JPS6232778B2 - - Google Patents

Info

Publication number
JPS6232778B2
JPS6232778B2 JP3984980A JP3984980A JPS6232778B2 JP S6232778 B2 JPS6232778 B2 JP S6232778B2 JP 3984980 A JP3984980 A JP 3984980A JP 3984980 A JP3984980 A JP 3984980A JP S6232778 B2 JPS6232778 B2 JP S6232778B2
Authority
JP
Japan
Prior art keywords
color
exposure
layer
light
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3984980A
Other languages
Japanese (ja)
Other versions
JPS56137350A (en
Inventor
Atsushi Kamitakahara
Keiji Ogi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP3984980A priority Critical patent/JPS56137350A/en
Publication of JPS56137350A publication Critical patent/JPS56137350A/en
Publication of JPS6232778B2 publication Critical patent/JPS6232778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/26Processes using silver-salt-containing photosensitive materials or agents therefor
    • G03C5/50Reversal development; Contact processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はキセノン光源䞋で撮圱された盎接ポゞ
ハロゲン化銀カラヌ感光材料に光カブリ露光を䞎
えお発色珟像凊理し、ポゞ画像を圢成する光カブ
リ露光方法に関するものである。 盎接ポゞカラヌ感光材料を甚いた画像圢成方法
は、撮圱した感光材料をカブリ凊理した埌か、又
はカブリ凊理を斜しながら発色珟像を行い、ポゞ
カラヌ画像を埗るものである。 このカブリ凊理を䞎える方法ずしおは、埓来か
ら感光局の党面に露光を䞎える所謂光カブリ法
ず、カブリ剀等の薬剀を甚いる化孊カブリ法ずが
知られおいる。 この様な方法のうち、化孊カブリ法はPH12以䞊
の高PHでカブリ剀の効果が埗られるずいう苛酷な
条件があるため、空気酞化によるカブリ剀の劣化
が起りやすく、そのためカブリ効果が著しく䜎䞋
する欠点を有しおいお、むしろ光カブリ法の堎合
が䞊蚘の劂き苛酷な条件がなく実甚的に䟿利であ
る。 しかしながら、光カブリ法は、ハロゲン化銀の
光分解によるカブリ栞の圢成に基瀎をおいおいる
ので、䜿甚されるハロゲン化銀の皮類・特性・撮
圱条件等によ぀おその適正条件が異぀おくる。 こうい぀た皮々の因子ず適性なカブリ露光条件
ずの関係は明確にされおおらず、光カブリ露光方
法の公知技術ずしおは、䟋えば特公昭45−12709
号公報等に䜎照床の光で党面に均䞀に露光する方
法が蚘茉されおいるにすぎない。 埓来感光材料を露光する堎合、倪陜光を光源ず
しおいたが、近幎光源ずしお色枩床が倪陜光に比
范的近く瞬時に発光特性が安定するこずからキセ
ノン光源が甚いられ、又携垯し易さ、取扱い易さ
などからキセノンフラツシナが垞甚されるように
な぀おきた。 尚キセノン光源ずは、通垞のキセノンガスを封
入した攟電方匏及び点灯方匏のランプを意味し、
攟電方匏ずしおは電極攟電型、無電極攟電型が、
点灯方匏ずしおは盎流、亀流による連続点灯型や
フラツシナなどの光源がある。 埓぀おキセノン光源䞋で撮圱されるカラヌ感光
材料のバランス色枩床はキセノン光源の色枩床に
合うように蚭蚈されおいる。 このキセノン光源䞋で撮圱されるように蚭蚈さ
れた盎接ポゞカラヌ感光材料の光カブリ甚光源ず
しお色再珟の䞊からは撮圱時ず同じキセノン光源
を甚いるのが奜たしいず考えられるが、光カブリ
甚の露光々源ずしおはふさわしくない。なぜなら
ば盎接ポゞハロゲン化銀感光材料の特性䞊フラツ
シナ露光のような短時間露光を光カブリ時に䞎え
た堎合、高照床䞍軌を生じ、奜たしいポゞ画像を
埗るこずができず、又フラツシナ露光ではなく通
垞の光源ずしお、甚いた堎合、点灯時の発熱量が
倧きいため冷华装眮が必芁になるなど実甚面で䞍
利である。 又、色再珟性の点からは、写真甚電球等の癜熱
電球を色枩床倉換フむルタヌ等の各皮フむルタヌ
を甚いお䜿甚するのが有利であるが、光源の寿呜
ずいう点からは満足すべきものではなく、スズハ
ラむドランプ等の攟電ランプも色再珟性の点では
有利であるが、コンパクト性、䟡栌の点から満足
のいくものではない。 光源のコンパクト性、寿呜、安䟡ずいう点から
は螢光灯を光源ずしお甚いるのが有利であるが、
通垞の癜色螢光灯や枩癜色螢光灯を甚いた堎合に
は、光源自身の青400〜500n成分、赀
600〜700n成分が足りず、満足できる色再
珟は期埅できない。 又、盎接ポゞカラヌ感光材料の光カブリ露光
は、撮圱埌通垞珟像䞻薬等の光カブリを促進させ
る化合物を含有する溶液カブリ液を含浞させ
お行われる。埓぀おカブリ液を通過しおきた光が
感光材料内のハロゲン化銀粒子に圓぀お始めお効
果を発揮するから、カブリ液の疲劎や空気酞化等
によりカブリ液が着色し、感光材料面に圓る光の
分光゚ネルギヌ分垃が倉動し易く、その結果色再
珟性の良い画像が垞に埗られるずは限らない。 以䞊のようなこずから、色再珟性の良奜な光カ
ブリ甚光源が望たれおいる。 そこで、本発明は䞊蚘の点に鑑み皮々研究を重
ねた結果、キセノン光源䞋で撮圱された盎接ポゞ
ハロゲン化銀カラヌ感光材料に挔色性の高い螢光
灯で光カブリ露光を䞎え、安定しお色再珟性の良
い画像をコンパクトで寿呜の長い光源を甚いお埗
る方法を発明した。 本発明における挔色性の高い螢光灯ずは、平均
挔色評䟡数α77以䞊のものを意味する。 平均挔色評䟡数ずは定められた詊隓色を詊料の
光源で照明した堎合の色ずれの少なさの床合を瀺
す尺床で、最高倀が100、枩癜色螢光灯で50にな
る。 平均挔色評䟡数α77以䞊の螢光灯ずしおは第
図乃至第図に瀺すような分光゚ネルギヌ分垃
を有するものがある。 光カブリ照床の調敎は光源の光床を倉化させお
も良いし、䞀定光源䞋でニナヌトラルデンシテむ
フむルタヌなどのフむルタヌ類を甚いたり、感光
材料ず光源の距離、感光材料ず光源の角床を利甚
しお有利に行うこずができる。 又、分光分垃や、色枩床の異なる光源を皮以
䞊組合せお本発明を有利に実斜するこずができ
る。 光カブリの光照条件は甚いられる感光材料によ
぀お異なるが0.01〜2000ルツクスの光で行うこず
ができる。 本発明においおは、光カブリ露光は発色珟像
前、即ち撮圱埌の党面露光を珟像に先立぀お凊理
する凊理济䞭で行぀おも良く、発色珟像しながら
行぀おも良い。 前者の堎合凊理济䞭に必芁ならば還元性物質、
アルカリ剀、抑制剀、枛感剀を含有せしめるこず
ができる。埌者の堎合には、珟像初期に露光を行
うのが、珟像時間が短瞮できお奜たしく、この堎
合珟像液が乳剀局に十分浞透した埌、露光を開始
するのが有利である。 発色珟像液は、ハロゲン化銀溶剀を実質的に含
たないもので、該珟像液で䜿甚される珟像剀は通
垞の発色珟像剀である。そしお発色珟像液の凊理
枩床は20℃〜70℃、奜たしくは30℃〜45℃が望た
しい。 本発明の盎接ポゞハロゲン化銀カラヌ感光材料
に䜿甚されるハロゲン化銀乳剀は、粒子衚面が予
めカブラされおいずにハロゲン化銀粒子の内郚に
䞻ずしお朜像を圢成し、感光栞の倧郚分を粒子の
内郚に有するハロゲン化銀粒子を有する乳剀であ
぀お、任意のハロゲン化銀、䟋えば臭化銀、塩化
銀、塩臭化銀、沃臭化銀、塩沃臭化銀等が包含さ
れる。 このカラヌ感光材料は、シアン、マれンタ及び
む゚ロヌの各染料像を圢成する為の赀感乳剀局、
緑感乳剀局及び青感乳剀局を有し、カプラヌずし
お通垞甚いるものを䜿甚できる。又乳剀の光孊増
感剀ずしお公知のカルボシアニン色玠、メロシア
ニン色玠等を含むこずができ、又通垞の写真添加
剀、䟋えばカブリ抑制剀、安定剀、汚染防止剀等
を含むこずもできる。そしおカラヌ感光材料は、
