JPS6232747B2 - - Google Patents

Info

Publication number
JPS6232747B2
JPS6232747B2 JP55100244A JP10024480A JPS6232747B2 JP S6232747 B2 JPS6232747 B2 JP S6232747B2 JP 55100244 A JP55100244 A JP 55100244A JP 10024480 A JP10024480 A JP 10024480A JP S6232747 B2 JPS6232747 B2 JP S6232747B2
Authority
JP
Japan
Prior art keywords
water
disintegration
granules
acid
isocyanuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55100244A
Other languages
Japanese (ja)
Other versions
JPS5726669A (en
Inventor
Tokuyuki Taniguchi
Masanori Oota
Hitoshi Sasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP10024480A priority Critical patent/JPS5726669A/en
Publication of JPS5726669A publication Critical patent/JPS5726669A/en
Publication of JPS6232747B2 publication Critical patent/JPS6232747B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水中で迅速かつ微細な崩壊性を示す
新規な塩素化イソシアヌール酸成形物に関する。 従来より、塩素化イソシアヌール酸は、水中で
加水分解し、塩素を放出する性質を示すために、
これを含む殺菌消毒剤、洗浄剤、漂白剤等として
多用されているが、粉状の形態のものは使用時又
は取扱い時に粉立ち易く、また、計量作業も厄介
である等の理由により一般に好まれず、顆粒剤又
は錠剤の形態のものが望まれている。しかし、塩
素化イソシアヌール酸は、常温の水に対する飽和
溶解度が1.2%程度と低いために、単に錠剤を水
中に投入することによつては、迅速に充分量の塩
素を水中全体にわたるように供給することができ
ない。そこでこれを解決するために、従来、水中
に錠剤を投入した際錠剤の崩壊を生起せしめる成
分を予め錠剤中に含有させておく提案が知られて
いるが、実用上の問題があり、未だ充分なものが
得られていない。例えば、炭酸ソーダ、重炭酸ソ
ーダ等の如き発泡作用を発現せしめる物質を錠剤
中に混入しておく方法では、水中で崩壊粒子が微
細とはならず、また、密閉容器中に保存した際に
も変質が起こり易く好ましくない。また、別の例
として、ジクロロイソシアヌール酸ソーダの無水
塩を錠剤中に含めておく提案(特開昭51−139628
号)も知られているが、この錠剤は保存中に変質
し易く、すなわち長期間の保存中に塩素化イソシ
アヌール酸の分解が生起し易く、有効塩素含有率
の低下の他に保存容器に損傷をもたらしたり、水
中での崩壊性が低下したりする欠点がある。 本発明者らは、塩素化イソシアヌール酸含有錠
剤の水中崩壊性について種々実験的研究を重ねた
結果、無水硼酸(B2O3)を含有させた顆粒又は錠
剤を水中に投入すると、迅速に、しかも微細に崩
壊が起こり、迅速に塩素が水中全体にわたつて供
給されること、並びに上記顆粒又は錠剤は通常の
密閉容器に保存する保存中に前記の如き変質も起
らず極めて安定に長期間保存できる事実を見出し
本発明を完成した。本発明の目的は、水中に投入
した際、迅速に微細粒にまで崩壊する塩素化イソ
シアヌール酸含有の加圧成形物を提供することに
あり、他の目的は、密閉容器中に保存したとき長
期間にわたり変質も起こらず安定に保存し得る塩
素化イソシアヌール酸含有の加圧成形物を提供す
ることにある。かゝる本発明の水中崩壊性塩素化
イソシアヌール酸成形物は、粉状又は顆粒状の塩
素化イソシアヌール酸を主成分として含有する組
成物100重量部と無水硼酸0.8〜20重量部との混合
物を加圧成形してなることを特徴とする。 本発明に用いられる塩素化イソシアヌール酸
は、トリクロロイソシアヌール酸、ジクロロイソ
シアヌール酸等であり、通常、含水率1%以下の
粉状又は顆粒状の工業薬品として入手し得る。本
発明に用いられる塩素化イソシアヌール酸を主成
分として含有する組成物としては、上記粉状又は
顆粒状の塩素化イソシアヌール酸、これを主成分
とし他の補助剤、増量剤等補助成分とからなる粉
状又は顆粒状の組成物等であり、上記補助剤、増
量剤の例としては、発泡剤としての無水炭酸ナト
リウム、及び炭酸水素ナトリウム成形滑剤として
のオルト硼酸、増量剤としての食塩、芒硝等が挙
げられる。上記塩素化イソシアヌール酸を主成分
として含有する組成物は粉状又は顆粒状である必
要があり、これによつて、本発明の成形物が水中
で崩壊するときは、上記組成物の粉状又は顆粒状
の粒子の大きさにまで崩壊が起こる。従つて上記
組成物の粉末又は顆粒の粒子の大きさは細かい程
好ましいが、通常、20〜1400μ程度で充分であ
る。本発明に用いられる無水硼酸は、化学式
B2O3で示され、通常、70〜300μ程度の微粉状の
工業製品で充分である。この無水硼酸は、本発明
の成形物において、これが水中に投入され水との
接触が起つた際、成形物を強力に崩壊せしめる作
用を示す。この無水硼酸はまた、水分、空気等を
遮断できる通常の密閉式容器中に本発明の成形物
を保存するとき、成形物の変質を防止し長期間に
わたり安定に成形物を維持せしめる作用をする。
一方この無水硼酸を含有しない塩素化イソシアヌ
ール酸含有成形物は、水分、空気等を遮断できる
通常の密閉式容器、例えば、金属製容器、プラス
チツク製袋等の中に保存しても、塩素化イソシア
ヌール酸の分解が徐々に進行し、蓄積した分解ガ
スによつて容器の損傷、腐蝕等が起つたり、容器
の開封時に作業者は被害をこうむつたりするのに
対し、驚くべきことに本発明の塩素化イソシアヌ
ール酸含有成形物では、かゝる問題を全く生起せ
しめない。 本発明の塩素化イソシアヌール酸含有成形物
は、更に、前記組成物100重量部と上記無水硼酸
0.8〜20重量部との混合物を加圧成形することに
より得られる。混合は、通常の混合機によつて容
易に行なわれ、均一な程良好であり、水中に成形
物が投入されたとき、均一な崩壊を生起せしめ
る。上記混合において、本発明の目的が達成され
る限り、他の任意の成分を混合してよい。また無
水硼酸の混合比率が、前記組成物100重量部に対
し0.8重量部以下では、成形物が水中に投入され
たとき、成形物全体が迅速かつ微細粒子状に崩壊
しにくゝなり、反対に20重量部以上にも高比率で
あつても、その割合には崩壊作用に差異が現れ
ず、成形物中の塩素化イソシアヌール酸の含有率
が低下し、実用上好ましくない。無水硼酸の混合
比率が低下する程、水中で成形物全体が崩壊する
に要する時間が長びくので、特に迅速な崩壊が望
まれるときは、混合比率としては3〜15重量部が
好ましい。混合比率が0.8重量部以下の成形物で
も、水中ではその表面から遂次崩壊剥落する現象
が生起し、遂に長時間後には全体崩壊に至る。塩
素化イソシアヌール酸の溶解速度よりなお大なる
速度で塩素化イソシアヌール酸を成形物から遂次
水中へ供給したいときには、0.8重量部以下の混
合比率である成形物も用いられる。本発明の塩素
化イソシアヌール酸含有成形物は、上記混合によ
つて得られる混合物を加圧成形することにより得
られる。成形物の形状は、用途目的に応じ任意で
よく、また、通常の加圧成形法により成形できる
ものでよい。例えば、打錠機により得られる径1
〜5cm高さ0.5〜5cm程度の錠剤、コンパクトマ
シンによつて得られる厚さ1〜3mm程度の板状物
若しくはこれを砕いて得られるフレーク状品が挙
げられる。加圧成形は、打錠の場合では、100〜
