a central material having a hardness to ensure a sharp cutting edge 15 and preferably of low magnetic permeability, such as non-magnetic steel or hardened carbon steel, as shown in cross-section in FIG. A layer 21 is provided.

中央層21の両側に配置した隣接N23はたとえば銅ま
たは銀のような低い透磁率と高い熱的・電気的伝導度と
を有する材料であって、切断刃15に沿って温度変化を
減するように切断刃の長さに沿い高温領域から低温領域
まで優れた熱伝導を行う。更にこれら層23は、後述す
るように、高周波電流で発生するジュール熱を減するよ
うな高い導電路を形成する。このように組合せたff1
21と23とは、複合積層体の有効な低透磁率及び高い
電気的・熱的伝導部分を形成する。
The adjacent N23 located on either side of the central layer 21 are made of a material with low magnetic permeability and high thermal and electrical conductivity, such as copper or silver, to reduce temperature variations along the cutting blade 15. Provides excellent heat conduction from high temperature to low temperature areas along the length of the cutting blade. Additionally, these layers 23 form highly conductive paths that reduce Joule heating generated by high frequency currents, as will be discussed below. ff1 combined like this
21 and 23 form the effective low permeability and high electrical and thermal conductivity portion of the composite laminate.

高い透磁率及び所望の動作温度範囲の上限近くにキュリ
ー点を有するたとえば鉄ニツケル合金のような強磁性材
料の薄い層25がR21゜23に隣接配置される。低い
導電率及び高い磁気飽和値も、層25の材料の望ましい
特性である。
A thin layer 25 of a ferromagnetic material, such as an iron-nickel alloy, having high magnetic permeability and a Curie point near the upper end of the desired operating temperature range is disposed adjacent R21.23. Low electrical conductivity and high magnetic saturation values are also desirable properties for the material of layer 25.

強磁性体層25と導電体29との間には始端17から末
端19まで実質的に強磁性体層25の全長にわたって電
気絶縁層27を配置し、この導電体29は強磁性体層2
5に接続する。このようにして、信号源32から積層構
造体13に加えられた高周波信号は導電体29に沿って
末端19へ、次いで帰路層21.23及び25を介して
信号源32に導かれる。信号源32によって供給される
高周波電流の周波数または振幅は、切断刃15の動作温
度を調整するように変化させることができる。
An electrical insulating layer 27 is disposed between the ferromagnetic layer 25 and the conductor 29 over substantially the entire length of the ferromagnetic layer 25 from the starting end 17 to the end 19.
Connect to 5. In this way, the high frequency signal applied to the laminated structure 13 from the signal source 32 is guided along the conductor 29 to the end 19 and then via the return layers 21, 23 and 25 to the signal source 32. The frequency or amplitude of the high frequency current provided by signal source 32 can be varied to adjust the operating temperature of cutting blade 15.

第1図の積層構造は中心線30に対し導電体29を片側
に設けて対称的に構成し、末端19で強磁性体の複合構
造体に接続すると共に始端17の近くで信号源の1つの
導電体29に共通接続してもよいことに注目すべきであ
る。
The laminated structure of FIG. 1 is constructed symmetrically with a conductor 29 on one side with respect to the center line 30, connected to the ferromagnetic composite structure at the end 19, and connected to one of the signal sources near the beginning 17. It should be noted that a common connection to the conductor 29 may also be made.

強磁性体層25の動作温度範囲における高周波透磁率は
、複合積層体21及び23の実効透磁率よりもずっと大
きくなるよう、たとえば200乃至1000程度になる
よう容易に選択することができる。他方、複合積層体2
1.23の実効導電率は、強磁性体層25におけるより
も名かに大きい値(たとえば10乃至20倍程度)とな
るよう容易に選択し得る。高周波電流の流れる表層の深
さは、電流が流れる材料の導電率と透磁率および加えら
れる高周波電流の周波数とに逆比例する。強磁性体層2
5の寸法及びその透磁率は、充分高い周波数の電流で付
勢されたとき表層効果が電流を実質的に強磁性体層25
に集中するよう選択することができる。
The high frequency permeability of the ferromagnetic layer 25 in the operating temperature range can be easily selected to be much higher than the effective permeability of the composite laminates 21 and 23, for example on the order of 200 to 1000. On the other hand, composite laminate 2
An effective conductivity of 1.23 can easily be selected to be nominally larger (eg, on the order of 10 to 20 times) than in the ferromagnetic layer 25. The depth of the surface layer through which the high-frequency current flows is inversely proportional to the electrical conductivity and magnetic permeability of the material through which the current flows and the frequency of the applied high-frequency current. Ferromagnetic layer 2
The dimensions of ferromagnetic layer 25 and its magnetic permeability are such that when energized with a current of sufficiently high frequency, the surface effect causes the current to substantially flow through the ferromagnetic layer 25.
You can choose to focus on