支持䜓䞊に乳剀局、フむルタヌ局、䞭間局、保護
局、䞋匕局、裏匕局、ハレヌシペン防止局等の
皮々の写真構成局を倚数蚭眮するこずが可胜であ
る。 又、本発明の光カブリ露光方法は、カプラヌず
発色珟像䞻薬若しくは発色珟像䞻薬前駆䜓ずを未
露光時に接觊しない様保護しお同䞀局に存圚さ
せ、露光埌接觊し埗るような盎接ポゞカラヌ感光
材料にも、あるいは盎接ポゞカラヌ感光材料にお
いおカプラヌを含有しない局に発色珟像䞻薬若し
くは発色珟像䞻薬前駆䜓を含有せしめ、アルカリ
性凊理液を浞透させた時に該発色珟像䞻薬若しく
は発色珟像䞻薬前駆䜓のアルカリ加氎分解物を移
動させ、カプラヌず接觊し埗る様なカラヌ感光材
料にも適甚できる。 以䞋実斜䟋により本発明を詳现に説明するが、
本発明はこれらに限定されるものではない。 実斜䟋  (1) 詊料の䜜成 本実斜䟋の詊料ずなる盎接ポゞハロゲン化銀
カラヌ感光材料は、暹脂加工した玙支持䜓䞊に
䞋蚘の各局を支持䜓偎より順次塗垃しお䜜成し
た。 局   シアン圢成赀感性ハロゲン化銀乳剀
å±€ 米囜特蚱第2592250号明现曞の実斜䟋に蚘
茉の方法に埓぀お、コンバヌゞペン法による内
郚朜像型の塩沃臭化銀乳剀を調補した。 シアンカプラヌ・−ゞクロロ−−メチ
ル−−〔α−・−ゞ−tert−アミルプ
ノキシブチルアミド〕プノヌル80、・
−ゞ−tert−オクチルハむドロキノン、
ゞブチルフタレヌト100、パラフむン200、
酢酞゚チル50を混合溶解し、ドデシルベンれ
ンスルホン酞ナトリりムを含むれラチン液に加
えお分散した溶液を色玠 および によ぀お分光増感した前蚘乳剀に添加し、銀量
400mgm2、カプラヌ320mgm2になるように塗
垃した。 局   䞭間局 灰色コロむド銀及びゞブチルフタレヌト
に分散された・−ゞ−tert−オクチルハむ
ドロキノン10を含む2.5れラチン液100mlを
コロむド銀量400mgm2になるように塗垃し
た。 局   マれンタ圢成緑感性ハロゲン化銀乳
剀局 マれンタカプラヌ−・・−トリク
ロロプニル−−−クロロ−−オクタ
デシルスクシンむミドアニリノ−−ピラゟ
ロン100、−−ゞ−tert−オクチルハむ
ドロキノン、スミラむザヌMDP䜏友化
孊工業株匏䌚瀟補50、パラフむン200、
ゞブチルフタレヌト100、酢酞゚チル50を
混合溶解し、ドデシルベンれンスルホン酞ナト
リりムを含むれラチン液に加えお分散した溶液
を局ず同様にしお色玠 および によ぀お分光増感した前蚘せる内郚朜像型の塩
沃臭化銀乳剀に添加し、銀量400mgm2、カプ
ラヌ量400mgm2になるように塗垃した。 局   む゚ロヌフむルタヌ局 む゚ロヌコロむド銀及びゞブチルフタレ
ヌト䞭に分散された・−ゞ−tert−オクチ
ルハむドロキノンを含む2.5れラチン液
をコロむド銀が200mgm2ずなるように塗垃し
た。 局   む゚ロヌ圢成性青感性ハロゲン化銀
乳剀局 む゚ロヌカプラヌα−〔−−ベンゞル−
−プニル−・−ゞオキ゜−・・
−トリアゟリゞニル〕−α−ピパリル−−ク
ロロ−−〔γ−・−ゞ−tert−アミルフ
゚ノキシブチルアミド〕アセトアニリド120
、・−ゞ−tert−オクチルハむドロキノ
ン・、パラフむン200、チヌビンチ
バガむギヌ瀟補100、ゞブチルフタレヌト
100、酢酞゚チル70mlを混合溶解し、ドデシ
ルベンれンスルホン酞ナトリりムを含むれラチ
ン液を加えお分散し、局ず同様に前蚘せる内
郚朜像型の塩沃臭化銀乳剀に添加し銀量400
mgm2、カプラヌ量400mgm2になるよう塗垃
した。 局   保護局 れラチン量が200mgm2になるように塗垃し
た。なお、局、局、局には安定剀ずし
お、−ヒドロキシ−−メチル−・・
3a・−テトラサむンデンを含有せしめた。
又、局、局、局、局、局には硬膜剀
ずしおビスビニルスルホニルメチル゚ヌテ
ル、塗垃助剀ずしお、サポニンを含有せしめ
た。 (2) 撮圱方法 (1)の詊料を等分し、それぞれをりシオ電機
瀟補キセノンフラツシナランプFS−7000Rを
撮圱光源に甚いおグレヌチダヌトを撮圱した。 (3) 凊理条件 (2)で撮圱された詊料は䞋蚘の条件で凊理され
た。 発色珟像分30秒、光カブリ露光は珟像液
に浞挬埌10秒行぀た。−挂癜定着分30秒
−氎掗分30秒−安定45秒−リンス
秒 凊理枩床は各ステツプ共38℃であり、各凊理
液の組成は䞋蚘に瀺す通りである。 発色珟像液組成 以䞋の皮類ず濃床の薬品の氎溶液
で構成される。 炭酞カリりム 28.9 亜硫酞カリりム 2.6 臭化ナトリりム 0.26 ベンゞルアルコヌル 12.8 ゚チレングリコヌル 3.4 硫酞ヒドロキシルアミン 2.6 ゞアミノプロパノヌル酢酞 0.09 塩化ナトリりム 3.2 ニトリロ䞉酢酞 0.4 −メチル−−アミノ−−゚チル−−
β−メタンスルホンアミド゚チル−アニリン
ç¡«é…žå¡© 4.25 PH氎酞化カリりムで調敎 10.20 挂癜定着液組成 以䞋の皮類ず濃床の薬品の氎溶液
で構成される。 チオ硫酞アンモニりム 110 亜硫酞氎玠ナトリりム 10 ゚チレンゞアミンテトラ酢酞鉄アンモニりム 60 ゚チレンゞアミンテトラ酢酞アンモニりム  ビスチオ尿玠  PHアンモニア氎で調敎 6.5 安定液組成 氷酢酞 20 無氎酢酞ナトリりム  (4) 光カブリ露光条件 (2)で撮圱された枚の詊料は、(3)の発色珟像
䞭に䞋蚘乃至の挔色評䟡数αを有す
る螢光灯により光カブリ露光を䞎えられた。 これらの螢光灯の照床はニナヌトラルデンシ
テむフむルタヌずアクリル補の光拡散板を甚い
お詊料の感光面で均䞀にルツクスになるよう
に䜎䞋させお䜿甚した。 光カブリ露光は詊料を10秒間珟像液に浞挬
埌、珟像液から出しお氎平に䜍眮させ、光が垂
盎に感光面に圓たるようにしお10秒間行い、露
光埌珟像液に再び浞挬した。 本実斜䟋に甚いられた螢光灯は本発明
に甚いられる螢光灯ず比范するためのもので、
は第図に瀺すα59、は第図に瀺す
α65であり、乃至は本発明に含たれる
もので、は第図に瀺すα77、は第
図に瀺すα79、は第図に瀺すα84、
は第図に瀺すα98である。 (5) 結果 凊理しお埗た詊料の灰色反射濃床を枬定した
ずころ、衚−に瀺すように本発明ず係わる
乃至の螢光灯による光カブリ露光では良奜な
灰色再珟が埗られたが、の螢光灯による
堎合はむ゚ロヌ、シアンの濃床が足らなか぀
た。 尚衚−は撮圱したグレヌチダヌトの濃床
1.5の点に盞圓する凊理しお埗た詊料のむ゚ロ
ヌ、マれンタ、シアン(C)の濃床を衚
わしおいる。
The present invention relates to a photofog exposure method in which a direct positive silver halide color photosensitive material photographed under a xenon light source is subjected to photofog exposure and color development processing to form a positive image. In the image forming method using a direct positive color photosensitive material, a positive color image is obtained by carrying out color development after or while performing a fogging treatment on the photographed photosensitive material. Conventionally known methods for providing this fogging treatment include a so-called optical fogging method in which the entire surface of the photosensitive layer is exposed to light, and a chemical fogging method in which a chemical such as a fogging agent is used. Among these methods, the chemical fogging method has severe conditions in that the fogging agent is effective at a high pH of 12 or higher, so deterioration of the fogging agent is likely to occur