JPS6232877A - Novel chlorella - Google Patents

Novel chlorella

Info

Publication number
JPS6232877A
JPS6232877A JP17272185A JP17272185A JPS6232877A JP S6232877 A JPS6232877 A JP S6232877A JP 17272185 A JP17272185 A JP 17272185A JP 17272185 A JP17272185 A JP 17272185A JP S6232877 A JPS6232877 A JP S6232877A
Authority
JP
Japan
Prior art keywords
chlorella
strain
specific
fusion
protoplasts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17272185A
Other languages
Japanese (ja)
Other versions
JPH0126675B2 (en
Inventor
Ryoichi Minoshima
良一 蓑島
Osamu Yamada
理 山田
Tadashi Fujita
藤田 匡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Oillio Group Ltd
Original Assignee
Nisshin Oil Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Oil Mills Ltd filed Critical Nisshin Oil Mills Ltd
Priority to JP17272185A priority Critical patent/JPS6232877A/en
Priority to CN 86105790 priority patent/CN1033042C/en
Publication of JPS6232877A publication Critical patent/JPS6232877A/en
Publication of JPH0126675B2 publication Critical patent/JPH0126675B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain a novel Chlorella capable of producing especially eicosapentaenoic acid in high concentration and having high rate of proliferation, by carrying out the cell-fusion of the protoplast of two kinds of Chlorella. CONSTITUTION:The objective novel Chlorella can be produced by the cell-fucion of (A) the protoplast of a specific Chlorella capable of producing a highly unsaturated fatty acid such as eicosapentaenoic acid and/or a lipid containing said fatty acid as a constituent component and growing in seawater or in a medium containing seawater, e.g. Chlorella minutissima and (B) the protoplast of the other kind of Chlorella having higher rate of proliferation than the Chlorella A and growing in a medium containing fresh water, e.g. Chlorella elipsoidia or Chlorella vlugaris. The obtained Chlorella has eicosapentaenoic acid productivity to >=1/2 of that of the Chlorella A and a rate of proliferation of >=2 times that of the Chlorella A.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規クロレラ、特に2種のクロレラプロトプ
ラストを細胞融合させて()られる新規クロレラに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel chlorella, particularly a novel chlorella produced by cell fusion of two types of chlorella protoplasts.

クロレラは周知のごとく光合成作用を有する単細胞緑藻
類の1種であり、淡水および海水中のいずれかにおいて
も天然に棲息しており、また人工培養されている。クロ
レラの細胞はアミノ酸バランスのよい蛋白質、各種ミネ
ラル類、ビタミン類、糖類、脂質、色素、酵素等を含み
、栄養価値が高いので、これらの栄養素や有用成分の有
効利用の観点から、産業上の利用分野で利用されている
As is well known, Chlorella is a type of unicellular green algae that has photosynthetic activity, and naturally lives in both freshwater and seawater, and has also been artificially cultured. Chlorella cells contain protein with a good balance of amino acids, various minerals, vitamins, sugars, lipids, pigments, enzymes, etc., and have high nutritional value. It is used in the field of application.

例えば、クロレラ細胞そのもののはかSCP(Sing
le Ce1l Protein ) 、脂質(エイコ
サペンクエン酸などの高度不飽和脂肪酸を含む)、色素
(クロロフィル)などが健康食品、動物、任免、ワムシ
の飼料、植物の肥料などをはじめ化粧品、印刷・塗料用
インク、医薬品などに用いられている。従って本発明は
広範囲に使用できる新規クロレラに関するものである。
For example, the fragile SCP (Sing) of Chlorella cells themselves
Ce1l Protein), lipids (including highly unsaturated fatty acids such as eicosapen citric acid), pigments (chlorophyll), etc. are used in health foods, animals, pets, rotifer feed, plant fertilizers, cosmetics, printing, and paints. Used in industrial inks, pharmaceuticals, etc. The present invention therefore relates to a new chlorella that can be used in a wide range of applications.

〔従来の技術〕[Conventional technology]

上記のようにクロレラは産業上有用であるので、従来か
ら種々の方法で培養されている。例えば、人工栽培など
で大量に培養したクロレラを集め、濃縮・殺菌を行なっ
た後、クロレラ細胞に物理的処理たとえば高圧ホモジナ
イザー、噴霧乾煙、超音波などの機械的処理をほどこし
てクロレラ細胞を破砕し、細胞内の有用成分を直接ある
いは水や溶剤で抽出する方法が行なわれる。しかしなが
ら、クロレラは藻類の1種であるため、その種により多
少の差異はあるものの微生物に比べるとその増殖速度は
極めて遅いので、クロレラを自然光または人工光下で人
工培養するには、巨大な培養プールやタンクを必要とし
、長時間培養を続けねばならないという問題があった。
As mentioned above, since Chlorella is industrially useful, it has been cultivated in various ways. For example, a large amount of chlorella cultured through artificial cultivation is collected, concentrated and sterilized, and then the chlorella cells are subjected to physical treatment such as high-pressure homogenizer, spray dry smoke, and ultrasonic waves to crush the chlorella cells. However, methods are used to extract useful components within cells directly or with water or solvents. However, since Chlorella is a type of algae, its growth rate is extremely slow compared to microorganisms, although there are some differences between species. There were problems in that it required a pool or a tank, and culture had to be continued for a long time.

従って、このような培養は、クロレラの有用成分を利用
する際のコストアップを招き、経済的に不利であった。
Therefore, such culture is economically disadvantageous because it increases the cost of utilizing the useful components of Chlorella.

上記培養においては、自然環境下にあるクロレラを採取
し、常法により純粋培養して単一あるいは複合株に選別
し、これを用いるのが一般的であり、その他の方法とし
てはクロレラの変種株を見出し、細胞壁を有しないクロ
レラを人工培養する例(特開昭57−144976号)
、培地組成および培養方法を検討した例(特開昭57−
47476号)を近年わずかに見るにすぎない。
In the above culture, it is common to collect Chlorella in the natural environment, pure culture it by conventional methods, select it into a single strain or a complex strain, and use this. An example of artificially culturing Chlorella without a cell wall by discovering the following (Japanese Unexamined Patent Publication No. 144976/1983)
, an example of studying medium composition and culture method (Japanese Patent Application Laid-open No. 1983-
47476) have been seen only a few times in recent years.

また、クロレラの1種であるクロレラ ミニュティシマ
(Chlorella minutissima  :
以下、C,ミニュティシマという)には海水産種および
淡水産種が存在し、このうち海水産C,ミニュティシマ
はその細胞内にエイコサペンクエン酸く以下、EPAと
略す。)をはじめとする高度不飽和脂肪酸および/また
はそれらを構成成分とする脂質を産生ずることが知られ
ている。EPAは魚類の脂質の一戊分でもあり、動脈硬
化予防作用、血栓溶解作用などの作用を有することが近
年間らかになり、健康食品あるいは医薬品原料として注
目を集めている。しかしながら、かかるC、ミニュティ
シマさらには他種クロレラについても、有用物質の産生
を目的とした育種は、これまでのところ行なわれていな
い。
In addition, Chlorella minutissima, a type of chlorella:
There are marine species and freshwater species of C. minutissima (hereinafter referred to as C. minutissima), and among these, marine C. minutissima contains eicosapencitrate in its cells, hereinafter abbreviated as EPA. ) and other highly unsaturated fatty acids and/or lipids containing these as constituent components. EPA is a component of fish lipids, and in recent years it has become clear that it has effects such as preventing arteriosclerosis and dissolving blood clots, and is attracting attention as a raw material for health foods and pharmaceuticals. However, breeding for the purpose of producing useful substances for C. minutissima and other species of Chlorella has not been carried out so far.