温度がキュリー点に向かって上昇するにつれ、強磁性体
層25の材料の透磁率は1に向かって減少し、高周波電
流の流れる深さが増大する。
As the temperature increases toward the Curie point, the magnetic permeability of the material of the ferromagnetic layer 25 decreases toward unity, increasing the depth through which the high frequency current flows.

これは強磁性体層25を流れる高周波電流の割合をより
小さくする一方、複合積層体21゜23を流れる高周波
電流の割合をより大きくする結果となる。温度がキュリ
ー点に向かって上昇するときに起る強磁性体層25から
複合積層体21.23への電流の再分布、及び温度がキ
ュリー点から低下する際に起る逆の再分布は、強磁性体
層25より充分大きい複合積層体21゜23の導電率に
よって更に助成される。
This results in a smaller proportion of the high frequency current flowing through the ferromagnetic layer 25, and a larger proportion of the high frequency current flowing through the composite laminates 21 and 23. The redistribution of current from the ferromagnetic layer 25 to the composite stack 21.23 as the temperature increases towards the Curie point, and the opposite redistribution as the temperature decreases from the Curie point, This is further aided by the electrical conductivity of the composite laminate 21, 23 which is significantly greater than the ferromagnetic layer 25.

積層体の各々で発生するジュール熱は、その層の電気抵
抗及びその層を流れる高周波電流の強さの関数である。
The Joule heat generated in each stack is a function of the electrical resistance of that layer and the strength of the high frequency current flowing through that layer.

強磁性体層25の電気抵抗値は複合積層体21.23の
実効電気抵抗より実質的に高い。従って、温度変化の関
数として起る各層21.23及び25間の高周波電流の
分布変化は、高周波電流により発生するジュール熱の対
応変化をもたらし、低い温度では加熱の増加を、また高
い温度では加熱の減少を起す。
The electrical resistance of the ferromagnetic layer 25 is substantially higher than the effective electrical resistance of the composite laminate 21.23. Therefore, a change in the distribution of high frequency current between each layer 21, 23 and 25 as a function of a change in temperature results in a corresponding change in the Joule heat generated by the high frequency current, increasing heating at lower temperatures and heating at higher temperatures. causes a decrease in

よって、本発明の複合積層体21,23.25の第1の
利点は、全てが強磁性材料から成る構造を利用した従来
の切断刃で得られる自動温度調整よりも優れた自動温度
調整を与えることである。
Thus, a first advantage of the composite laminates 21, 23, 25 of the present invention is that they provide superior automatic temperature regulation over that obtained with conventional cutting blades that utilize structures made entirely of ferromagnetic materials. That's true.

強磁性合金のみを利用した従来の切断刃よりも優れた本
発明の複合積層体の第2の利点は、複合積層体21.2
3の実効熱伝導率を強磁性体層25におけるよりもずっ
と高く選択し得ることである。
A second advantage of the composite laminate of the present invention over conventional cutting blades that utilize only ferromagnetic alloys is that the composite laminate 21.2
3 can be selected to be much higher than in the ferromagnetic layer 25.