due to air oxidation, which significantly reduces the fogging effect. However, the optical fogging method does not require the above-mentioned severe conditions and is more convenient in practice. However, since the optical fog method is based on the formation of fog nuclei through photodecomposition of silver halide, its appropriate conditions vary depending on the type and characteristics of the silver halide used, photographing conditions, etc. . The relationship between these various factors and appropriate fog exposure conditions is not clear, and known techniques for optical fog exposure methods include, for example, Japanese Patent Publication No. 45-12709.
No. 2, etc., merely describe a method of uniformly exposing the entire surface with low-intensity light. Conventionally, when exposing photosensitive materials, sunlight was used as a light source, but in recent years xenon light sources have been used as light sources because their color temperature is relatively close to that of sunlight and their luminous properties are instantly stable, and they are also easier to carry and handle. Xenon flash has become commonly used due to its ease of use. Note that xenon light sources refer to ordinary xenon gas-filled discharge type and lighting type lamps.
There are two types of discharge methods: electrode discharge type and electrodeless discharge type.
Lighting methods include direct current, alternating current, continuous lighting, and flash light sources. Therefore, the balanced color temperature of a color photosensitive material photographed under a xenon light source is designed to match the color temperature of the xenon light source. From the viewpoint of color reproduction, it is considered preferable to use the same xenon light source used during photography as a light source for light fogging of direct positive color photosensitive materials designed to be photographed under this xenon light source, but It is not suitable as a source. This is because, due to the characteristics of direct positive silver halide photosensitive materials, if short exposure such as flash exposure is applied at the time of light fogging, high illuminance failure will occur and a desirable positive image cannot be obtained. When used as a light source, it is disadvantageous from a practical point of view, as it generates a large amount of heat when turned on, requiring a cooling device. In addition, from the point of view of color reproducibility, it is advantageous to use incandescent light bulbs such as photographic light bulbs with various filters such as color temperature conversion filters, but this is not satisfactory from the point of view of the lifespan of the light source. Although discharge lamps such as tin halide lamps are also advantageous in terms of color reproducibility, they are not satisfactory in terms of compactness and cost. Although it is advantageous to use a fluorescent lamp as a light source in terms of compactness, longevity, and low cost,
When a normal white fluorescent lamp or a warm white fluorescent lamp is used, satisfactory color reproduction cannot be expected because the light source itself lacks blue (400 to 500 nm) and red (600 to 700 nm) components. Further, direct fog exposure of a positive color light-sensitive material is usually carried out by impregnating the material with a solution (fogging liquid) containing a compound that promotes light fog, such as a developing agent, after photographing. Therefore, the light that has passed through the fogging liquid only becomes effective when it hits the silver halide grains in the photosensitive material, so the fogging liquid becomes colored due to fatigue of the fogging liquid and air oxidation, which reduces the amount of light