800Kg/cm2程度が好ましい。打錠圧が50Kg/cm2
下では、成形錠剤を取り扱う際又は保存輸送中に
形状がくずれ易く、また、900Kg/cm2以上の圧力
は不要であり、余計なエネルギー損失を招く。コ
ンパクトパシンによる場合では、300〜3000Kg/
cm程度の圧力が上記と同様の理由によつて好まし
い。 かくして得られる本発明の塩素化イソシアヌー
ル酸含有成形物は、通常、一担プラスチツク製袋
中に密封され、必要に応じ更に、例えば、段ボー
ル箱、金属製容器等の中に保存されるが、長期間
にわたり、変質が起ることもなく、開封して、水
中に投入するときは、速やかにすなわち通常、5
分以内に全体崩壊が起こり、微細に崩壊した塩素
化イソシアヌール酸の粒子は、水の遥動があると
きは更に分散が起こり、溶解と加水分解によつて
水中全体にわたり塩素の供給が速やかに達成され
る。本発明の塩素化イソシアヌール酸含有成形物
は、汚水の浄化、水泳用プール水の殺菌消毒、食
器類等洗浄水の殺菌消毒用等に特に有用である。 以下、参考例、実施例及び比較例を挙げて更に
詳しく説明するが、本発明の技術的範囲はこれに
よつて制限されるものではない。 先ず、水中崩壊性の試験法と保存安定性の試験
法を説明する。 試験法A(錠剤の水中崩壊性試験) 内径40mm、高さ55mmのポリ塩化ビニル製円筒の
上部及び下部に、網目8メツシユのステンレス製
金網を底網及び蓋網としてとりつけた容器中に1
箇30gの試料錠剤を内容し、これを25℃の1の
水が入つた大型ビーカー中に保持具を介して懸垂
し、直ちに30回/分の割合で、水中振巾50mmの上
下運動を起させることにより崩壊粒を網を通して
容器外に脱落せしめ5分経過後直ちに上記容器を
ビーカー外に取り出し、網から落下せずに残つた
錠剤片をガラス製皿上に回収し、3mmHgの減圧
下100℃で迅速乾後秤量し、試験前錠剤に対する
残存率を算出する。 試験法B(顆粒品の水中崩壊性試験) 上記試験法Aにおける錠剤内容容器の代りに、
内径12mm高さ15mmのポリ塩化ビニル製円筒の上部
及び下部に、網目40メツシユのステンレス製金網
を底網及び蓋網としてとりつけた容器を用い、こ
れに1g量の試料顆粒を内容させ、上記試験法A
と同様にして残存率を算出する。 試験法C(成形物の保存安定性試験) 内容積500mlの三つ口ガラス製容器内に顆粒の
場合30g、錠剤では1錠(30g)試料を投入し、
第1口をゴム栓により封口し、第2口および第3
口に弁付ガラス栓を取付け、閉弁状態とし、35℃
の恒温室で10日間静置保存す。その後、第2口に
乾燥窒素ガスの導管を連結し、第3口に50mlの
0.5%苛性ソーダー水溶液に通ずる導管を連結
し、上記保存期間の終了後直ちに両弁共に開き、
第2口から乾燥窒素を導入し、第3口よりの排気
を苛性ソーダ水溶液に導き、分解発生ガスを吸収
せしめた。通気を行つた後、苛性ソーダ水溶液に
よう化カリウム0.2gを加え、酢酸酸性条件下で
百分の1規定のチオ硫酸ナトリウム水溶液により
でんぷんを指示薬として滴定し、苛性ソーダ水溶
液に吸収された有効塩素量を求めた。この有効塩
素量をもつてジ又はトリクロロイソシアヌル酸か
ら発生する塩素ガスと塩化窒素ガスの合量とし
た。 参考例 1 含水率0.3%粒径50〜100μのトリクロロイソシ
アヌール酸粉末を、油圧ロール式乾燥造粒機を用
いて、圧縮圧1500Kg/cmで厚み2mmの板状に成形
した後破砕し、更に10メツシユと32メツシユで篩
分することにより、粒径10〜32メツシユのフレー
ク状顆粒を得た。次いで得られた顆粒について、
前記試験法B及びCに従つて、水中崩壊性及び保
存安定性を試験した結果第1表記載の結果を得
た。 参考例 2 参考例1におけるトリクロロイソシアヌール酸
の代りに、含水率0.2%粒径50〜100μのジクロロ
イソシアヌール酸を用いた他は、参考例1と同様
にして顆粒に成形し、更に水中崩壊性及び保存安
定性を試験し第1表記載の結果を得た。 参考例 3 参考例1において得られた顆粒と、これに対し
0.2%量の含水率0.6%粒径20〜70μのステアリン
酸ナトリウムとの混合物を、ロータリー式連続打
錠機により打錠圧300Kg/cm2で打錠し、1箇の重
量30g径35mm高さ17mmの円板状トリクロロイソシ
アヌール酸錠剤を得た。この錠剤について、前記
試験法A及びCに従つて水中崩壊性及び保存安定
性を試験したところ第1表記載の結果を得た。 参考例 4 参考例1において得られた顆粒の代りに、参考
例2において得られた顆粒を用いた他は、参考例
3と同様にしてジクロロイソシアヌール酸錠剤を
得、更に水中崩壊性及び保存安定性を試験し第1
表記載の結果を得た。 同表に示す如く、これら参考例1〜4の顆粒及
び錠剤はいずれも保存安定性が悪く、密閉容器中
でもかなりの量の分解塩素の放出が認められ、ま
た、水中でも崩壊することなく、それら成形物の
表面からわずかに塩素化イソシアヌール酸の溶解
が起るのみである。
The present invention relates to novel chlorinated isocyanuric acid moldings that exhibit rapid and fine disintegration properties in water. Traditionally, chlorinated isocyanuric acid has the property of hydrolyzing in water and releasing chlorine.
It is widely used as a disinfectant, cleaning agent, bleaching agent, etc., but powdered forms are generally preferred because they tend to crumble during use or handling, and the weighing process is also troublesome. Often, granule or tablet forms are desired. However, because chlorinated isocyanuric acid has a low saturation solubility in water at room temperature of around 1.2%, it is difficult to quickly supply a sufficient amount of chlorine to the entire water by simply adding tablets to the water. Can not do it. In order to solve this problem, there has been a known proposal to pre-contain a component in the tablet that causes the tablet to disintegrate when it is placed in water, but there are practical problems and it is still insufficient. I'm not getting anything. For example, if a tablet is mixed with a substance that produces an effervescent effect, such as soda carbonate or bicarbonate, the particles will not disintegrate into fine particles in water and will not deteriorate even when stored in an airtight container. This is likely to occur and is not desirable. Another example is a proposal to include anhydrous salt of sodium dichloroisocyanurate in tablets (Japanese Patent Laid-Open No. 51-139628