このように、複合された積層体21.23は、組織との
接触によって冷却されていない切断刃領域から冷却され
つつある領域への熱伝導を著しく増大させることができ
、これにより自動温度2M作用を向上させる。たとえば
銅、非磁性鋼と銅などの低透磁率の積層体は典型的な鉄
ニツケル強磁性合金よりも約30倍も高い熱伝導率を有
するので、この「熱分流」効果による温度調整の改善は
全てが強磁性体材料で作成された従来の同様な構造より
も著しく大きい。
In this way, the composite laminate 21.23 can significantly increase the heat transfer from the area of the cutting blade that is not cooled by contact with tissue to the area that is being cooled, thereby providing an automatic temperature 2M effect. improve. For example, low permeability laminates such as copper, non-magnetic steel and copper have approximately 30 times higher thermal conductivity than typical iron-nickel ferromagnetic alloys, resulting in improved temperature regulation due to this "thermal shunting" effect. is significantly larger than conventional similar structures made entirely of ferromagnetic materials.

切断部材自体がそこに流れる高周波電流により電気加熱
される第1図及び第2図に示した実施例において、複合
積層体の他の利点は、中央層をより鋭利かつ、より耐久
性の切断刃を設けられるような硬度に選択し得ることで
ある。たとえば、もし中央層21を#302ステンレス
鋼で作成するとすれば、これは切断刃自体が電流を流し
て直接にジュール熱を発生する従来の切断刃におけるよ
うに切断刃全体を典型的な鉄ニツケル強磁性合金で構成
したロックウェルC硬度的10のものと比較し、ロック
ウェルC硬度30を有するであろう。
In the embodiment shown in Figures 1 and 2, where the cutting member itself is electrically heated by high frequency current flowing through it, another advantage of the composite laminate is that the central layer provides a sharper and more durable cutting edge. The hardness can be selected to provide the desired hardness. For example, if the center layer 21 were to be made of #302 stainless steel, this would mean that the entire cutting blade would be made of typical iron-nickel steel, as in conventional cutting blades where the cutting blade itself conducts electrical current and generates Joule heat directly. It would have a Rockwell C hardness of 30, compared to a Rockwell C hardness of 10 constructed from a ferromagnetic alloy.

また、第3図の断面で示したような、切断刃の周囲にこ
の種の複合積層体の高周波電流用導電体を配置した本発
明の他の実施例によれば、複合積層体の同様な利点が得
られることにも注目すべきである。この実施例において
、導電体36は2つの積層39と37とから成っており
、その1つは鉄ニツケル合金のような低い導電率と、高
い磁気飽和と所定温度のキュリー点とを有する高い透磁
率の強磁性材料より成り、他方は銅もしくは銀のような
低い透磁率と高い電気的・熱的伝導度とを有する材料よ
り成っている。
In addition, according to another embodiment of the present invention, as shown in the cross section of FIG. It should also be noted that advantages are obtained. In this embodiment, the electrical conductor 36 consists of two laminated layers 39 and 37, one of which has a low conductivity, such as an iron-nickel alloy, and a high permeability having a high magnetic saturation and a Curie point at a given temperature. The other is made of a ferromagnetic material with low magnetic permeability and high electrical and thermal conductivity, such as copper or silver.

導電体36は層38によって切断部材40から電気絶縁
され、切断部材40は切断刃15を有しく又は切断部材
はセラミックもしくはガラスなどの非導電性材料で加工
される)かつこれに熱結合されている。すべて高周波電
流は、熱伝導によって切断部材を加熱するよう積層導電
体36を通して流れる。導電性複合積層体におけるジュ
ール熱の自動調整の改良は、上述のメカニズムによって
達成される。
The electrical conductor 36 is electrically insulated from the cutting member 40 by a layer 38 (the cutting member 40 has a cutting blade 15 or the cutting member is fabricated from a non-conductive material such as ceramic or glass) and is thermally coupled thereto. There is. All high frequency currents flow through the laminated conductor 36 to heat the cutting member by thermal conduction. Improved self-regulation of Joule heating in conductive composite laminates is achieved by the mechanism described above.