that hits the surface of the photosensitive material. The spectral energy distribution tends to fluctuate, and as a result, it is not always possible to obtain images with good color reproducibility. For the reasons described above, a light source for optical fogging with good color reproducibility is desired. Therefore, as a result of various studies in view of the above points, the present invention has been developed by applying light fog exposure to a direct positive silver halide color photosensitive material photographed under a xenon light source using a fluorescent lamp with high color rendering properties, thereby stably We have invented a method to obtain images with good color reproduction using a compact and long-life light source. In the present invention, a fluorescent lamp with high color rendering properties means one having an average color rendering index Rα77 or more. The average color rendering index is a scale that shows the degree of color shift when a specified test color is illuminated with a sample light source, with the highest value being 100 and 50 for warm white fluorescent lamps. Some fluorescent lamps having an average color rendering index Rα of 77 or more have spectral energy distributions as shown in FIGS. 1 to 7. Adjustment of the optical fog illuminance can be done by changing the luminous intensity of the light source, by using a filter such as a neutral density filter under a constant light source, or by using the distance between the photosensitive material and the light source, and the angle between the photosensitive material and the light source. This can be done to advantage. Further, the present invention can be advantageously implemented by combining two or more types of light sources with different spectral distributions and color temperatures. Light conditions for photofogging vary depending on the photosensitive material used, but light of 0.01 to 2000 lux can be used. In the present invention, the light fog exposure may be performed before color development, that is, after photographing, in a processing bath where the entire surface is exposed prior to development, or may be performed while color development is being performed. In the former case, reducing substances, if necessary, are added to the treatment bath.
It can contain an alkali agent, an inhibitor, and a desensitizer. In the latter case, it is preferable to carry out the exposure at the beginning of the development because the development time can be shortened, and in this case, it is advantageous to start the exposure after the developer has sufficiently penetrated the emulsion layer. The color developer is substantially free of silver halide solvent, and the developer used in the developer is a conventional color developer. The processing temperature of the color developing solution is preferably 20°C to 70°C, preferably 30°C to 45°C. In the silver halide emulsion used in the direct positive silver halide color light-sensitive material of the present invention, the grain surface is not fogged in advance, and a latent image is mainly formed inside the silver halide grain, and most of the light-sensitive nuclei are An emulsion having silver halide grains inside the grains, which include any silver halide, such as silver bromide, silver chloride, silver chlorobromide, silver iodobromide, silver chloroiodobromide, etc. . This color photosensitive material includes a red-sensitive emulsion layer for forming cyan, magenta and yellow dye images;
It has a green-sensitive emulsion layer and a blue-sensitive emulsion layer, and commonly used couplers can be used as couplers. Further, the emulsion may contain known carbocyanine dyes, merocyanine dyes, etc. as optical sensitizers for emulsions, and may also contain conventional photographic additives such as fog suppressants, stabilizers, anti-staining agents, etc. And color photosensitive materials are
