JPS6232675A - Laser oscillator - Google Patents

Laser oscillator

Info

Publication number
JPS6232675A
JPS6232675A JP17261085A JP17261085A JPS6232675A JP S6232675 A JPS6232675 A JP S6232675A JP 17261085 A JP17261085 A JP 17261085A JP 17261085 A JP17261085 A JP 17261085A JP S6232675 A JPS6232675 A JP S6232675A
Authority
JP
Japan
Prior art keywords
discharge
capacitor
charging
ionization
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17261085A
Other languages
Japanese (ja)
Inventor
Yukio Sato
行雄 佐藤
Hitoshi Wakata
若田 仁志
Takeo Haruta
春田 健雄
Haruhiko Nagai
治彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17261085A priority Critical patent/JPS6232675A/en
Publication of JPS6232675A publication Critical patent/JPS6232675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • H01S3/09713Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a pulse laser oscillator characterized by a high output and high efficiency, by inserting a charge current bypass circuit having a switching function in parallel with a preliminary-ionization-electrode pair, which is inserted in a charging circuit for a capacitor. CONSTITUTION:A pulse charging circuit 12, which is driven by a high voltage power source 11, charges a peaking capacitor 3 in a pulse mode. A current bypass circuit 13 acts as a delay circuit for delaying preliminary ionization discharge 5. When the preliminary ionization is started in the charging process of the peaking capacitor in this way, time is required until the main discharge with preliminary ionized electrons as a core is formed. the charging voltage is increased during this period and the charge starting voltage is increased. When the charging voltage to the peaking capacitor 3 is increased, energy inputted to a discharge exciting part 7 is increased, the laser output becomes high and high efficiency is achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザ発振器に関し、特に高出力、高効率
を得るようにしたものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laser oscillator, and particularly to a laser oscillator that achieves high output and high efficiency.

〔従来の技術〕[Conventional technology]

第4図は、従来一般にエキシマレープ(例工ばArF、
 KrF’、 XeF、 XeC/レーザ)、窒素レー
ザ等、短パルスレーザの構成を示す縦断面図であり、+
11は第1の主電極、(2)は第2の主電極、(31は
主放電を起こすためのピーキングコンデンサN (4a
)、(4b)は予備電離放電奮起こすための予備電離電
極対、(5)は予備電離放電、(6)は予備電離放電か
ら発光される紫外光、(7)は主放電【よってレーザが
励起される放電励起部、(8)はレーザ発振光軸、(9
)はレーザガス、101はレーザガスを封入するレーザ
筺体、(11)は高圧電源、篠はビーキシマコンデンサ
ー(3)をパルス充tt−ルためのパルス充電回路であ
る。
Figure 4 shows the conventional excimer tape (for example, ArF,
It is a vertical cross-sectional view showing the configuration of a short pulse laser such as KrF', XeF,
11 is the first main electrode, (2) is the second main electrode, (31 is the peaking capacitor N (4a
), (4b) are a pair of pre-ionizing electrodes for stimulating the pre-ionizing discharge, (5) is the pre-ionizing discharge, (6) is the ultraviolet light emitted from the pre-ionizing discharge, and (7) is the main discharge [therefore, the laser Excited discharge excitation part, (8) laser oscillation optical axis, (9
) is a laser gas, 101 is a laser housing for enclosing the laser gas, (11) is a high-voltage power supply, and Shino is a pulse charging circuit for pulse-charging the beechima capacitor (3).