〔発明の効果〕〔Effect of the invention〕

上記した自動調整式加熱切断刃は、止血と同時に手術を
行う外科手術用に有益である。自動調整すべき温度は、
その温度近くにキュリー点を有するたとえば鉄ニツケル
合金のような強磁性材料を複合積層体における強磁性材
料層として選定することにより達成される。
The self-adjusting heated cutting blade described above is useful for surgical operations that simultaneously perform hemostasis. The temperature that should be automatically adjusted is
This is achieved by selecting a ferromagnetic material, such as an iron-nickel alloy, having a Curie point near that temperature as the ferromagnetic material layer in the composite stack.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による切断刃の平面図、 第2図は第1図の切断刃の2−2線断面図、第3図は本
発明の他の実施例の断面図である。 11・・・把手部    13・・・積層構造体15・
・・切断刃    17・・・始端19・・・末端  
   21.23・・・複合積層体25・・・強磁性体
層  27・・・電気絶縁層29・・・導電体    
30・・・中心線36・・・導電体    37・・・
積層38・・・屓        39・・・積層40
・・・切断部材
FIG. 1 is a plan view of a cutting blade according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line 2-2 of the cutting blade in FIG. 1, and FIG. 3 is a sectional view of another embodiment of the present invention. . 11... Handle portion 13... Laminated structure 15.
...Cutting blade 17...Starting end 19...End
21.23...Composite laminate 25...Ferromagnetic layer 27...Electrical insulating layer 29...Conductor
30... Center line 36... Conductor 37...
Lamination 38... layer 39... layer 40
...cutting material

Claims (5)