一方、バイオテクノロジーの発展とともに高等植物ある
いは微生物を対象とした細胞融合の研究が盛んに行なわ
れており、有用微生物の育種方法として酵母の品種改良
法(特開昭54−163883号)、アミノ酸醗酵用微
生物のプロトプラスト融合法(八gr、Biol、 C
hen+、、 43  (5)、1007〜1013.
1979、特開昭56−109587号、特開昭58−
158184号など)、植物プロトプラスト融合促進法
(特開昭59−120098号)などが報告あるいは開
示されている。しかしながら、藻類とくにクロレラを対
象とした細胞融合については、クロレラの細胞壁の除去
方法(特開昭57−181692号)が見られるにすぎ
ない。
On the other hand, with the development of biotechnology, research on cell fusion targeting higher plants or microorganisms has been actively conducted, and methods for breeding useful microorganisms include yeast breeding method (Japanese Patent Application Laid-open No. 163883/1983), amino acid fermentation, etc. Protoplast fusion method of microorganisms for commercial use (8gr, Biol, C
hen+, 43 (5), 1007-1013.
1979, JP-A-56-109587, JP-A-58-
158184, etc.), a method for promoting plant protoplast fusion (Japanese Unexamined Patent Publication No. 120098/1983), etc. have been reported or disclosed. However, regarding cell fusion targeting algae, particularly Chlorella, there is only a method for removing the cell wall of Chlorella (Japanese Patent Application Laid-open No. 181692/1983).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従って、本発明は、クロレラの細胞中に産生される有用
成分を効率良く、かつ経済的に採取することを特徴とす
る特に、EPλを高濃度で産生じ、かつ増殖速度の速い
新規なりロレラを提供することを目的とする。
Therefore, the present invention is characterized by efficient and economical collection of useful components produced in Chlorella cells, and in particular, a new strain of Chlorella that produces EPλ in high concentration and has a fast proliferation rate. The purpose is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、特定のクロレラのプロトプラストと、前記特
定のクロレラとは異なった性質を有する異種クロレラの
プロトプラストとを細胞融合させると、両者の好ましい
性質を有する新規のクロレラ力り尋られるとの知見に基
づいたものである。さらに、上記細胞融合を複数回くり
返すと、より好ましい結果が得られるとの知見に基づい
てなされたのである。
The present invention is based on the knowledge that when cell fusion of protoplasts of a specific Chlorella and protoplasts of a different species of Chlorella that have properties different from those of the specific Chlorella, a new Chlorella that has the desirable properties of both is produced. It is based on Furthermore, this was done based on the knowledge that more favorable results could be obtained by repeating the cell fusion described above multiple times.

すなわち、本発明は、特定のクロレラのプロトプラスト
と異種クロレラのプロトプラストとを融合させて得られ
る新規クロレラを提供する。
That is, the present invention provides a novel chlorella obtained by fusing protoplasts of a specific chlorella and protoplasts of a different type of chlorella.

本発明で用いる特定のクロレラは細胞融合において用い
る同一でない性状を有する2種のクロレラ細胞のうちの
一方のクロレラであり、例えば炭素数16〜26であり
、分子内に2重結合を3個以上有する高度不飽和脂肪酸
又は該脂肪酸を構成する脂質を産生ずるクロレラがあげ
られる。さらにリブロースジホスフェートカルボキシラ
ーゼ(光合成においてCD2 の固定に関与する酵素)
やカルボニックアンヒドロラーゼ(太陽エネルギーの効
率的利用に関与するCo2)ラップ酵素)などを産生ず
るものをあげることができる。このうち、EPA又はE
PAを構成成分とする脂質を産生ずるクロレラが好まし
い。又、海水または海水を含む培地で生育する株をあげ
ることができる。この場合、海水を含む培地とは、天然
海水を最低1゜容量%含む培地であれば良く、これを単
に精製水で希釈したものでも、あるいは他の栄養成分を
含む培地にしたものでもよい。上記特定クロレラとして
は、二次カロチノイド代謝産生ずる能力の有無にかかわ
らず、C,ミニュティシマ(Chlorellamin
utissima  )があげられる。このクロレラは
天然海水中から容易に採取できるものであるが、各都道
府県にある水産試験場あるいは栽培漁業センター、大学
、その他の公的機関などから分譲を受けることができる
。なお、本発明で用いる特定クロレラは前述の方法で人
手できるC、ミニュティシマに限定されるものではなく
、これに属する種々の野生株、変異株、栄養要求性株、
薬剤耐性株を用いることもできる。
The specific chlorella used in the present invention is one of two types of chlorella cells with different properties used in cell fusion, for example, has 16 to 26 carbon atoms and has 3 or more double bonds in the molecule. Examples include chlorella that produces highly unsaturated fatty acids having a polyunsaturated fatty acid or lipids constituting the fatty acids. Furthermore, ribulose diphosphate carboxylase (an enzyme involved in fixing CD2 in photosynthesis)
Examples include those that produce carbonic anhydrolase (a Co2-wrap enzyme involved in the efficient use of solar energy). Of these, EPA or E
Chlorella, which produces lipids containing PA as a constituent, is preferred. In addition, strains that grow in seawater or a medium containing seawater can be mentioned. In this case, the seawater-containing medium may be any medium containing at least 1% by volume of natural seawater, and may be simply diluted with purified water, or may be a medium containing other nutritional components. The above-mentioned specific Chlorella includes C. minutisima (Chlorellamin), regardless of the ability to produce secondary carotenoid metabolism.
utissima). Chlorella can be easily collected from natural seawater, but it can also be obtained from fisheries experimental stations, cultivation and fisheries centers, universities, and other public institutions in each prefecture. In addition, the specific Chlorella used in the present invention is not limited to C. minutisima that can be prepared manually by the above-mentioned method, but also includes various wild strains, mutant strains, auxotrophic strains,
Drug-resistant strains can also be used.

一方、本発明で用いる異種クロレラは、前記特定のクロ
レラとは異なった性質を有するクロレラであり、前記特
定のクロレラよりも増殖速度の速い、好ましくは特定の
クロレラよりも2倍以上の増殖力を有するクロレラをあ
げることができる。
On the other hand, the different species of chlorella used in the present invention is a chlorella that has different properties from the specific chlorella, and has a faster growth rate than the specific chlorella, preferably has a multiplication power that is twice or more than that of the specific chlorella. Chlorella can be mentioned.