次に動作について説明する。1例としてKrFレーザの
場合について説明する。Kr、Fg、He(またはNe
 s iたはhr )から成るレーザガス(9)が対向
する第1の主電極il+、第2の圧電極(21の間に(
図中矢印で示すように)流し込まれている。この状態で
高圧電源(11)により駆動されるパルス充電回w!r
篠が、ピーキングコンデンサー(31ヲパルス充電する
。その際、充電路の一部全なす予備型N1電極対(4a
) 、 (4b)が予備電離放電(61により結ばれる
。この放電はアーク放電であり、これから発光される紫
外光(6)によシ、放電励起部(7)の全域が均一な弱
電離状態(を子密度nθ−10〜10  コ癩)となる
。ピーキングコンデンサー(3)の充電過程において、
第1の主電極+11と第2の主電極(2)の間が放電開
始電圧に達すると、ピーキングコンデンサー(31に蓄
えられた電荷は、−気に主放電領域に流れ込み、放電励
起部1711r、形成する。この際の主放電は、あらか
じめこの領域のガスが均一な弱電離状態とされているた
め、均一なパルス放電となる。放電励起部(7)におい
て励起状態のKrFが形成され、誘導放出によシ、レー
ザ発振光軸方向にレーザ光が出射する。
Next, the operation will be explained. As an example, the case of a KrF laser will be explained. Kr, Fg, He (or Ne
A laser gas (9) consisting of s i or hr ) is placed between the opposing first main electrode il+ and the second piezo electrode (21).
(as shown by the arrow in the figure). In this state, the pulse charging is driven by the high voltage power supply (11) w! r
Shino pulse-charges the peaking capacitor (31). At that time, the spare N1 electrode pair (4a) that forms part of the charging path
) and (4b) are connected by a pre-ionization discharge (61). This discharge is an arc discharge, and due to the ultraviolet light (6) emitted from this, the entire area of the discharge excitation part (7) is in a uniform weak ionization state. (the density nθ-10~10).In the charging process of the peaking capacitor (3),
When the voltage between the first main electrode +11 and the second main electrode (2) reaches the discharge starting voltage, the charge stored in the peaking capacitor (31) flows into the main discharge region, and the discharge excitation part 1711r, The main discharge at this time is a uniform pulse discharge because the gas in this region is in a uniform weakly ionized state in advance. KrF in an excited state is formed in the discharge excitation part (7), and the induced Upon emission, laser light is emitted in the direction of the laser oscillation optical axis.

さてここに示した回路は、自動予備電離方式と呼ばれ、
その予備電離系の回路が極めて簡単なことから、一般に
良く用いられている。
Now, the circuit shown here is called the automatic pre-ionization method,
It is commonly used because its pre-ionization system circuit is extremely simple.

ここで、レーザの高出力化、高効率化の条件?考えると
、1つにに均一な予備型11i!を行ない、均一な励起
放電?実現することであシ、いま1つは、主放電の放電
開始電圧を増加させ、主放電が始まるまでに、少しでも
多くのエネルギーをピーキングコンデンサーに蓄えるこ
とである。前者の条件は、紫外光による均−予備電離に
より、ある程度達成されている。他方、放電開始電II
Eは、一般に考えられているV−デのガス種、ガス圧力
、主電極のギャップ長の他に、主電極に印加される電圧
の立ち上がりの速さ、予備電離形態に左右されることが
天険によシ明らかとなった。ここで、予備電離形態とは
、主放電が開始されるまでの、予備電離電子量と、その
経時変化である。主放電が開始されるKは、予備電離に
よって発生した電子を核として、外部電界によって電子
増倍を起こし、電子付着や再結合等で失なわれる電子を
補lう必要がある。この放電開始過程において、予備電
離電子量とその経時変化は大きな影響力を何する。主電
極に電圧印加が開始されると同時に、一定の割合で予備
電離が行なわれる場合は、電圧の立ち上がり速度に応じ
て初期7)1ら電子増倍が行なわれるため、比較的低い
電圧で主放電が開始され、レーザ出力の高出力化、高効
率化は達成できない。逆に、主電極への電圧印部が開始
されてから、一定の期間を経た後に、予備電離が開始さ
れる場合は、予(JtM電離電子が増倍されて主放電が
形成されるまで、一定の時間を必要とするため、その間
にピーキングコンデンサーの充電電圧を増加させること
ができる。これによシ、レーザの高出力化、高効率化が
実現できることがわかった。
What are the conditions for increasing laser output and efficiency? If you think about it, it is a uniform preliminary type 11i! and uniform excited discharge? Another way to achieve this is to increase the firing voltage of the main discharge and store as much energy as possible in the peaking capacitor before the main discharge starts. The former condition has been achieved to some extent by homogeneous pre-ionization using ultraviolet light. On the other hand, the discharge starting voltage II
It is believed that E is affected by the rate of rise of the voltage applied to the main electrode and the form of pre-ionization, in addition to the generally considered V-de gas type, gas pressure, and main electrode gap length. It became extremely clear. Here, the pre-ionization form refers to the amount of pre-ionization electrons and its change over time until the main discharge is started. K, at which the main discharge is started, uses electrons generated by preliminary ionization as nuclei, and it is necessary to cause electron multiplication by an external electric field to compensate for electrons lost due to electron attachment, recombination, etc. In this discharge initiation process, the amount of pre-ionized electrons and its change over time have a great influence. When pre-ionization is performed at a certain rate at the same time as voltage application starts to the main electrode, electron multiplication occurs from the initial stage 7) 1 according to the voltage rise speed, so the main electrode can be pre-ionized at a relatively low voltage. Discharge begins, making it impossible to achieve high laser output and high efficiency. On the other hand, if pre-ionization is started after a certain period of time has elapsed since the start of voltage application to the main electrode, the pre-ionization (until the JtM ionized electrons are multiplied and a main discharge is formed) Since this requires a certain amount of time, the charging voltage of the peaking capacitor can be increased during that time.It was found that this allows higher output and higher efficiency of the laser to be achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、従来の自動予備電離方式では、ピーキングコ
ンデンサーの充電と共に、予備電離放電が開始され、放
電励起部に予備電離電子が供給されるため、主放電の放
電開始電圧が低くなり、レーザの高出力化、高効率化が
達成できないという問題点があった。また、充′亀回路
とピーキングコンデンサーによυ予備電離量が決まり、
予備電離の最適化に関する制御性がないことも問題であ
った。
However, in the conventional automatic pre-ionization method, the pre-ionization discharge is started at the same time as the peaking capacitor is charged, and the pre-ionization electrons are supplied to the discharge excitation section, which lowers the firing voltage of the main discharge and increases the laser output. There was a problem in that it was not possible to achieve high efficiency and efficiency. In addition, the amount of υ pre-ionization is determined by the charging circuit and the peaking capacitor,
Another problem was the lack of controllability regarding optimization of preionization.