It is possible to provide a large number of various photographic constituent layers such as an emulsion layer, a filter layer, an intermediate layer, a protective layer, a subbing layer, a backing layer, and an antihalation layer on the support. Further, the photofog exposure method of the present invention provides a direct positive color photosensitive material in which the coupler and the color developing agent or the color developing agent precursor are protected from contact during unexposed exposure and are present in the same layer, so that they can come into contact with each other after exposure. Alternatively, when a color developing agent or a color developing agent precursor is contained in a coupler-free layer of a positive color light-sensitive material and an alkaline processing solution is permeated, the color developing agent or color developing agent precursor undergoes alkaline hydrolysis. It can also be applied to color photosensitive materials in which objects can be moved and come into contact with the coupler. The present invention will be explained in detail with reference to Examples below.
The present invention is not limited to these. Example 1 (1) Preparation of sample A direct positive silver halide color light-sensitive material serving as a sample in this example was prepared by sequentially coating the following layers on a resin-treated paper support from the support side. Layer 1: Cyan-forming red-sensitive silver halide emulsion layer An internal latent image type silver chloroiodobromide emulsion was prepared by a convergence method according to the method described in Example 1 of US Pat. No. 2,592,250. did. Cyan coupler 2,4-dichloro-3-methyl-6-[α-(2,4-di-tert-amylphenoxy)butyramide]phenol 80 g, 2.
2 g of 5-di-tert-octylhydroquinone,
100g dibutyl phthalate, 200g paraffin,
Mix and dissolve 50g of ethyl acetate, add to gelatin solution containing sodium dodecylbenzenesulfonate, and use the dispersed solution as a pigment. and The amount of silver is added to the emulsion spectrally sensitized by
The amount of coupler was 400 mg/m 2 and the coupler was 320 mg/m 2 . Layer 2: Intermediate layer 100 ml of a 2.5% gelatin solution containing 5 g of gray colloidal silver and 10 g of 2,5-di-tert-octylhydroquinone dispersed in dibutyl phthalate was applied to give a colloidal silver amount of 400 mg/ m2. . Layer 3: Magenta-forming green-sensitive silver halide emulsion layer Magenta coupler 1-(2,4,6-trichlorophenyl)-3-(2-chloro-5-octadecylsuccinimideanilino)-5-pyrazolone 100 g; 2-5-di-tert-octylhydroquinone 5g, Sumilizer MDP (manufactured by Sumitomo Chemical Co., Ltd.) 50g, paraffin 200g,
Mix and dissolve 100 g of dibutyl phthalate and 50 g of ethyl acetate, add to the gelatin solution containing sodium dodecylbenzenesulfonate, and prepare the dispersed solution in the same manner as layer 1 to prepare the pigment. and It was added to the internal latent image type silver chloroiodobromide emulsion which had been spectrally sensitized by the method described above, and coated so that the amount of silver was 400 mg/m 2 and the amount of coupler was 400 mg/m 2 . Layer 4...Yellow filter layer A 2.5% gelatin solution containing 5 g of yellow colloidal silver and 5 g of 2,5-di-tert-octylhydroquinone dispersed in dibutyl phthalate is applied so that the colloidal silver is 200 mg/ m2. did. Layer 5...Yellow-forming blue-sensitive silver halide emulsion layer Yellow coupler α-[4-(1-benzyl-
2-phenyl-3,5-dioxo-1,2,4
-triazolidinyl)]-α-piparyl-2-chloro-5-[γ-(2,4-di-tert-amylphenoxy)butyramide]acetanilide 120