又、淡水培地で生育する株をあげることができる。Also, strains that grow in a freshwater medium can be mentioned.

ここで淡水培地とは、天然海水およびそれから得られる
成分を含まないものをいう。上記した異種クロレラとし
て、クロレラ エリプソイブイア(Chlorella
 ellipsoidea  ; r A M  C−
27、IAM  C−87など:以下、C,エリプソイ
ブイアという)、クロレラ ブルガリス(Chlore
llavulgaris  ; IAM  C−30、
IAM  C−169など:以下、C,ブルガリスとい
う)などが例示される。尚、ここでIAM  C−27
は東京大学応用微生物研究所に保存されている番号C−
27のクロレラ株を示す。さらに本発明においては、異
種クロレラとして細胞サイズの大きい株、例えばクロレ
ラ ピレノイドサ(Chlorellapyrenoi
dosa  : I A M  C−28など:以下、
C。
Here, the freshwater medium refers to one that does not contain natural seawater or components obtained therefrom. As the above-mentioned different species of chlorella, Chlorella ellipsobuia (Chlorella
ellipsoidea; r AMC-
27, IAM C-87, etc. (hereinafter referred to as C. ellipsobuia), Chlorella vulgaris (Chlorella vulgaris)
llavulgaris ; IAM C-30,
Examples include IAM C-169 (hereinafter referred to as C. vulgaris). In addition, here IAM C-27
is the number C- kept at the Institute of Applied Microbiology, University of Tokyo.
27 Chlorella strains are shown. Furthermore, in the present invention, strains with large cell sizes, such as Chlorella pyrenoidosa (Chlorella pyrenoidosa), are used as heterologous Chlorella.
dosa: IAM C-28, etc.: Hereinafter,
C.

ピレノイドサという)や低温又は高温で生育できる株を
用いることができる。尚、本発明で用いる異種クロレラ
としては、上記のクロレラに限定されるものではなく、
これらに属する野生株、変異株、栄養要求性株、薬剤耐
性株を用いてもかまわない。
Pyrenoidosa) and strains that can grow at low or high temperatures can be used. Note that the different species of chlorella used in the present invention are not limited to the above-mentioned chlorella,
Wild strains, mutant strains, auxotrophic strains, and drug-resistant strains belonging to these may be used.

上記した異種クロレラのうち、特に増殖速度の速いクロ
レラを用いるのが好ましい。又、特定クロレラのプロト
プラストと生育速度の速いクロレラのプロトプラストと
を細胞融合させたものを異種クロレラとして用いること
も好ましい。
Among the different types of chlorella mentioned above, it is preferable to use chlorella, which has a particularly fast growth rate. It is also preferable to use a cell fusion of a specific Chlorella protoplast and a fast-growing Chlorella protoplast as the heterologous Chlorella.

本発明においては、上記特定のクロレラと異種クロレラ
とを細胞融合させるにあたり、これらのプロトプラスト
を調整する。クロレラは、他の微生物等に比べて硬い細
胞壁を有しているといわれるが、特開昭57−1816
92号に記載された「クロレラの細胞壁の除去方法」′
や本発明者らが先に出願した特願昭59−264428
号、同60−45226号記載のクロレラ細胞壁を酵素
処理する方法に基づいてプロトプラストが調整される。
In the present invention, when performing cell fusion of the above-mentioned specific Chlorella and different species of Chlorella, these protoplasts are adjusted. Chlorella is said to have a harder cell wall than other microorganisms;
``Method for removing cell walls of Chlorella'' described in No. 92'
and Japanese Patent Application No. 59-264428 previously filed by the present inventors.
Protoplasts are prepared based on the method of enzymatically treating Chlorella cell walls described in No. 60-45226.

これらのうち、クロレラの細胞壁を、浸透圧調整剤の存
在下でセルラーゼ、ヘミセルラーゼ、ペクチナーゼ、キ
チナーゼ、β−グルクロニダーゼ、およびアガラーゼの
1種または2種以上の細胞壁分解酵素により処理して細
胞壁を除去する方法やプランクトンの抽出物を用いてク
ロレラの細胞壁を除去する方法によるのが好ましい。
Among these, the cell wall of Chlorella is treated with one or more cell wall-degrading enzymes of cellulase, hemicellulase, pectinase, chitinase, β-glucuronidase, and agarase in the presence of an osmotic pressure regulator to remove the cell wall. It is preferable to use a method in which the cell wall of chlorella is removed using a plankton extract.

次に上記の方法により得たプロトプラストを細胞融合処
理に付する。本発明では、細胞融合法としてポリエチレ
ングリコール、ポリビニルアルコール、ポリビニルピロ
リドンなどの水溶性高分子水溶液に塩化カルシウム、硫
酸カルシウムなどのカルシウムイオンを含み、ソルヒ゛
トール、マンニトール、ショ糖、硫酸マグネシウムなど
で調製した高pHの高張液中で融合させるいわゆる高分
子剤融合法、電気融合法、リポソーム融合法などが利用
できる。かかる方法のうち、例えば高分子剤融合法では
次のような手順により融合処理を行なうことができる。
Next, the protoplasts obtained by the above method are subjected to cell fusion treatment. In the present invention, as a cell fusion method, a water-soluble polymer aqueous solution such as polyethylene glycol, polyvinyl alcohol, or polyvinylpyrrolidone contains calcium ions such as calcium chloride or calcium sulfate, and a polymer prepared with sorbitol, mannitol, sucrose, magnesium sulfate, etc. The so-called polymer agent fusion method, electric fusion method, liposome fusion method, etc., which perform fusion in a hypertonic solution at pH, can be used. Among such methods, for example, in the polymer agent fusion method, the fusion treatment can be performed by the following procedure.