However, this tablet is prone to deterioration during storage, that is, the decomposition of chlorinated isocyanuric acid is likely to occur during long-term storage, and in addition to a decrease in the available chlorine content, it is also difficult to maintain the storage container. There are disadvantages such as damage and reduced disintegration in water. As a result of various experimental studies on the disintegration properties of tablets containing chlorinated isocyanuric acid in water, the present inventors found that when granules or tablets containing boric anhydride (B 2 O 3 ) are placed in water, In addition, the granules or tablets are extremely stable for a long time without undergoing any of the above deterioration during storage in a normal closed container. The present invention was completed by discovering the fact that it can be stored for a long period of time. An object of the present invention is to provide a press-molded product containing chlorinated isocyanuric acid that quickly disintegrates into fine particles when placed in water, and another object of the present invention is to provide a press-molded product containing chlorinated isocyanuric acid that quickly disintegrates into fine particles when placed in water. The object of the present invention is to provide a press-molded product containing chlorinated isocyanuric acid that can be stored stably for a long period of time without causing deterioration. The water-disintegrating chlorinated isocyanuric acid molded article of the present invention is made of 100 parts by weight of a composition containing powdered or granular chlorinated isocyanuric acid as a main component and 0.8 to 20 parts by weight of boric anhydride. It is characterized by being formed by pressure molding a mixture. The chlorinated isocyanuric acid used in the present invention is trichloroisocyanuric acid, dichloroisocyanuric acid, etc., and is usually available as a powder or granular industrial chemical with a water content of 1% or less. The composition containing chlorinated isocyanuric acid as a main component used in the present invention includes the above-mentioned powder or granular chlorinated isocyanuric acid, and other auxiliary agents, fillers, and other auxiliary ingredients. Examples of the adjuvants and fillers include anhydrous sodium carbonate as a foaming agent, orthoboric acid as a sodium bicarbonate molding lubricant, and salt as a filler. Examples include mirabilite. The composition containing the above-mentioned chlorinated isocyanuric acid as a main component must be in the form of powder or granules. Alternatively, disintegration occurs down to the size of granular particles. Therefore, the particle size of the powder or granules of the above composition is preferably as fine as possible, but a particle size of about 20 to 1400 microns is usually sufficient. The boric anhydride used in the present invention has the chemical formula
It is represented by B 2 O 3 and usually a fine powder industrial product of about 70 to 300 μm is sufficient. In the molded article of the present invention, boric anhydride exhibits the effect of strongly disintegrating the molded article when it is placed in water and comes into contact with water. This boric anhydride also acts to prevent deterioration of the molded product and maintain it stably for a long period of time when the molded product of the present invention is stored in a normal airtight container that can block moisture, air, etc. .