g, 2,5-di-tert-octylhydroquinone 3.5 g, paraffin 200 g, Tinuvin (manufactured by Ciba Geigy) 100 g, dibutyl phthalate
Mix and dissolve 100 g of ethyl acetate and 70 ml of ethyl acetate, add gelatin solution containing sodium dodecylbenzenesulfonate to disperse, and add to the internal latent image type silver chloroiodobromide emulsion prepared above in the same manner as layer 1 to obtain a silver amount of 400.
mg/m 2 , and the amount of coupler was 400 mg/m 2 . Layer 6... Protective layer Coated so that the amount of gelatin was 200 mg/m 2 . In addition, 4-hydroxy-6-methyl-1.3.
It contained 3a.7-tetracindene.
Further, layer 1, layer 2, layer 3, layer 5, and layer 6 contained bis(vinylsulfonylmethyl)ether as a hardening agent and saponin as a coating aid. (2) Photographing method The sample in (1) was divided into six equal parts, and each was photographed as a gray chart using a xenon flash lamp FS-7000R manufactured by Ushio Inc. as the photographing light source. (3) Processing conditions The samples photographed under (2) were processed under the following conditions. Color development (2 minutes 30 seconds, light fog exposure was carried out for 10 seconds after immersion in the developer) - Bleach fixing (1 minute 30 seconds)
- Washing with water (1 minute 30 seconds) - Stabilization (45 seconds) - Rinse (3 minutes)
The processing temperature was 38°C in each step, and the composition of each processing solution was as shown below. Color developer composition: Consists of an aqueous solution of chemicals with the following types and concentrations (g/). Potassium carbonate 28.9 Potassium sulfite 2.6 Sodium bromide 0.26 Benzyl alcohol 12.8 Ethylene glycol 3.4 Hydroxylamine sulfate 2.6 Diaminopropanol tetraacetic acid 0.09 Sodium chloride 3.2 Nitrilotriacetic acid 0.4 3-Methyl-4-amino-N-ethyl-N-
(β-methanesulfonamidoethyl)-aniline sulfate 4.25 PH (adjusted with potassium hydroxide) 10.20 Bleach-fix composition Composed of an aqueous solution of chemicals of the following types and concentrations (g/). Ammonium thiosulfate 110 Sodium hydrogen sulfite 10 Iron ammonium ethylenediaminetetraacetate 60 Diammonium ethylenediaminetetraacetate 5 Bisthiourea 2 PH (adjusted with aqueous ammonia) 6.5 Stable liquid composition Glacial acetic acid 20 Sodium acetate anhydride 5 (4) Photofog exposure conditions (2) The six samples photographed in (3) were exposed to light fog using a fluorescent lamp having a color rendering index (Rα) of A to F below during color development. The illuminance of these fluorescent lamps was lowered uniformly to 1 lux on the photosensitive surface of the sample using a neutral density filter and an acrylic light diffusion plate. Light fog exposure was carried out for 10 seconds by immersing the sample in the developer for 10 seconds, taking it out of the developer and positioning it horizontally so that the light hit the photosensitive surface vertically, and then immersing it in the developer again after exposure. Fluorescent lamps A and B used in this example are for comparison with the fluorescent lamp used in the present invention.
A is Rα=59 shown in FIG. 8, B is Rα=65 shown in FIG. 9, C to F are included in the present invention, C is Rα=77 shown in FIG. 1, and D is Rα=77 shown in FIG. 5
Rα=79 shown in the figure, E is Rα84 shown in FIG. 6,
F is Rα=98 as shown in FIG. (5) Results When the gray reflection density of the treated sample was measured, as shown in Table 1, C
Good gray reproduction was obtained in fog exposure using fluorescent lamps A to F, but yellow and cyan densities were insufficient when using fluorescent lamps A and B. Table 1 shows the density of the photographed gray chaat.
It represents the yellow (Y), magenta (M), and cyan (C) densities of samples obtained by processing corresponding to point 1.5.