すなわち、上記の方法で得た特定クロレラのプロトプラ
ストと細胞融合させる対象の異(重クロレラのプロトプ
ラストを約等量の割合で混合し、遠心分離を行なってプ
ロトプラスト混合物を得る。この混合物を10mM以上
のカルシウムイオンを含む高張液(PH8〜13)に懸
濁させ、これに例えば10〜50%ポリエチレングリコ
ール(PEG1540.4000.6000など)溶液
を加えて20〜40℃に10分〜2時間保持して融合さ
せる。このようにして融合処理したプロトプラストは、
上記の融合処理剤などを遠心操作により洗浄除去し、次
に述べる方法で細胞壁を再生させる。例えば、ソルビト
ール、マンニトール、ショ糖などの浸透圧調整剤を含む
クロレラの培養液または固体培地で1〜2日培養して細
胞壁が再生した細胞を得る。尚、ここで培養液としては
、海水を用いた天然培地、淡水培地あるいは塩化アンモ
ニウム、硫安、尿素、硝酸塩類などの窒素源、重曹など
の炭酸塩類、乳酸、酢酸、クエン酸、グルコースなどの
炭素源、カリウム、カルシウム、マグネシウム、鉄、ホ
ウ素、マンガン、亜鉛、銅、モリブデンなどの金属を塩
化物、硝酸塩、硫酸塩、錯体などの形態で、又その他各
種ビタミン類、アミノ酸類などを添加した人工栄養培地
を用いることができる。そして、自然または人工照光下
あるいは暗所で、10〜60℃、好ましくは20〜45
℃の温度下、空気、炭酸ガスあるいはそれらの混合気体
を通気もしくは通気せず、攪拌もしくは静置状態で培養
することによって細胞壁の再生を行なわせる。
That is, the specific Chlorella protoplasts obtained by the above method and the target for cell fusion (heavy Chlorella protoplasts) are mixed in approximately equal proportions and centrifuged to obtain a protoplast mixture. Suspend it in a hypertonic solution (PH8-13) containing calcium ions, add a 10-50% polyethylene glycol (PEG 1540.4000.6000, etc.) solution to it, and hold it at 20-40°C for 10 minutes to 2 hours. Fuse. Protoplasts fused in this way are
The above-mentioned fusion treatment agent and the like are washed away by centrifugation, and the cell wall is regenerated by the method described below. For example, cells with regenerated cell walls are obtained by culturing for 1 to 2 days in a chlorella culture solution or solid medium containing an osmotic pressure regulator such as sorbitol, mannitol, or sucrose. The culture medium here may be a natural medium using seawater, a freshwater medium, or a nitrogen source such as ammonium chloride, ammonium sulfate, urea, nitrates, carbonates such as baking soda, carbonates such as lactic acid, acetic acid, citric acid, glucose, etc. Artificial products containing metals such as potassium, calcium, magnesium, iron, boron, manganese, zinc, copper, and molybdenum in the form of chlorides, nitrates, sulfates, and complexes, as well as various vitamins and amino acids. Nutrient media can be used. Then, under natural or artificial lighting or in a dark place, 10 to 60°C, preferably 20 to 45°C.
The cell walls are regenerated by culturing at a temperature of 0.degree. C. with air, carbon dioxide gas, or a mixture thereof, with or without aeration, and with stirring or standing still.

次に所望の融合細胞を得るには、海水を用いた培地と淡
水培地とを組合せて行なうことができる。
Next, to obtain the desired fused cells, a combination of a seawater-based medium and a freshwater medium can be used.

たとえば融合細胞を海水または海水成分を含む培地で細
胞壁を再生させ、数日間培養して出現するコロニーを淡
水培地に移植し、さらに数日間培養して出現するコロニ
ー、つまり所望の融合細胞を採取する。
For example, the cell walls of fused cells are regenerated in seawater or a medium containing seawater components, and the colonies that appear after culturing for several days are transplanted to a freshwater medium, and the colonies that appear after culturing for several more days, that is, the desired fused cells, are collected. .

本発明においては、上記の細胞融合を1回行なうのであ
るが、さらに進んで細胞融合を2回以上行なうことがで
きる。具体的には、特定のクロレラのプロトプラストと
異種クロレラのプロトプラストを前述の方法で1回融合
させ、融合プロトプラストの細胞壁を再生させ、新規ク
ロレラを選択し、これを培養した後、再び新規クロレラ
を異種クロレラとし、これに特定のクロレラとの間で細
胞融合を行なうのである。
In the present invention, the above-described cell fusion is performed once, but it is possible to proceed further and perform cell fusion two or more times. Specifically, a specific Chlorella protoplast and a heterologous Chlorella protoplast are fused once using the method described above, the cell wall of the fused protoplast is regenerated, new Chlorella is selected, this is cultured, and then the new Chlorella is recombined with the heterologous one. Chlorella and performs cell fusion with a specific chlorella.

より具体的には、海水を含む培地で生育するC。More specifically, C. growing in a medium containing seawater.

ミニュティシマ(神奈用県水産試験場から分譲された株
)のプロトプラストと淡水培地で生育するC、エリプソ
イブイア(IAM  C−87)のプロトプラストとの
融合株を選択し、これにさらに海水を含む培地で生育す
るC、ミニュティシマ(長崎系水産試験場から分譲され
た株)のプロトプラストまたは淡水培地で生育するC、
エリプソイブイア(JAM  C−87)のプロトプラ
ストとの融合処理を行ない、2代目融合細胞を得ること
ができる。さらに、この操作をくり返して、3代目以上
の融合細胞を得ることもできる。すなわち複数回の融合
をくり返して得た新規クロレラは、融合1回により得た
新規クロレラに比べて高増殖性及び高EPA産生能の両
方を備えているので好ましい。
A fusion strain of protoplasts of C. minutisima (a strain distributed from the Kanagawa Prefectural Fisheries Experiment Station) and protoplasts of C. C growing in protoplasts of Minutisima (strain distributed from the Nagasaki Fisheries Experiment Station) or C growing in freshwater culture medium;
A second generation fused cell can be obtained by performing fusion treatment with protoplasts of Ellipsobuia (JAM C-87). Furthermore, by repeating this operation, third or higher generation fused cells can be obtained. That is, a new chlorella obtained by repeating fusion multiple times is preferable because it has both higher proliferation ability and higher EPA production ability than a new chlorella obtained by a single fusion.

なお、このようなくり返し融合した株を得るには、海水
産クロレラと淡水産クロレラとの融合株に海水産のクロ
レラを融合させていくと、融合回数に従い、融合株は海
水濃度の高い培地で生育することができるようになると
の知見に基づき、順次海水濃度を高めて融合株を選択す
る。
In addition, in order to obtain such a repeated fusion strain, if you fuse seawater Chlorella with a fusion strain of seawater Chlorella and freshwater Chlorella, the fused strain will grow in a medium with a high seawater concentration depending on the number of fusions. Based on the knowledge that the fusion strain will be able to grow, the seawater concentration will be increased sequentially and the fused strain will be selected.

次に本発明の新規クロレラを表−1に例示する。Next, the novel chlorella of the present invention is illustrated in Table-1.

尚、表中PC■は、Packed Ce1l Volu
me (m 42/β)の略称であり、クロレラの培養
液11を300 Orpmで10分間遠心分離した時に
沈澱したクロレラ細胞の沈澱容量を示すものである。そ
 1して、表には、培養開始時にP CV 1.0のク
ロレラを7日間培養した時のPCM値を記載し、これ 
脩によってクロレラの増殖速度が表わされるのである。
In addition, PC■ in the table indicates Packed Ce1l Volume
It is an abbreviation of me (m42/β) and indicates the sedimentation volume of Chlorella cells that were sedimented when Chlorella culture solution 11 was centrifuged at 300 Orpm for 10 minutes. 1.The table lists the PCM values when Chlorella with a PCV of 1.0 at the start of culture was cultured for 7 days.
The growth rate of chlorella is expressed by 萩.

又、表中のEPA含量は、クロレラ細胞を常法により破
砕し、油分を溶剤抽出し、その脂肪酸組成をGLC等の
化学分析により求めたのである。
Furthermore, the EPA content in the table was determined by crushing chlorella cells by a conventional method, extracting the oil with a solvent, and determining the fatty acid composition by chemical analysis such as GLC.