On the other hand, molded products containing chlorinated isocyanuric acid that do not contain boric anhydride cannot be chlorinated even if they are stored in a normal airtight container that can block moisture and air, such as a metal container or a plastic bag. The decomposition of isocyanuric acid progresses gradually, and the accumulated decomposition gas can cause damage to the container, corrosion, etc., and workers may suffer damage when opening the container. The chlorinated isocyanuric acid-containing molded article of the present invention does not cause such problems at all. The chlorinated isocyanuric acid-containing molded article of the present invention further comprises 100 parts by weight of the composition and the boric anhydride.
It is obtained by pressure molding a mixture with 0.8 to 20 parts by weight. Mixing is easily done with a conventional mixer, and the more uniform the better, resulting in uniform disintegration when the molded product is placed in water. In the above mixing, other arbitrary components may be mixed as long as the purpose of the present invention is achieved. In addition, if the mixing ratio of boric anhydride is 0.8 parts by weight or less per 100 parts by weight of the composition, when the molded product is put into water, it will be difficult for the entire molded product to quickly disintegrate into fine particles, which is the opposite. Even if the ratio is as high as 20 parts by weight or more, no difference will be seen in the disintegrating effect, and the content of chlorinated isocyanuric acid in the molded article will decrease, which is not preferred in practice. As the mixing ratio of boric anhydride decreases, the time required for the entire molded product to disintegrate in water increases, so when particularly rapid disintegration is desired, the mixing ratio is preferably 3 to 15 parts by weight. Even if the mixture ratio is 0.8 parts by weight or less, a molded product will gradually collapse and peel off from its surface in water, and finally, after a long period of time, the molded product will completely collapse. When it is desired to sequentially supply chlorinated isocyanuric acid from a molded product into water at a rate higher than the dissolution rate of the chlorinated isocyanuric acid, a molded product with a mixing ratio of 0.8 parts by weight or less may also be used. The chlorinated isocyanuric acid-containing molded article of the present invention is obtained by pressure molding the mixture obtained by the above mixing. The shape of the molded product may be arbitrary depending on the purpose of use, and may be one that can be molded by a normal pressure molding method. For example, the diameter 1 obtained by a tablet press
Tablets with a height of about 0.5 to 5 cm and a height of about 0.5 to 5 cm, plate-like products with a thickness of about 1 to 3 mm obtained by a compact machine, or flake-like products obtained by crushing the same can be mentioned. For pressure molding, in the case of tableting, 100~
Approximately 800Kg/cm 2 is preferable. If the tableting pressure is less than 50 Kg/cm 2 , the shape of the formed tablet is likely to collapse during handling or during storage and transportation, and a pressure of 900 Kg/cm 2 or more is unnecessary, resulting in unnecessary energy loss. When using a compact machine, 300 to 3000Kg/
A pressure on the order of cm is preferred for the same reasons as above. The thus obtained chlorinated isocyanuric acid-containing molded product of the present invention is usually sealed in a single-layer plastic bag and, if necessary, further stored in a cardboard box, metal container, etc. No deterioration occurs over a long period of time, and when opening the package and putting it in water, it is usually
Total disintegration occurs within minutes, and the finely disintegrated particles of chlorinated isocyanuric acid are further dispersed when water is agitated, and chlorine is rapidly supplied throughout the water by dissolution and hydrolysis. achieved. The chlorinated isocyanuric acid-containing molded article of the present invention is particularly useful for purifying sewage, sterilizing swimming pool water, sterilizing water for washing dishes, etc. The present invention will be described in more detail below with reference to Reference Examples, Examples, and Comparative Examples, but the technical scope of the present invention is not limited thereby. First, the test method for disintegration in water and the test method for storage stability will be explained. Test method A (tablet disintegration test in water) A container made of polyvinyl chloride with an inner diameter of 40 mm and a height of 55 mm, with stainless steel wire meshes of 8 mesh attached to the top and bottom as the bottom mesh and lid mesh.