【衚】 実斜䟋  実斜䟋ず同様の凊理を各螢光灯を時間点灯
し、10分間消灯するサむクルを繰り返しお、延べ
点灯時間が5000時間経過した時点で行぀たが、実
斜䟋ずほずんど同じ結果を埗た。 実斜䟋  実斜䟋ず同様にグレヌチダヌトを撮圱した詊
料を実斜䟋に蚘茉した光カブリの状態で詊料の
感光面䞊cmたで珟像液がくる状態で、光カブリ
露光を行぀た。他は実斜䟋ず同じ凊理をした。 凊理しお埗た詊料のグレヌチダヌト濃床1.5の
点に盞圓する、、濃床の実斜䟋の堎合ず
の差を衚−に瀺す。 衚−よりも明らかなように珟像液の青色光に
察するフむルタヌ効果に぀いおも螢光灯乃至
がよりも有効であるこずがわか぀た。
[Table] Example 2 The same process as in Example 1 was repeated by repeating a cycle in which each fluorescent lamp was turned on for 3 hours and turned off for 10 minutes, and when a total of 5000 hours had elapsed, the same treatment as in Example 1 was carried out. obtained almost the same result. Example 3 A sample of a gray chart photographed in the same manner as in Example 1 was subjected to photofog exposure in the photofogged state described in Example 1, with the developer reaching up to 5 cm above the photosensitive surface of the sample. The other treatments were the same as in Example 1. Table 2 shows the difference in the Y, M, and C concentrations of the sample obtained by the treatment, which corresponds to the gray chert concentration of 1.5, from those of Example 1. As is clear from Table 2, the filter effect on the blue light of the developer was also
was found to be more effective than A and B.