【特許請求の範囲】[Claims] (1)被加熱部の温度を所定範囲に自動調整する積層電
気切断刃において、前記所定範囲の上限温度近くに透磁
率のキュリー転移点を有する強磁性材料の層と、この強
磁性材料層に電気接触すると共にこの強磁性材料よりも
高い導電率と高い熱伝導率とを有する導電性材料の層と
、前記2つの層に連結された高周波電流源とを備え、前
記積層体がキュリー点より低い温度にある際電流の表層
深さが前記強磁性材料層の厚さより小さくなり、かつ積
層体がキュリー点より高い温度にある際電流の表層深さ
が強磁性材料層の厚さより大となることを特徴とする積
層電気加熱切断刃。
(1) In a laminated electric cutting blade that automatically adjusts the temperature of the heated part within a predetermined range, a layer of a ferromagnetic material having a Curie transition point of magnetic permeability near the upper limit temperature of the predetermined range; a layer of a conductive material in electrical contact and having a higher electrical conductivity and a higher thermal conductivity than the ferromagnetic material, and a high frequency current source coupled to the two layers, the stack being above the Curie point. When the temperature is low, the surface depth of the current is smaller than the thickness of the ferromagnetic material layer, and when the stack is at a temperature higher than the Curie point, the surface depth of the current is larger than the thickness of the ferromagnetic material layer. A laminated electrically heated cutting blade characterized by:
(2)強磁性材料層の外側表面に配置された電気絶縁材
の層と、前記強磁性材料層の長さの少なくとも一部に沿
って前記絶縁材上に配置された導電性材料の層とをさら
に備え、この導電性材料の層を強磁性材料層へその一端
部近くでのみ接続して導電性材料の層から強磁性材料層
への導電路を形成してなる特許請求の範囲第1項記載の
積層電気加熱切断刃。
(2) a layer of electrically insulating material disposed on an outer surface of the layer of ferromagnetic material; and a layer of electrically conductive material disposed on the insulating material along at least a portion of the length of the layer of ferromagnetic material. and the layer of conductive material is connected to the layer of ferromagnetic material only near one end thereof to form a conductive path from the layer of conductive material to the layer of ferromagnetic material. The laminated electrically heated cutting blade described in Section 1.
(3)導電性材料の層が銅および銀よりなる群から選択
される特許請求の範囲第1項記載の積層電気加熱切断刃
(3) A laminated electrically heated cutting blade according to claim 1, wherein the layer of conductive material is selected from the group consisting of copper and silver.
(4)高周波電源に電気接続された交流電気抵抗加熱切
断刃において、前記加熱切断刃は少なくとも所定温度範
囲にわたり温度上昇と共に低下する電気抵抗を有し、さ
らに高熱伝導性かつ高導電性の材料よりなる導電性の非
磁性支持部材を備え、この支持部材はその表面の少なく
とも一部にわたり磁性材料の薄層を有し、この磁性材料
はそのキュリー点より低い温度にて1より大きい最大相
対透磁率を有すると共にキュリー点より高い温度にてほ
ぼ1の最小相対透磁率を有し、前記加熱切断刃が前記高
周波電源に電気接続された際高周波数にて交流電流が流
れて前記加熱切断刃にジュール熱を生ぜしめ、前記交流
電流は前記最大透磁率により前記磁性材料層のキュリー
点より低い温度での作用に従い前記磁性薄層に制限され
る一方、前記交流電流は前記温度が上昇してキュリー点
に接近しかつ前記透磁率が低下する際前記非磁性支持部
材に拡散するよう構成したことを特徴とする交流電気抵
抗加熱切断刃。
(4) In an AC electric resistance heating cutting blade electrically connected to a high frequency power source, the heating cutting blade has an electrical resistance that decreases as the temperature rises over at least a predetermined temperature range, and is further made of a material with high thermal conductivity and high electrical conductivity. an electrically conductive non-magnetic support member having a thin layer of magnetic material over at least a portion of its surface, the magnetic material having a maximum relative magnetic permeability greater than 1 at a temperature below its Curie point. and has a minimum relative magnetic permeability of approximately 1 at a temperature higher than the Curie point, and when the heated cutting blade is electrically connected to the high frequency power source, an alternating current at a high frequency flows through the heated cutting blade to generate joules. The alternating current is limited to the thin magnetic layer due to the maximum permeability acting below the Curie point of the layer of magnetic material, while the alternating current is limited to the Curie point as the temperature increases. An alternating current electric resistance heating cutting blade characterized in that it is configured to diffuse into the non-magnetic support member when approaching the magnetic permeability and decreasing the magnetic permeability.
(5)高周波電流の量に応じて加熱温度を狭い範囲内で
自動調整するに際し、前記範囲の上限温度近くに透磁率
のキュリー転移点を有する1つの導電路に高周波電流の
一部を流し、かつ 前記1つの導電路に隣接してこれと電気接触すると共に
前記1つの導電路よりも低い実効透磁率と高い導電率お
よび熱伝導率とを有する他の導電路に高周波電流の他の
一部を流し、さらに 各導電路に流れる高周波電流の相対的割合を導電路の温
度の関数として変化させる ことを特徴とする切断刃の加熱温度の自動温度調整方法
(5) When automatically adjusting the heating temperature within a narrow range according to the amount of high-frequency current, a part of the high-frequency current is passed through one conductive path having a Curie transition point of magnetic permeability near the upper limit temperature of the range, and another portion of the high frequency current in another conductive path adjacent to and in electrical contact with the one conductive path and having a lower effective magnetic permeability and higher electrical conductivity and thermal conductivity than the one conductive path. A method for automatically adjusting the heating temperature of a cutting blade, characterized in that the relative proportion of high-frequency current flowing through each conductive path is changed as a function of the temperature of the conductive path.
JP61245140A 1978-04-20 1986-10-15 Improved electric heating cutter blade and automatic temperature control method Granted JPS62129048A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US89838878A 1978-04-20 1978-04-20
US898388 1978-04-20

Publications (2)

Publication Number Publication Date
JPS62129048A true JPS62129048A (en) 1987-06-11
JPH0351179B2 JPH0351179B2 (en) 1991-08-06

Family

ID=25409375

Family Applications (2)

Application Number Title Priority Date Filing Date
JP4887079A Granted JPS54164389A (en) 1978-04-20 1979-04-20 Improvement type electric heater and its method and its structure
JP61245140A Granted JPS62129048A (en) 1978-04-20 1986-10-15 Improved electric heating cutter blade and automatic temperature control method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP4887079A Granted JPS54164389A (en) 1978-04-20 1979-04-20 Improvement type electric heater and its method and its structure

Country Status (6)

Country Link
JP (2) JPS54164389A (en)
BR (1) BR7902444A (en)
DE (1) DE2914401A1 (en)
FR (1) FR2428279A1 (en)
GB (1) GB2022974A (en)
NL (1) NL7903018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504705A (en) * 1991-04-05 1994-06-02 メトカル・インコーポレーテッド Instruments for cutting, coagulating, and removing body tissue