上記融合株(新規クロレラ)の菌学的性質は次の通りで
ある。
The mycological properties of the above fusion strain (new Chlorella) are as follows.

■、形態学的性質 25%海水配合培地を用い、21℃、5000ルツクス
照光下で7日間培養した細胞を光学顕微鏡で観察し細胞
の形と大きさを求めた。結果を表−2に示す。
(2) Morphological properties Cells were cultured for 7 days at 21° C. under 5000 lux illumination using a 25% seawater-containing medium and were observed using an optical microscope to determine the shape and size of the cells. The results are shown in Table-2.

表  −2 〔発明の効果〕 本発明によれば、細胞内に有用物質を産生ずるが増殖速
度が遅く、これを産業的に利用する上で大きな欠点とな
っていた従来のクロレラ特性をかえた新規クロレラが提
供される。これにより、細胞内に産業上有用な物質が存
在することは知られていたものの従来の非効率的かつ経
済的でない生産性を大幅に改善することができるのであ
る。従って、本発明によれば特定クロレラが産生ずるE
PΔ産生能の半分以上の産生能を有し、かつ特定クロレ
ラの増殖速度の2倍以上の増殖速度を有する新規クロレ
ラが提供される。
Table 2 [Effects of the invention] According to the present invention, the characteristics of conventional chlorella, which produce useful substances within cells but have a slow growth rate, which was a major drawback in industrial use, have been changed. New chlorella is provided. Although it is known that industrially useful substances exist within cells, the conventional inefficient and uneconomical productivity can be greatly improved. Therefore, according to the present invention, E produced by specific chlorella
A novel chlorella having a productivity that is more than half of the PΔ production ability and a growth rate that is twice or more than that of a specific chlorella is provided.

さらに2回以上くり返して融合を行なって得た新規クロ
レラはEPA産生能及び増殖性の点で特に好ましいもの
である。又、1回の融合株(N0M10065株、NO
o 12038株)は、1回目の培養ではPCVが5〜
6、また総脂肪酸中のEPA含量が28.8〜30.5
%と、EPA生産能が良いが、これを継代培養するとE
l)A含量の低下が起こる、つまり1回目の融合株が有
するEPA生産能は非常に不安定であるが、K株を数回
融合させて得た新規クロレラは、継代培養を行ってもE
PA生産能が低下することがないといった利点がある。
New Chlorella obtained by repeating the fusion two or more times is particularly preferable in terms of EPA production ability and proliferation ability. In addition, one fusion strain (N0M10065 strain, NO
o 12038 strain), the PCV was 5 to 5 in the first culture.
6, and the EPA content in the total fatty acids is 28.8-30.5
%, which has good EPA production ability, but when subcultured, E.
l) The A content decreases, which means that the EPA-producing ability of the first fusion strain is very unstable, but the new Chlorella obtained by fusing the K strain several times does not increase even after subculture. E
It has the advantage that PA production capacity does not decrease.

以下、実施例において本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail in Examples.

〔実施例〕 実施例においてクロレラを培養するために用いた培地組
成を表−3に示す。また、実施例においてプロトプラス
トの生成および細胞壁の再生の確S忍は、カルコフルオ
ア White )染色法により蛍光顕微鏡で細胞壁の有無
を観察して行ない、さらに中性光試薬により生存プロト
プラストを調べる方法によって行なった。
[Example] Table 3 shows the composition of the medium used to culture Chlorella in the Example. In addition, in the Examples, the confirmation of protoplast production and cell wall regeneration was carried out by observing the presence or absence of cell walls using a fluorescence microscope using Calcofluor White) staining, and by examining viable protoplasts using a neutral light reagent. .

実施例1 海水産クロレラC,ミュニティシマ(K)(神奈用県水
産試験場より分譲を受けた株)および淡水産クロレラC
,エリプソイディア(IAM  C−27)を各々、人
工海水培地およびMC培地で培養し、特願昭60.−0
45226号記載の方法すなわちプランクトンより抽出
した細胞壁溶解酵素を用いてプロトプラスト化した。0
.6 Mマンニトール/ソルビトール(1:1)を含む
0.05 M !Jン酸緩衝液(pH6,0)(以下、
等張渡という)で洗浄し、遠心分離により濃縮した後、
両者の等量を混合し、40%ポリエチレングリコール4
000,100m M  Ca CII 2.0.3 
M−’ハタ酸2ナトリウムを含む等張渡(pH8,5>
に加えて1時間放誼細胞融合を行なわせた。次に上記混
合液を等張渡で2倍に希釈し、15分静置後、遠心分離
を行なって上澄液を除き、さらに同様の希釈−遠心分離
操作を数回くり返して融合混合物を得た。この混合物を
0.6Mマンニトール/ソルビトール(1: 1)を含
む50%人工海水培地に植菌し、細胞壁の再生を行ない
、1〜2日後に細胞壁の再生が認められた。次いで、こ
の培養液の一部を1.5%寒天を含むMC培地に移植し
、数日間、照光下で培養してコロニーを分取した。さら
に、これらのコロニーを1.5%寒天を含む50%人工
海水培地にのばし、数日間培養後、生じたコロニーを採
取し、融合株の選択を行なった。選択した融合株を50
%人工海水培地で培養し、生育速度と脂質を構成する総
脂肪酸中のEPA含量を求めた。その代表例を次に示す
。なお、融合株NOM 10065の構成主要脂肪酸は
C10,。(15,2%) 、c、6.。
Example 1 Saltwater Chlorella C, Munitisima (K) (strain obtained from the Kanayo Prefectural Fisheries Experiment Station) and freshwater Chlorella C
, Ellipsoidea (IAM C-27) were cultured in artificial seawater medium and MC medium, respectively, and patent application 1986. -0
Protoplasts were formed using the method described in No. 45226, that is, using a cell wall lytic enzyme extracted from plankton. 0
.. 0.05 M containing 6 M mannitol/sorbitol (1:1)! J acid buffer (pH 6,0) (hereinafter referred to as
After washing with an isotonic solution and concentrating by centrifugation,
Mix equal amounts of both and add 40% polyethylene glycol 4
000,100m M Ca CII 2.0.3
M-' Isotonic solution containing disodium haltaate (pH 8,5>
In addition, cell fusion was performed for 1 hour. Next, the above mixture was diluted to 2 times by isotonic dilution, left to stand for 15 minutes, centrifuged to remove the supernatant, and the same dilution-centrifugation operation was repeated several times to obtain a fusion mixture. Ta. This mixture was inoculated into a 50% artificial seawater medium containing 0.6M mannitol/sorbitol (1:1) to regenerate cell walls, and cell wall regeneration was observed 1 to 2 days later. Next, a portion of this culture solution was transferred to MC medium containing 1.5% agar, cultured under light for several days, and colonies were collected. Further, these colonies were spread on a 50% artificial seawater medium containing 1.5% agar, and after culturing for several days, the resulting colonies were collected and fused strains were selected. 50 selected fusion strains
% artificial seawater medium, and the growth rate and the EPA content in the total fatty acids constituting the lipids were determined. A typical example is shown below. The main fatty acid constituting the fusion strain NOM 10065 is C10. (15,2%), c, 6. .