A sample tablet containing 30 g of sample was suspended via a holder in a large beaker containing 1 ml of water at 25°C, and immediately started to move up and down with an underwater shaking width of 50 mm at a rate of 30 times/min. After 5 minutes, the disintegrated particles were allowed to fall out of the container through a screen. Immediately after 5 minutes had passed, the container was removed from the beaker, and the remaining tablet pieces that did not fall through the screen were collected on a glass plate and heated under a vacuum of 3 mmHg for 100 minutes. After drying quickly at ℃, weigh it and calculate the residual rate relative to the tablet before the test. Test method B (in-water disintegration test of granules) Instead of the tablet container in test method A above,
A container made of polyvinyl chloride with an inner diameter of 12 mm and a height of 15 mm, with 40-mesh stainless steel wire mesh attached to the top and bottom as the bottom and lid mesh, was used, and 1 g of sample granules was contained in the container, and the above test was carried out. Law A
Calculate the survival rate in the same way. Test method C (storage stability test for molded products) A sample of 30 g for granules or 1 tablet (30 g) for tablets was placed in a three-necked glass container with an internal volume of 500 ml.
The first port is sealed with a rubber stopper, and the second and third ports are closed.
Attach a glass stopper with a valve to the mouth, close the valve, and heat to 35℃.
Store it in a constant temperature room for 10 days. After that, connect a dry nitrogen gas conduit to the second port, and add 50ml to the third port.
Connect the conduit leading to the 0.5% caustic soda aqueous solution, open both valves immediately after the above storage period ends,
Dry nitrogen was introduced from the second port, and exhaust gas from the third port was introduced into the caustic soda aqueous solution to absorb the decomposed gas. After aeration, add 0.2 g of potassium iodide to the caustic soda aqueous solution, and titrate with a 1/10N sodium thiosulfate aqueous solution using starch as an indicator under acidic conditions of acetic acid to determine the amount of available chlorine absorbed in the caustic soda aqueous solution. I asked for it. This effective chlorine amount was taken as the total amount of chlorine gas and nitrogen chloride gas generated from di- or trichloroisocyanuric acid. Reference Example 1 Trichloroisocyanuric acid powder with a water content of 0.3% and a particle size of 50 to 100μ is formed into a plate shape with a thickness of 2mm using a hydraulic roll drying granulator at a compression pressure of 1500Kg/cm, and then crushed. By sieving with 10 mesh and 32 mesh, flaky granules with a particle size of 10 to 32 mesh were obtained. Next, regarding the obtained granules,
The disintegration in water and storage stability were tested according to Test Methods B and C, and the results shown in Table 1 were obtained. Reference Example 2 In place of the trichloroisocyanuric acid in Reference Example 1, dichloroisocyanuric acid with a water content of 0.2% and a particle size of 50 to 100μ was used, but the same procedure as in Reference Example 1 was used to form granules, and further disintegration in water was carried out. The properties and storage stability were tested and the results shown in Table 1 were obtained. Reference Example 3 Granules obtained in Reference Example 1 and
A mixture of 0.2% sodium stearate with a water content of 0.6% and a particle size of 20 to 70μ is compressed into tablets using a rotary continuous tableting machine at a compression pressure of 300Kg/ cm2 , each weighing 30g and having a diameter of 35mm. A 17 mm disc-shaped trichloroisocyanuric acid tablet was obtained. When this tablet was tested for disintegration in water and storage stability according to Test Methods A and C, the results shown in Table 1 were obtained. Reference Example 4 Dichloroisocyanuric acid tablets were obtained in the same manner as Reference Example 3, except that the granules obtained in Reference Example 2 were used instead of the granules obtained in Reference Example 1, and the disintegration in water and storage were further evaluated. The stability was tested first.
The results listed in the table were obtained. As shown in the table, the granules and tablets of Reference Examples 1 to 4 all had poor storage stability, releasing a considerable amount of decomposed chlorine even in closed containers, and did not disintegrate even in water. Only a slight dissolution of chlorinated isocyanuric acid occurs from the surface of the molded article.

【表】 実施例 1〜4 参考例1に用いたものと同じトリクロロイソシ
アヌール酸粉末と粒径70〜120μの無水硼酸とを
第2表記載の比率で混合した後、参考例1と同様
にして顆粒を得、更に水中崩壊性と保存安定性を
試験したところ第2表記載の結果を得た。同表
中、無水硼酸の混合割合は、トリクロロイソシア
ヌール酸に対する%である。 実施例 5〜7 参考例1において得られたトリクロロイソシア
ヌール酸の顆粒と実施例1に用いたものと同じ無
水硼酸と含水率0.6%粒径20〜70μの滑剤ステア
リン酸ナトリウム粉末とを第2表記載の比率で混
合した後、参考例3と同様にして錠剤を得、更に
水中崩壊性と保存安定性とを測定したところ第2
表記載の結果を得た。
[Table] Examples 1 to 4 The same trichloroisocyanuric acid powder used in Reference Example 1 and boric anhydride with a particle size of 70 to 120μ were mixed in the ratio shown in Table 2, and then mixed in the same manner as in Reference Example 1. Granules were obtained and further tested for disintegration in water and storage stability, and the results shown in Table 2 were obtained. In the same table, the mixing ratio of boric anhydride is expressed as % relative to trichloroisocyanuric acid. Examples 5 to 7 The trichloroisocyanuric acid granules obtained in Reference Example 1, the same boric anhydride as that used in Example 1, and the lubricant sodium stearate powder with a water content of 0.6% and a particle size of 20 to 70μ were mixed into a second After mixing at the ratio listed in the table, tablets were obtained in the same manner as in Reference Example 3, and the disintegration in water and storage stability were measured.