この発明は上記のような問題点を解消するためになされ
たもので、高出力で、高効率なレーザ発振器を得ること
を目的としている。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a high-output, highly efficient laser oscillator.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザ発振器は、コンデンサの充電回路
に挿入された予備電離電極対に並列に、スイッチング機
能2有する、充電電流バイパス回路を挿入したものであ
る。
The laser oscillator according to the present invention has a charging current bypass circuit having a switching function 2 inserted in parallel with a pair of pre-ionizing electrodes inserted in a capacitor charging circuit.

〔作用〕[Effect]

この発明における、充電電流バイパス回路は、ピーキン
グコンデンサーの充電開始時において、その充電電流を
流し、予備電離放電を止めておく。そしてピーキングコ
ンデンサーにある程度の充電が行なわれた後、予備電離
放電が始めて行なわれるような作用をする。すなわち、
予備電離放電に対して遅延をかける機能を有する。
In the present invention, the charging current bypass circuit allows the charging current to flow at the time of starting charging of the peaking capacitor, and stops pre-ionization discharge. After the peaking capacitor has been charged to a certain extent, it acts as if a pre-ionization discharge begins for the first time. That is,
It has the function of delaying pre-ionization discharge.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、(13)は予備電離放電に遅延をかけるた
めの充電′電流バイパス回路であり、予@を離型極対に
対して並列に挿入している。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (13) is a charging current bypass circuit for delaying pre-ionization discharge, and a pre-circuit is inserted in parallel with the pair of mold release poles.

以下、この発明の動作について説明する。高圧電源(1
1)により駆動されたパルス充電回路(12)は、パル
ス的にピーキングコンデンサー(3)全充電する。その
際、充電電流は充電電流バイパス回路θ3) を流れ、
予備型離放t(6)は行なわれない。
The operation of this invention will be explained below. High voltage power supply (1
The pulse charging circuit (12) driven by 1) fully charges the peaking capacitor (3) in a pulsed manner. At that time, the charging current flows through the charging current bypass circuit θ3),
Preliminary release t(6) is not performed.

ピーキングコンデンサー(3)が所定の充電電圧に達す
るか、もしくハ、ピーキングコンデンサー(3)が充電
全開始してから一定の期間を経ると。
When the peaking capacitor (3) reaches a predetermined charging voltage, or (iii) after a certain period of time has passed since the peaking capacitor (3) started fully charging.

予備電離放電15)が開始され、放電励起部(7)の予
@電離が開始される。この際、電流バイパス回路θ3)
f′i、予備ii*放電16)全遅らせるための遅延回
路として作用する。このようにピーキングコンデンサー
(31の充電過程において予@電離が開始されると、予
備電f11電子?核とした主放電の形成までに時間を必
要とするため、その間に充電電圧が上昇し、放¥It開
始電圧が増加する。ピーキングコンデンサー(31への
充電電圧が増加すると、放電励起部(7)への投入エネ
ルギーが増加し、レーザの高出力化、高効率化が達成さ
れる。
A pre-ionization discharge 15) is started, and pre-ionization of the discharge excitation part (7) is started. At this time, the current bypass circuit θ3)
f'i, Preliminary ii*Discharge 16) Acts as a delay circuit for total delay. In this way, when pre-ionization starts during the charging process of the peaking capacitor (31), it takes time to form the main discharge with the pre-charge f11 electrons as the nucleus, so the charging voltage rises during that time and the discharge occurs. The starting voltage increases. When the charging voltage to the peaking capacitor (31) increases, the energy input to the discharge excitation section (7) increases, achieving higher output and efficiency of the laser.