(15,3%”) 、C,、、、(8,6%)、C,、
、、(4,9%)、C1e:2(12,0%) 、C,
、,3(5,3%) 、C20:4(5,0%)、C2
゜、5(28,8%)であった。
(15,3%”) ,C,, (8,6%),C,,
,,(4,9%),C1e:2(12,0%),C,
,,3(5,3%) ,C20:4(5,0%),C2
゜, 5 (28.8%).

実験を5回行ない、それぞれについて辱た代表的な融合
株の生育速度(PCV)とEPA含量の分析結果を表−
4に示す。
The experiment was conducted five times, and the analysis results of the growth rate (PCV) and EPA content of representative fusion strains that were tested for each are shown in the table.
4.

表  −4 実施例2 C,ミニュティシマ(K)およびC,ブルガリス(IA
M  C−169)を各々、人工海水およびDM培地で
培養し、実施例1と同様にプロトプラスト化した。本実
施例では等張渡として0.5Mマンニトールを含む0.
07 M ) Uス塩酸緩衝液(pH7,0)を用いた
。各々のプロトプラストを等張渡で洗浄し、遠心分離を
行なって濃縮後、それぞれを等量混合し、30%ポリエ
チレングリコール1450.0、IMCaCj!、を含
む等張渡(pH9,0)を用いて実施例1と同様に融合
させた。0.5Mマンニトールを含む25%人工海水の
寒天培地で融合混合物の細胞壁の再生を行ない、生育の
速いコロニーを分取し、等張渡で希釈した。次にこれを
50%人工海水培地(原塩濃度13.35 g / 1
 )に生育させることによりC,ブルガリス(IAMC
−169)  株を除き、ついでDM寒天培地でC,ミ
ニュテイシマ(K)株を除いて、融合株を選択した。実
験を5回行ない、それぞれについて得た代表的な融合株
の生育速度とEPA含量の分析結果を表−5に示す。
Table-4 Example 2 C. minutissima (K) and C. vulgaris (IA
MC-169) were cultured in artificial seawater and DM medium, respectively, and converted into protoplasts in the same manner as in Example 1. In this example, 0.5M mannitol was used as the isotonic agent.
07M) US hydrochloric acid buffer (pH 7.0) was used. After washing each protoplast with an isotonic solution, centrifuging and concentrating, equal amounts of each were mixed and mixed with 30% polyethylene glycol 1450.0, IMCaCj! Fusion was carried out in the same manner as in Example 1 using an isotonic solution (pH 9,0) containing . The cell walls of the fusion mixture were regenerated on an agar medium of 25% artificial seawater containing 0.5 M mannitol, and fast-growing colonies were collected and diluted with isotonic dilution. Next, this was added to a 50% artificial seawater culture medium (raw salt concentration 13.35 g/1
) by growing C. vulgaris (IAMC
-169) strain, and then the fused strain was selected on a DM agar medium, excluding the C. minuteisima (K) strain. The experiment was conducted five times, and the analysis results of the growth rate and EPA content of representative fusion strains obtained for each are shown in Table 5.

表  −5 実施例3 実施例1で得た融合株NOM 10065を50%人工
海水培地で、またC、ミニュティシマ(K)を人工海水
培地で各々、培養し、実施例1と同様の方法でプロトプ
ラスト化及び融合を行ない、次に100%海水培地に生
育させることにより、NOV 10065株を除き、さ
らに淡水培地(MC)で生育させに株を除いて、生育速
度が速< 、BPA含量の高い2回融合株N0M200
78を選択した。N0M20078及びC,ミニュティ
シマ(N)(長崎県水産試験場より分譲を受けた株)を
、それぞれ25%人工海水培地及び100%人工海水培
地で培養し、特願昭59−264428号の方法に準拠
してプロトプラスト化し、実施例1と同様に融合処理を
行ない、101〜108%人工海水培地(原塩濃度27
〜29g/jりおよびMC寒天培地を用いて培養して融
合株の選択を行なった。つまり、101〜108%人工
海水培地(原塩濃度27〜29g/l)に生育させるこ
とにより、N0M20078株を除き、次に淡水培地(
MC)によりN株を除いてN0M31050株を選択し
た。代表的な融合株の生育速度とEPA含量の分析結果
を表−6に示す。
Table 5 Example 3 The fusion strain NOM 10065 obtained in Example 1 was cultured in a 50% artificial seawater medium, and C. minutisima (K) were cultured in an artificial seawater medium, and protoplasts were produced in the same manner as in Example 1. The NOV 10065 strain was removed by culturing in 100% seawater medium, and the strains with high BPA content, except for the NOV 10065 strain, were grown in freshwater medium (MC). Double fusion strain N0M200
I chose 78. N0M20078 and C. minutisima (N) (strains distributed by the Nagasaki Prefectural Fisheries Research Institute) were cultured in 25% artificial seawater culture medium and 100% artificial seawater culture medium, respectively, according to the method of Japanese Patent Application No. 59-264428. Protoplasts were made into protoplasts, and the fusion treatment was performed in the same manner as in Example 1.
The fused strain was selected by culturing at ~29g/j and using MC agar medium. In other words, the N0M20078 strain was removed by growing it in a 101-108% artificial seawater medium (raw salt concentration 27-29 g/l), and then in a freshwater medium (
MC), the N0M31050 strain was selected by excluding the N strain. Table 6 shows the analysis results of the growth rate and EPA content of representative fusion strains.

表  −6 実施例4 融合処理を2回行なった融合株N OM 20078と
C,ミニュティシマ(K)とを、各々、25%人工海水
培地および人工海水培地を用いて培養し、実施例1と同
様の方法でプロトプラスト化した後、35%ポリビニル
ピロリドン100’ OO/ポリエチレングリコール3
000 (=1 : 1)を用いて融合処理を行なった
。次に実施例1と同様にして細胞壁を再生し、次に10
1〜108%人工海水培地(原塩濃度27〜29g/β
)に生育させることにより、N0V20078株を除き
、さらに淡水培地(MC)に生育させることによってに
株を除いて、生育速度が速く、EPA含量の高い3回融
合株N0M30013を選択した。N OM30013
およびC,ミニュティシマ(N)を、それぞれ25%人
工海水培地および100%人工海水培地で培養し、実施
例3と同様に処理して融合させ、細胞壁の再生を行なっ
た後、108〜116%人工海水培地(原塩濃度29〜
31g/β)に生育させることにより、N0V3001
3株を除き、さらに淡水培地(MC)に生育させてN株
を除き、4回融合株であるN0V41007株を選択し
た。その代表的な融合株の生育速度とEPA含量の分析
結果を表−7に示す。
Table 6 Example 4 Fusion strains NOM 20078 and C. minutissima (K), which were subjected to fusion treatment twice, were cultured using a 25% artificial seawater medium and an artificial seawater medium, respectively, in the same manner as in Example 1. After protoplastization using the method of 35% polyvinylpyrrolidone 100' OO/polyethylene glycol 3
Fusion processing was performed using 000 (=1:1). Next, cell walls were regenerated in the same manner as in Example 1, and then 10
1-108% artificial seawater culture medium (raw salt concentration 27-29g/β
), the N0V20078 strain was removed, and the 3-fold fusion strain N0M30013, which had a fast growth rate and high EPA content, was selected by growing it in a freshwater medium (MC). NOM30013
and C. minutissima (N) were cultured in 25% artificial seawater medium and 100% artificial seawater medium, respectively, and treated in the same manner as in Example 3 to fuse and regenerate the cell wall. Seawater culture medium (raw salt concentration 29 ~
31g/β), N0V3001
After removing 3 strains, the N0V41007 strain, which is a 4-times fusion strain, was selected by growing the cells in a freshwater medium (MC) and removing the N strain. Table 7 shows the analysis results of the growth rate and EPA content of the representative fusion strain.