The results listed in the table were obtained.

【表】 実施例 8 参考例2に用いたものと同じジクロロイソシア
ヌール酸粉末とこれに対し2%量の上記実施例に
用いたものと同じ無水硼酸とを混合した後、参考
例2と同様にして顆粒に成形し、更に水中崩壊性
及び保存安定性の試験を行なつたところ残存率は
40%で、分解ガス発生量は0.01mgであつた。 実施例 9 参考例2において得られたジクロロイソシアヌ
ール酸の顆粒と、これに対し上記実施例に用いた
ものと同じ無水硼酸0.8%とステアリン酸ナトリ
ウム0.2%とを混合した後、参考例4と同様にし
て錠剤を得、更に水中崩壊性と保存安定性の試験
を行なつたところ、残存率は10%で、分解ガス発
生量は0.01mgであつた。 実施例 10 実施例9における無水硼酸の混合比率を2%に
変えた他は実施例9と同様にして、錠剤の水中崩
壊性と保存安定性を測定したところ、残存率は0
%であり、全量崩壊した。また分解ガス発生量は
0.006mgであつた。 実施例 11〜13 実施例2、3及び4において得られた顆粒と、
これに対し0.2%量の上記ステアリン酸ナトリウ
ムとを夫々別個に混合した後、参考例3と同様に
して錠剤を得、更に水中崩壊性を測定したとこ
ろ、無水硼酸2%含有のもの(実施例11)は残存
率30%を、無水硼酸5%含有のもの(実施例12)
は残存率25%を、また無水硼酸20%含有のもの
(実施例13)は残存率35%を示した。 実施例 14 参考例1に用いたものと同じトリクロロイソシ
アヌール酸粉末と、これに対し2%量の含水率
0.7%粒径50〜100μのジクロロイソシアヌール酸
ナトリウムの無水塩粉末と2%量の上記無水硼酸
粉末とを混合した後、参考例1と同様にして顆粒
に成形し、水中崩壊性及び保存安定性を試験した
ところ、残存率35%、分解塩素発生量0.02mgであ
つた。 実施例 15 実施例14において得られた顆粒と、これに対し
0.2%量の上記ステアリン酸ナトリウムとを混合
した後、参考例3と同様にしてトリクロロイソシ
アヌール酸錠剤に成形し、更に水中崩壊性を試験
したところ、残存率40%であつた。 実施例 16 参考例1に用いたものと同じトリクロロイソシ
アヌール酸粉末と、これに対し2%量の上記無水
硼酸粉末と2%量の粒径60〜100μ含水率1.3%の
炭酸水素ナトリウム粉末とを混合した後、参考例
1と同様にして顆粒に成形し、更に水中崩壊性を
試験したところ、残存率10%であつた。 実施例 17 実施例16において得られたトリクロイソシアヌ
ール酸の顆粒と、これに対し0.2%量の上記ステ
アリン酸ナトリウム粉末とを混合した後、参考例
3と同様にして錠剤に成形し、更に水中崩壊性を
試験したところ、残存率は25%であつた。 比較例 1〜3 実施例1における無水硼酸の代りに、遊離水を
1.4%含み粒径60〜120μのオルト硼酸を第3表記
載の比率で用いた他は実施例1と同様にしてトリ
クロロイソシアヌール酸の顆粒を得、水中崩壊性
と保存安定性を試験したところ第3表記載の結果
を得た。いずれの顆粒も崩壊が起らず、保存中に
かなりの量の分解ガスの発生が認められる。 比較例 4 比較例2におけるトリクロロイソシアヌール酸
粉末の代りに、参考例2に用いたものと同じジク
ロロイソシアヌール酸粉末を用いた他は比較例2
と同様にして顆粒を得、水中崩壊性と保存安定性
を試験したところ第3表記載の結果を得た。やは
り成績は良好ではない。 比較例 5〜7 比較例1におけるオルト硼酸の代りに、前記実
施例に用いたものと同じジクロロイソシアヌール
酸ナトリウムの無水塩粉末を第3表の比率で用い
た他は、比較例1と同様にして顆粒を得、水中崩
壊性と保存安定性を試験したところ、第3表に記
載の如く、ジクロロイソシアヌール酸ナトリウム
の無水塩の混合比率が高くなると崩壊性は良好と
なるも、分解塩素発生量が大きく、従来から認識
されている通り、保存安定性が悪く実用し難いも
のである。 比較例 8及び9 比較例5におけるトリクロロイソシアヌール酸
の代りに、前記と同じジクロロイソシアヌール酸
を第3表記載の比率で用いた他は、比較例5と同
様にして顆粒を得、水中崩壊性と保存安定性を試
験したところ、第3表記載の結果を得た。やはり
保存安定性が良好でない。 比較例 10 比較例3において得られた顆粒と、これに対し
0.2%量の前記実施例に用いたものと同じステア
リン酸ナトリウム滑剤とを混合した後、参考例3
と同様にしてトリクロロイソシアヌール酸錠剤を
得、水中崩壊性と保存安定性を試験したところ、
第3表記載の結果を得た。やはり、崩壊性、安定
性共に良好でない。 比較例 11〜13 比較例3の顆粒を用いる代りに比較例4、7及
び9において得られた顆粒をそれぞれ用いた他
は、比較例10と同様にして錠剤を得、水中崩壊性
と保存安定性を試験したところ、第3表記載の結
果の通りやはり、実用性を欠くものである。 比較例 14〜18 参考例1において得られた顆粒に、前記と同じ
炭酸水素ナトリウム、オルト硼酸又はジクロロイ
ソシアヌール酸ナトリウムの無水塩粉末及びステ
アリン酸ナトリウムを第3表記載の比率に混合
し、参考例3と同様にして錠剤に成形し水中崩壊
性及び保存安定性を試験したところ、第3表記載
の結果を得た。やはり炭酸水素ナトリウム及びオ
ルト硼酸は良好な崩壊性及び保存安定性をもたら
さず、また、ジクロロイソシアヌール酸ナトリウ
ムの無水塩は保存安定性を改良し得ないものであ
ることが知れる。
[Table] Example 8 The same dichloroisocyanuric acid powder used in Reference Example 2 was mixed with 2% of the same boric anhydride used in the above example, and then the same powder as in Reference Example 2 was mixed. After molding into granules and testing for disintegration in water and storage stability, the survival rate was
At 40%, the amount of cracked gas generated was 0.01 mg. Example 9 After mixing the dichloroisocyanuric acid granules obtained in Reference Example 2 with 0.8% of boric anhydride and 0.2% of sodium stearate, which were the same as those used in the above example, Tablets were obtained in the same manner and further tested for disintegration in water and storage stability. The residual rate was 10% and the amount of cracked gas generated was 0.01 mg. Example 10 The disintegration in water and storage stability of the tablets were measured in the same manner as in Example 9 except that the mixing ratio of boric anhydride was changed to 2%, and the residual rate was 0.
%, and the entire amount collapsed. Also, the amount of cracked gas generated is
It was 0.006 mg. Examples 11-13 Granules obtained in Examples 2, 3 and 4,
On the other hand, after separately mixing 0.2% of the above-mentioned sodium stearate, tablets were obtained in the same manner as in Reference Example 3, and the disintegration in water was further measured. 11) has a residual rate of 30% and contains 5% boric anhydride (Example 12)