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481057A (en) * 1980-10-28 1984-11-06 Oximetrix, Inc. Cutting device and method of manufacture
JPH0320664U (en) * 1989-07-06 1991-02-28
US6230603B1 (en) * 1996-04-29 2001-05-15 Zbigniew Kubala Cutting blade for resistance-heated elastomer cutters
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US8419724B2 (en) 2009-04-17 2013-04-16 Domain Surgical, Inc. Adjustable ferromagnetic coated conductor thermal surgical tool
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US8915909B2 (en) 2011-04-08 2014-12-23 Domain Surgical, Inc. Impedance matching circuit
US8932279B2 (en) 2011-04-08 2015-01-13 Domain Surgical, Inc. System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue
US8858544B2 (en) 2011-05-16 2014-10-14 Domain Surgical, Inc. Surgical instrument guide
WO2013040255A2 (en) 2011-09-13 2013-03-21 Domain Surgical, Inc. Sealing and/or cutting instrument
WO2013086045A1 (en) 2011-12-06 2013-06-13 Domain Surgical Inc. System and method of controlling power delivery to a surgical instrument
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122983A (en) * 1975-03-14 1976-10-27 Shaw Robert F Incising device and method thereof
JPS51122987A (en) * 1975-03-14 1976-10-27 Shaw Robert F Incising device and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122983A (en) * 1975-03-14 1976-10-27 Shaw Robert F Incising device and method thereof
JPS51122987A (en) * 1975-03-14 1976-10-27 Shaw Robert F Incising device and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06504705A (en) * 1991-04-05 1994-06-02 メトカル・インコーポレーテッド Instruments for cutting, coagulating, and removing body tissue

Also Published As

Publication number Publication date
NL7903018A (en) 1979-10-23
BR7902444A (en) 1979-10-23
GB2022974A (en) 1979-12-19
JPS54164389A (en) 1979-12-27
FR2428279A1 (en) 1980-01-04
JPS6232938B2 (en) 1987-07-17
DE2914401A1 (en) 1979-10-31
JPH0351179B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
JPS62129048A (en) Improved electric heating cutter blade and automatic temperature control method
US4091813A (en) Surgical instrument having self-regulated electrical proximity heating of its cutting edge and method of using the same
US4185632A (en) Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same
CA1083457A (en) Surgical instrument having self-regulated electrical induction heating of its cutting edge and method of using the same
EP0110692B1 (en) Autoregulating electric heater
CA1224836A (en) Multiple temperature autoregulating heater
US5480397A (en) Surgical instrument with auto-regulating heater and method of using same
JP2558584B2 (en) Instruments for cutting, coagulating and removing body tissue
ATE39074T1 (en) SELF-REGULATING ELECTRICALLY SHIELDED RADIATOR.
JPS62296386A (en) High output self-adjustable heater
US4185183A (en) Induction heating apparatus with adjustable flux concentrators
US11701160B2 (en) Planar ferromagnetic coated surgical tip and method for making
CN106450785B (en) Electromagnetic metamaterial structure for generating local hot spots
CA1077366A (en) Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same
JP2003332033A (en) Temperature control method for electromagnetic induction heating instrument
JP4727363B2 (en) Magnetic heating element and temperature control method thereof
JP2891393B2 (en) Electromagnetic fryer
Jestremski et al. Numerical Investigation of Transverse-Flux Induction Heating of Ferromagnetic Strip
JP3869892B2 (en) Electromagnetic induction heating coil
JP2003203752A (en) Induction heating cooking device
JPH01239790A (en) Inductive heating device of electromagnetic cooker
Adler et al. Self-Regulating Induction Heating Using the Curie Temperature in FeNi/Cu Composite Alloys
Takura et al. Miniaturization of micro implantable devices with thermosensitive ferrite for soft-heating hyperthermia
Takura et al. Evaluation of thermosensitive magnetic powder coated with Ag paste for cancer therapy
JPS58197692A (en) High frequency induction heating element