表  −7 実施例5 本実施例ではクロレラのプロトプラスト融合を電気融合
法で行なった。先づC,ミニュティシマ(K)とC,エ
リプソイブイア(IAM  C−87)を実施例1と同
様にしてプロトプラスト化した。
Table 7 Example 5 In this example, chlorella protoplast fusion was carried out by electrofusion method. First, C. minutissima (K) and C. ellipsobuia (IAM C-87) were made into protoplasts in the same manner as in Example 1.

なお、C,エリプソイブイア(IAM 、、C,−87
)の培養には MBM培地を用いた。0.05 MCa
Cβ2を含む等張渡懸濁液(pH9,0)を用い両プロ
トプラストの細胞数が5X10’ 個/m1以上になる
ように調製し、電気融合装置の白金平行電極(2順X2
++onXlOmm)間に前記等張液の0.05〜0.
1mf入れ、8,0■、80 KHzの電場下に30秒
〜1分置き、プロトプラストを接合させた。次に細胞の
膜間電圧を1〜2■になるように120■、80Hz、
パルス幅50μsで数回パルスを細胞に与え、数分〜数
10分かけて細胞融合させた。次に等張渡で希釈し、遠
心分離を行なって上澄液を除いた。この希釈−遠心分離
操作を数回くり返して融合混合物を得た。実施例1と同
様に50%人工海水培地およびMBM培地を用いて融合
物の細胞壁を再させ、さらに融合株を選択した。選択し
た融合株のうち生育速度およびEPA含量の点で好まし
いものはP CV = 5.7、EPA含量=28.5
%であった。
In addition, C, ellipsobuia (IAM,, C, -87
) was used in MBM medium. 0.05 MCa
An isotonic suspension containing Cβ2 (pH 9,0) was prepared so that the cell number of both protoplasts was 5 x 10' cells/ml or more, and platinum parallel electrodes of an electrofusion device (2 x 2
++onXlOmm) between 0.05 and 0.0.
The protoplasts were bonded by placing the tube under an electric field of 8.0 mm and 80 KHz for 30 seconds to 1 minute. Next, the transmembrane voltage of the cell was adjusted to 120■, 80Hz, so that it became 1 to 2■.
Pulses were applied to the cells several times with a pulse width of 50 μs, and the cells were fused over a period of several minutes to several tens of minutes. Next, the mixture was diluted using an isotonic solution, and the supernatant was removed by centrifugation. This dilution-centrifugation operation was repeated several times to obtain a fusion mixture. As in Example 1, the cell wall of the fusion product was regenerated using 50% artificial seawater medium and MBM medium, and the fusion strain was further selected. Among the selected fusion strains, the preferred one in terms of growth rate and EPA content is PCV = 5.7, EPA content = 28.5
%Met.

手続補正書 1.事件の表示   昭和60年特許願第172721
号2、発明の名称     新規クロレラ3、補正をす
る者 事件との関係  出願人 名称  日清製油株式会社 4、代理人 5、hi正命令の日付  自  発 1、 明細書第9頁第1行及び第2行の間に以下の文章
を挿入する。
Procedural amendment 1. Display of case 1985 patent application No. 172721
No. 2, Title of the invention: New Chlorella 3, Relationship with the case of the person making the amendment: Name of applicant: Nisshin Oil Co., Ltd. 4, Agent 5, Date of official order: Initiator 1, Page 9, line 1 of the specification; Insert the following text between the second line.

「 なお、海水または海水を含む培地で生育するクロレ
ラの分類については、ナノクロロブシス(Nannoc
hloropsis)属に属する旨の発表もあるが、現
在一般には、上記のようにクロレラ属のミニュティシマ
などと呼ばれているものが、これに入る(Bullet
in of theJapanese 5ociety
 of 5cientific Fisheries第
44巻第10号1109〜1114頁(1978年)、
同第45巻第7号883〜889頁(1979年)、同
第45巻第8号955〜959頁(1979年〉、油化
学第31巻第2号第77〜90頁(1982年))」2
、 同書p23表−3下欄の“※1:M、溶液”を「※
2:M、溶液」に訂正する。
``In addition, regarding the classification of Chlorella that grows in seawater or a medium containing seawater, it is classified as Nanochlorobutis.
There is also an announcement that it belongs to the genus Chloropsis, but currently it generally includes what is called Chlorella minutissima as mentioned above (Bullet
in of the Japanese 5ociety
of 5 scientific Fisheries, Vol. 44, No. 10, pp. 1109-1114 (1978),
Vol. 45, No. 7, pp. 883-889 (1979), Vol. 45, No. 8, pp. 955-959 (1979), Oil Chemistry, Vol. 31, No. 2, pp. 77-90 (1982)) ”2
, Replace "*1: M, solution" in the lower column of Table-3 on page 23 of the same book with "*
2: Corrected to "M, solution".

3、 同書p24.2行目の“ミュニティシマ”を「ミ
ニュティシマ」に訂正する。
3. Same book, p. 24. Correct “munity sima” in the second line to “minutisima”.

4、 同書p26表−4中の“IMM  C−27”を
rIAM  C−27Jに訂正する。
4. Correct "IMM C-27" in Table-4 on page 26 of the same book to rIAM C-27J.