第2図に電流バイパス回路圓の一例として、ピーキング
コンデンサー(3)のn倍(n≧1)の容量を何する、
源流バイパスコンデンサーα41’に接続した例を示す
。この場合、パルス充電回路す渇は、その充電開始時に
おいて、ピーキングコンデンサ(3)と電流バイパスコ
ンデンサーα菊が直列に接続された回路を充電する。電
流バイパスコンデンサー04の充電電圧が予備電離放電
(6)の放電開始電圧に達すると、予備電離放電+51
が開始され、ピーキングコンデンサー(3)の充電電流
は、予備電離電極対(4a)、(4b)の側に流れ始め
る。
As an example of the current bypass circuit circle in Fig. 2, what is the capacitance of n times (n≧1) the peaking capacitor (3)?
An example is shown in which it is connected to the source bypass capacitor α41'. In this case, at the start of charging, the pulse charging circuit charges a circuit in which the peaking capacitor (3) and the current bypass capacitor α are connected in series. When the charging voltage of the current bypass capacitor 04 reaches the discharge starting voltage of the pre-ionization discharge (6), the pre-ionization discharge +51
is started, and the charging current of the peaking capacitor (3) begins to flow toward the pre-ionization electrode pair (4a) and (4b).

予備電離放電(5)が開始される時には、その放電開始
電圧のn倍に相当する充電電圧がすてにピーキングコン
デンサー+31の両端に充電されていることになり、第
1の主電極il+と第2の主電極(2)間の放電開始電
圧は、予備電離放電(5)が開始されるまでの遅れに応
じて増加し、高出力、高効率発振が実現できる。予備電
離放電(5)が開始されるまでに、電流バイパスコンデ
ンサー〇4に蓄えられた電荷は、予備型離放[t51に
おいて消費されるが、必要以上にni大きくすると、予
備電離放電(5)で消費されるエネルギーが大となり、
逆に効率を減少させる。予備電離電極対(5)のギャッ
プ長にもよるが、nwl、0〜8.0に設定するのが適
当である。
When the pre-ionization discharge (5) is started, a charging voltage equivalent to n times the discharge starting voltage has already been charged across the peaking capacitor +31, and the first main electrode il+ and the first main electrode il+ The discharge starting voltage between the two main electrodes (2) increases according to the delay until the pre-ionization discharge (5) starts, and high output and high efficiency oscillation can be realized. Before the pre-ionization discharge (5) starts, the charge stored in the current bypass capacitor 〇4 is consumed in the pre-ionization discharge [t51, but if ni is increased more than necessary, the charge stored in the current bypass capacitor 〇4 is consumed in the pre-ionization discharge (5). The energy consumed in
On the contrary, it reduces efficiency. Although it depends on the gap length of the pre-ionization electrode pair (5), it is appropriate to set nwl to 0 to 8.0.

第8図に、第1図の場合とは回路的に異なった位置に、
予備電離電極対(4a)、(4b)が挿入されている場
合において、本発明が適用された例を示す。ここにおh
て、パルス充電回路θ匂がピーキングコンデンサー(3
)を充電する過程において、その充電回路の一部をなす
予備電離電極対(4a) 、 (4b)の間で、予備型
離放!(51が行なわれるのは、先の場合と同じである
。しかしながら、この回路では、ピーキングコンデンサ
ー+31が電荷の放出を行ない、励起放電を起こす過程
においては、予備電離電極対(4a)、(4b) nそ
の放電回路の一部となっていない。このような回路構成
において、本発明を機用しても、上記実施例と同様の効
果を奏する。
In FIG. 8, in a different circuit position from that in FIG. 1,
An example is shown in which the present invention is applied in a case where the pre-ionization electrode pair (4a) and (4b) are inserted. h here
The pulse charging circuit θ is connected to the peaking capacitor (3
), pre-ionization occurs between the pair of pre-ionization electrodes (4a) and (4b) forming part of the charging circuit. (51 is performed in the same way as in the previous case. However, in this circuit, the peaking capacitor +31 discharges charge and in the process of causing an excited discharge, the pre-ionized electrode pair (4a), (4b ) n does not form part of the discharge circuit.In such a circuit configuration, even if the present invention is applied, the same effects as in the above embodiment can be achieved.