had a residual rate of 25%, and that containing 20% boric anhydride (Example 13) had a residual rate of 35%. Example 14 The same trichloroisocyanuric acid powder as used in Reference Example 1 and a water content of 2%
After mixing 0.7% anhydrous salt powder of sodium dichloroisocyanurate with a particle size of 50 to 100μ and 2% amount of the above boric acid anhydride powder, it was formed into granules in the same manner as in Reference Example 1, and the mixture was molded into granules to ensure disintegration in water and storage stability. When the properties were tested, the residual rate was 35% and the amount of decomposed chlorine generated was 0.02 mg. Example 15 Granules obtained in Example 14 and
After mixing with 0.2% of the above sodium stearate, the tablets were formed into trichloroisocyanuric acid tablets in the same manner as in Reference Example 3, and further tested for disintegration in water, and the residual rate was 40%. Example 16 The same trichloroisocyanuric acid powder as used in Reference Example 1, 2% of the above boric anhydride powder, and 2% of sodium bicarbonate powder with a particle size of 60 to 100μ and a water content of 1.3% were added. After mixing, the mixture was molded into granules in the same manner as in Reference Example 1, and further tested for disintegration in water, and the residual rate was 10%. Example 17 The tricloisocyanuric acid granules obtained in Example 16 were mixed with the above sodium stearate powder in an amount of 0.2%, and then formed into tablets in the same manner as in Reference Example 3, and further soaked in water. When the disintegration test was performed, the survival rate was 25%. Comparative Examples 1 to 3 Free water was used instead of boric anhydride in Example 1.
Granules of trichloroisocyanuric acid were obtained in the same manner as in Example 1, except that orthoboric acid containing 1.4% and having a particle size of 60 to 120μ was used at the ratio shown in Table 3, and the disintegration in water and storage stability were tested. The results listed in Table 3 were obtained. No disintegration occurred in any of the granules, and a considerable amount of decomposition gas was observed to be generated during storage. Comparative Example 4 Comparative Example 2 except that the same dichloroisocyanuric acid powder as that used in Reference Example 2 was used instead of the trichloroisocyanuric acid powder in Comparative Example 2.
Granules were obtained in the same manner as above and tested for disintegration in water and storage stability, and the results shown in Table 3 were obtained. As expected, the results are not good. Comparative Examples 5 to 7 Same as Comparative Example 1 except that the same anhydrous salt powder of sodium dichloroisocyanurate as used in the above example was used in the ratio shown in Table 3 instead of orthoboric acid in Comparative Example 1. When the granules were obtained and tested for disintegration in water and storage stability, as shown in Table 3, as the mixing ratio of anhydrous sodium dichloroisocyanurate increased, the disintegration was better, but the decomposition of chlorine The amount generated is large, and as has been recognized, storage stability is poor and it is difficult to put it into practical use. Comparative Examples 8 and 9 Granules were obtained in the same manner as Comparative Example 5, except that the same dichloroisocyanuric acid as above was used in place of the trichloroisocyanuric acid in Comparative Example 5 at the ratio shown in Table 3, and the granules were disintegrated in water. When the properties and storage stability were tested, the results shown in Table 3 were obtained. After all, storage stability is not good. Comparative Example 10 Granules obtained in Comparative Example 3 and
After mixing with 0.2% amount of the same sodium stearate lubricant as used in the previous example, Reference Example 3
Trichloroisocyanuric acid tablets were obtained in the same manner as above and tested for disintegration in water and storage stability.