Claims (11)

【特許請求の範囲】[Claims] (1)特定のクロレラのプロトプラストと異種クロレラ
のプロトプラストとを融合させて得られる新規クロレラ
(1) A novel chlorella obtained by fusing protoplasts of a specific chlorella and protoplasts of a different species of chlorella.
(2)特定のクロレラが高度不飽和脂肪酸及び/又は該
脂肪酸を構成成分とする脂質を産生する株である特許請
求の範囲第(1)項記載のクロレラ。
(2) The chlorella according to claim (1), wherein the specific chlorella is a strain that produces highly unsaturated fatty acids and/or lipids containing the fatty acids as constituent components.
(3)高度不飽和脂肪酸がエイコサペンタエン酸である
特許請求の範囲第(1)項記載のクロレラ。
(3) Chlorella according to claim (1), wherein the highly unsaturated fatty acid is eicosapentaenoic acid.
(4)特定のクロレラが海水又は海水成分を含む培地で
生育する株である特許請求の範囲第(2)項記載のクロ
レラ。
(4) The chlorella according to claim (2), wherein the specific chlorella is a strain that grows in seawater or a medium containing seawater components.
(5)特定のクロレラが、クロレラミニュティシマであ
る特許請求の範囲第(2)項記載のクロレラ。
(5) The chlorella according to claim (2), wherein the specific chlorella is Chlorella minutissima.
(6)異種クロレラが特定のクロレラよりも増殖速度が
速いクロレラである特許請求の範囲第(1)項記載のク
ロレラ。
(6) The chlorella according to claim (1), wherein the different species of chlorella is a chlorella whose growth rate is faster than that of the specific chlorella.
(7)高度不飽和脂肪酸及び/又は該脂肪酸を構成成分
とする脂質を産生するクロレラのプロトプラストと該ク
ロレラよりも増殖速度の速いクロレラのプロトプラスト
との細胞融合体を異種クロレラとして用いる特許請求の
範囲第(6)項記載のクロレラ。
(7) Claims that use a cell fusion of Chlorella protoplasts that produce highly unsaturated fatty acids and/or lipids containing the fatty acids as constituent components, and Chlorella protoplasts that proliferate faster than the Chlorella, as a heterologous Chlorella. Chlorella described in paragraph (6).
(8)異種クロレラが淡水培地で生育する株である特許
請求の範囲第(6)項記載のクロレラ。
(8) The chlorella according to claim (6), wherein the heterologous chlorella is a strain that grows in a freshwater medium.
(9)異種クロレラがクロレラエリプソイディア又はク
ロレラブルガリスの属する株である特許請求の範囲第(
6)項記載のクロレラ。
(9) Claim No. 1 in which the different species of Chlorella is a strain to which Chlorella ellipsoidia or Chlorella vulgaris belongs (
Chlorella described in section 6).
(10)特定のクロレラが野性型又は突然変異型のクロ
レラである特許請求の範囲第(1)項記載のクロレラ。
(10) The chlorella according to claim (1), wherein the specific chlorella is a wild type or a mutant type of chlorella.
(11)新規クロレラが産生するエイコサペンタエン酸
量が特定のクロレラが産生する量の1/2以上であり、
かつ増殖速度が特定のクロレラの2倍以上である特許請
求の範囲第(1)項記載のクロレラ。
(11) The amount of eicosapentaenoic acid produced by the new chlorella is 1/2 or more of the amount produced by the specific chlorella,
The Chlorella according to claim (1), which has a growth rate that is twice or more that of a specific Chlorella.
JP17272185A 1985-08-06 1985-08-06 Novel chlorella Granted JPS6232877A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17272185A JPS6232877A (en) 1985-08-06 1985-08-06 Novel chlorella
CN 86105790 CN1033042C (en) 1985-08-06 1986-07-23 New chlorella

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17272185A JPS6232877A (en) 1985-08-06 1985-08-06 Novel chlorella

Publications (2)

Publication Number Publication Date
JPS6232877A true JPS6232877A (en) 1987-02-12
JPH0126675B2 JPH0126675B2 (en) 1989-05-24

Family

ID=15947096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17272185A Granted JPS6232877A (en) 1985-08-06 1985-08-06 Novel chlorella

Country Status (2)

Country Link
JP (1) JPS6232877A (en)
CN (1) CN1033042C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235074A (en) * 1988-07-26 1990-02-05 Yaeyama Shiyokusan Kk Hybrid chlorella cell produced from limnetic and marine chlorella cell and method for cell fusion thereof
KR100423876B1 (en) * 1997-04-01 2004-06-12 클로렐라고교 가부시끼가이샤 Manufacturing method of chlorella containing polyunsaturated fatty acid
JP2014180256A (en) * 2013-03-21 2014-09-29 Kinki Univ Base plate for gene sample introduction and gene sample introduction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112707602B (en) * 2020-12-31 2022-04-22 西安交通大学 Method for treating volatile fatty acid in wastewater by coupling of optical enzyme

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181692A (en) * 1981-04-30 1982-11-09 Mitsubishi Chem Ind Ltd Method for removing cell wall of chlorella

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181692A (en) * 1981-04-30 1982-11-09 Mitsubishi Chem Ind Ltd Method for removing cell wall of chlorella

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235074A (en) * 1988-07-26 1990-02-05 Yaeyama Shiyokusan Kk Hybrid chlorella cell produced from limnetic and marine chlorella cell and method for cell fusion thereof
KR100423876B1 (en) * 1997-04-01 2004-06-12 클로렐라고교 가부시끼가이샤 Manufacturing method of chlorella containing polyunsaturated fatty acid
JP2014180256A (en) * 2013-03-21 2014-09-29 Kinki Univ Base plate for gene sample introduction and gene sample introduction method

Also Published As

Publication number Publication date
CN1033042C (en) 1996-10-16
CN86105790A (en) 1987-02-04
JPH0126675B2 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
Nagappan et al. Potential of two-stage cultivation in microalgae biofuel production
Dineshkumar et al. Cultivation of Spirulina platensis in different selective media
Boussiba et al. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina
Olguı́n et al. The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp.(Arthrospira) grown on digested pig waste
US8673619B2 (en) Production of cyanobacterial or algal biomass using chitin as a nitrogen source
ES2650440T3 (en) Production of docosahexaenoic acid and astaxanthin in myxotrophic mode by Schizochytrium
JP2014509188A (en) Process for the production of microalgae, cyanobacteria and their metabolites
Abu-Rezq et al. Optimum culture conditions required for the locally isolated Dunaliella salina
Xie et al. Breeding of high protein Chlorella sorokiniana using protoplast fusion
US20110207820A1 (en) Novel chrysochromulina species, methods and media therefor, and products derived therefrom
US10173913B2 (en) Process of treating buchu mercaptan production wastewater using microalgae and chitin as a nitrogen source
CN108587914B (en) Method for separating and purifying haematococcus pluvialis strain
MARTIN Optimization Of Photobioreactor For Astaxanthin Production In Chlorella Zofingiensis.
AU2020101953A4 (en) A method of cultivating microalgae with high oil content
Hao et al. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS
WO2003033683A1 (en) Microorganism and production of carotinoid compounds thereby
JPS6232877A (en) Novel chlorella
Fakhri et al. Biomass, pigment production, and nutrient uptake of Chlorella sp. under different photoperiods
RU2573944C1 (en) Strain of microalga haematococcus pluvialis - producent of natural astaxanthin
TWI687517B (en) Desmodesmus sp. t9 isolate having high lipid-producing ability and uses of the same
JP2004129504A (en) Method for production of astaxanthin-containing lipid
Bonotto Food and chemicals from microalgae
Keerthi et al. A nutrient medium for development of cell dense inoculum in mixotrophic mode to seed mass culture units of Dunaliella salina
Amouri et al. Enhancing Microalgae Cultivation Using Biowastes as Growth Media for High Added-Value Co-Products Generation
Izaara et al. Effect of type of nutrient media on the biomass and fatty acid profiles of microalgae (Chlorella spp.)