【衚】 本発明は以䞊のように挔色性の高い螢光灯で光
カブリ露光を行うようにしたから、安定しお色再
珟性の良い画像をコンパクトで寿呜が長く安䟡な
光源を甚いお埗るこずができる。
[Table] As described above, the present invention performs optical fog exposure using a fluorescent lamp with high color rendering properties, so images with stable color reproducibility can be obtained using a compact, long-life, and inexpensive light source. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第図乃至第図は倫々本発明に甚いられる挔
色性の高い螢光灯の䟋を瀺す分光゚ネルギヌの分
垃図、第図、第図は本発明の実斜䟋に甚いら
れた螢光灯ず比范するために甚いられた螢光灯の
分光゚ネルギヌの分垃図である。
Figures 1 to 7 are spectral energy distribution diagrams showing examples of fluorescent lamps with high color rendering properties used in the present invention, and Figures 8 and 9 are diagrams showing fluorescent lamps used in embodiments of the present invention. FIG. 2 is a spectral energy distribution diagram of a fluorescent lamp used for comparison with a fluorescent lamp.

Claims (1)

【特蚱請求の範囲】[Claims]  キセノン光源䞋で撮圱された盎接ポゞハロゲ
ン化銀カラヌ感光材料に光カブリ露光を䞎えお発
色珟像凊理し、ポゞ画像を圢成する方法におい
お、挔色性の高い螢光灯で光カブリ露光を行うこ
ずを特城ずする盎接ポゞカラヌ写真甚光カブリ露
光方法。
1. In a method in which a direct positive silver halide color photosensitive material photographed under a xenon light source is subjected to photofog exposure and color development processing is performed to form a positive image, the photofog exposure is performed using a fluorescent lamp with high color rendering properties. An optical fog exposure method for direct positive color photography characterized by:
JP3984980A 1980-03-28 1980-03-28 Optical fog exposing method for direct positive color photography Granted JPS56137350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3984980A JPS56137350A (en) 1980-03-28 1980-03-28 Optical fog exposing method for direct positive color photography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3984980A JPS56137350A (en) 1980-03-28 1980-03-28 Optical fog exposing method for direct positive color photography

Publications (2)

Publication Number Publication Date
JPS56137350A JPS56137350A (en) 1981-10-27
JPS6232778B2 true JPS6232778B2 (en) 1987-07-16

Family

ID=12564403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3984980A Granted JPS56137350A (en) 1980-03-28 1980-03-28 Optical fog exposing method for direct positive color photography

Country Status (1)

Country Link
JP (1) JPS56137350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9137397B2 (en) 1997-07-15 2015-09-15 Google Inc. Image sensing and printing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240447A (en) * 1985-08-16 1987-02-21 Konishiroku Photo Ind Co Ltd Direct positive image forming method
JPS6240448A (en) * 1985-08-16 1987-02-21 Konishiroku Photo Ind Co Ltd Direct positive image forming method
DE3920084A1 (en) * 1989-06-20 1991-01-10 Agfa Gevaert Ag PROCESS FOR THE PRODUCTION OF COLOR PHOTOGRAPHIC COPIES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9137397B2 (en) 1997-07-15 2015-09-15 Google Inc. Image sensing and printing device

Also Published As

Publication number Publication date
JPS56137350A (en) 1981-10-27

Similar Documents

Publication Publication Date Title
EP0077172B1 (en) A method for forming a direct positive color image
JPS6364776B2 (en)
JPS59232342A (en) Formation of dye image
JPS63153534A (en) Silver halide photographic sensitive material having superior processing stability
JPS6232778B2 (en)
JPS6359133B2 (en)
JPH0540330A (en) Silver halide color photographic sensitive material superior in hue reproduction performance
JPH02273735A (en) Direct positive photographic sensitive material
JPH0542655B2 (en)
JPH0827515B2 (en) Color image forming method
JPS6244731A (en) Direct positive silver halide photographic sensitive material
JPS6261250B2 (en)
JPS63124044A (en) Silver halide color photographic sensitive material
JPS6325650B2 (en)
JPS5860739A (en) Direct positive image formation
JPS586936B2 (en) Direct positive image formation method
JP2676224B2 (en) Silver halide color photographic light-sensitive material for producing color proof
JPS61285448A (en) Formation of direct positive image
JPS62215269A (en) Method of forming direct positive image
JPS6239848A (en) Direct positive silver halide photographic sensitive material
JPS6240447A (en) Direct positive image forming method
JPS6240448A (en) Direct positive image forming method
EP0213515A2 (en) Method of forming a direct-positive image
JPS61172143A (en) Photosensitive material
JPS61264337A (en) Direct positive type silver halide photographic sensitive material