The results listed in Table 3 were obtained. Again, both disintegration and stability are not good. Comparative Examples 11-13 Tablets were obtained in the same manner as Comparative Example 10, except that the granules obtained in Comparative Examples 4, 7, and 9 were used instead of the granules in Comparative Example 3, and the tablets were evaluated for disintegration in water and storage stability. As a result of testing the properties, as shown in Table 3, it lacked practicality. Comparative Examples 14-18 The granules obtained in Reference Example 1 were mixed with the same anhydrous salt powder of sodium bicarbonate, orthoboric acid or sodium dichloroisocyanurate, and sodium stearate in the ratios listed in Table 3, and The tablets were molded in the same manner as in Example 3 and tested for disintegration in water and storage stability, and the results shown in Table 3 were obtained. It is also known that sodium bicarbonate and orthoboric acid do not provide good disintegration properties and storage stability, and that the anhydrous salt of sodium dichloroisocyanurate does not improve storage stability.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 粉状又は顆粒状の塩素化イソシアヌール酸を
主成分として含有する組成物100重量部と無水硼
酸0.8〜20重量部との混合物を加圧成形してなる
ことを特徴とする水中崩壊性塩素化イソシアヌー
ル酸成形物。
1. A water-disintegrable chlorine obtained by pressure molding a mixture of 100 parts by weight of a composition containing powdered or granular chlorinated isocyanuric acid as a main component and 0.8 to 20 parts by weight of boric anhydride. isocyanuric acid molded product.
JP10024480A 1980-07-22 1980-07-22 Chlorinated isocyanuric acid formed product disintegrable in water Granted JPS5726669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10024480A JPS5726669A (en) 1980-07-22 1980-07-22 Chlorinated isocyanuric acid formed product disintegrable in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10024480A JPS5726669A (en) 1980-07-22 1980-07-22 Chlorinated isocyanuric acid formed product disintegrable in water

Publications (2)

Publication Number Publication Date
JPS5726669A JPS5726669A (en) 1982-02-12
JPS6232747B2 true JPS6232747B2 (en) 1987-07-16

Family

ID=14268825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10024480A Granted JPS5726669A (en) 1980-07-22 1980-07-22 Chlorinated isocyanuric acid formed product disintegrable in water

Country Status (1)

Country Link
JP (1) JPS5726669A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426317B1 (en) * 1999-10-29 2002-07-30 Great Lakes Chemical Corporation Stable, high available halogen 1,3,5-triazine-2,4,6-trione compositions having rapid dissolution rates
KR20020061669A (en) * 2001-01-17 2002-07-25 성원엔비켐 주식회사 a disinfectant constraining halogenated hydrocarbon and producing method thereof
GB2471858B (en) * 2009-07-14 2013-12-04 Chemtech Dev Pty Ltd process for preparing a shaped body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945568A (en) * 1972-09-07 1974-05-01
JPS51139628A (en) * 1975-05-28 1976-12-02 Nissan Chem Ind Ltd Isocyanuric acid trichloride tablet composition, degradative into gran ules
JPS54160730A (en) * 1978-06-07 1979-12-19 Shikoku Kasei Kougiyou Kk Easily water disintegratable chloline type sterilizing and disinfecting tablet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945568A (en) * 1972-09-07 1974-05-01
JPS51139628A (en) * 1975-05-28 1976-12-02 Nissan Chem Ind Ltd Isocyanuric acid trichloride tablet composition, degradative into gran ules
JPS54160730A (en) * 1978-06-07 1979-12-19 Shikoku Kasei Kougiyou Kk Easily water disintegratable chloline type sterilizing and disinfecting tablet

Also Published As

Publication number Publication date
JPS5726669A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
US5021186A (en) Chloroisocyanuric acid composition having storage stability
US7182883B2 (en) Massive bodies containing free halogen source for producing highly converted solutions of chlorine dioxide
TW403629B (en) Powders providing controlled sustained release of a gas
EP0973860A1 (en) Detergent-package combination
JPS6232747B2 (en)
JPS5930879A (en) Frothing molded product
JPH036142B2 (en)
JP3512430B2 (en) Process for producing an alkali metal carbonate-hydrogen peroxide product with improved storage stability
JPS5951948B2 (en) Rapidly disintegrating chlorinated isocyanuric acid molded product in water
US6410051B1 (en) Compressed chloramine-T tablets and method for the production thereof
CN113812419A (en) Chlorine dioxide effervescent disinfecting tablet
JPH0118903B2 (en)
US5230903A (en) Chloroisocyanurate composition
JP2002517165A (en) Fast disintegrating trichloroisocyanuric acid composition
US7651628B2 (en) Compression molded product of effervescent chlorinated isocyanuric acid
JPS60112714A (en) Production of foamable granular composition having storage stability
JP3250890B2 (en) Stable foaming pesticide solid
JP2606267B2 (en) Sterilizing / bleaching tablets
JP2643199B2 (en) Chloroisocyanurate composition
JP2711983B2 (en) Disinfection tablets
JPS642563B2 (en)
JPS6141487B2 (en)
JPH0335359B2 (en)
JP2003160405A (en) Rapidly soluble chlorinated isocyanuric acid formed material
EP1428539A1 (en) Sterilising agents and methods