また、第1図、第3図の例では、ピーキングコンデンサ
ー(31、充電電流バイパス回路03)に、レーザ筐体
(10)の内側に設置されているが、これらは本発明を
限定するものではなく、その一方、もしくは両方が、レ
ーザ筐体外側に設置されている場合においても、同様の
効果を奏することはいうまでもない。
Furthermore, in the examples shown in FIGS. 1 and 3, the peaking capacitor (31, charging current bypass circuit 03) is installed inside the laser casing (10), but this does not limit the present invention. Needless to say, the same effect can be achieved even when one or both of them are installed outside the laser housing.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、主放電を行なうため
のコンデンサーの充電回路に挿入された予備電着電極対
に対して並列に充電電流バイパス回路を設け、予備電離
放電が開始されるまでに遅延がかかるように構成したの
で、高出力で高効率なパルスレーザ発振器が得られる効
果がある。
As described above, according to the present invention, a charging current bypass circuit is provided in parallel to a pair of pre-electrodeposition electrodes inserted into a charging circuit of a capacitor for main discharge, and until pre-ionization discharge starts. Since the structure is configured so that a delay is applied to the pulse laser oscillator, a high output and highly efficient pulsed laser oscillator can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による/4ルスレーザ発振
器を示す縦断面図、第2図μこの発明の池の実施例?示
す放邂励起部周辺の縦断面図、第3図はこの発明の他の
実施例によるパルスレーザ発振器を示す縦断面図、第4
図は従来のパルスレーザ発振器を示す縦断面図である。 図において、+t+H第1の主電極、(2)は第2の主
電極、(31はピーキングコンデンサー、(4a)。 (4b)は予備電離電極対、())は放電励起部、(9
)はレーザガス、σ匂はパルス充電回路、α3)は充電
電流バイ)4ス回bB 、Q4) tri’t K バ
イパスコンデンサーである。 なお、図中、同一符号に同一、又は相当部分を示す。
FIG. 1 is a vertical cross-sectional view showing a /4 Luz laser oscillator according to an embodiment of the present invention, and FIG. 2 is an embodiment of the pond according to the present invention? FIG. 3 is a vertical cross-sectional view of the vicinity of the radial excitation section shown in FIG.
The figure is a longitudinal cross-sectional view showing a conventional pulsed laser oscillator. In the figure, +t+H first main electrode, (2) is the second main electrode, (31 is the peaking capacitor, (4a), (4b) is the pre-ionization electrode pair, ()) is the discharge excitation part, (9
) is the laser gas, σ is the pulse charging circuit, α3) is the charging current bi) 4 times bB, Q4) is the tri't K bypass capacitor. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)レーザガス中で相対向する第1の主電極、および
第2の主電極と、上記主電極間に並列に接続されたコン
デンサーと、上記コンデンサーの充電回路中に挿入され
た予備電離電極対とを備えているレーザ発振器において
、上記予備電離電極対に対して並列に接続され、少なく
とも上記コンデンサーの充電開始時、その充電電流をバ
イパスし、上記予備電離電極対の間で行なわれる放電を
ある期間遅延する充電電流バイパス回路を備えたことを
特徴とするレーザ発振器。
(1) A first main electrode and a second main electrode facing each other in the laser gas, a capacitor connected in parallel between the main electrodes, and a pre-ionization electrode pair inserted into the charging circuit of the capacitor. A laser oscillator comprising: a laser oscillator connected in parallel to the pair of pre-ionizing electrodes, bypassing the charging current at least when starting charging of the capacitor, and preventing the discharge occurring between the pair of pre-ionizing electrodes; A laser oscillator characterized by comprising a charging current bypass circuit that delays a period of time.
(2)上記コンデンサーの充電をパルス的に行なうこと
を特徴とする特許請求の範囲第1項記載のレーザ発振器
(2) The laser oscillator according to claim 1, wherein the capacitor is charged in a pulsed manner.
(3)上記充電電流バイパス回路は、その容量が、コン
デンサーと等しいか、もしくは大きい電流バイパスコン
デンサーにより構成されることを特徴とする特許請求の
範囲第1項または第2項記載のレーザ発振器。
(3) The laser oscillator according to claim 1 or 2, wherein the charging current bypass circuit is constituted by a current bypass capacitor whose capacity is equal to or larger than that of the capacitor.
(4)コンデンサーに対する電流バイパスコンデンサー
の容量比が1.0〜3.0であることを特徴とする、特
許請求の範囲第3項記載のレーザ発振器。
(4) The laser oscillator according to claim 3, wherein the capacitance ratio of the current bypass capacitor to the capacitor is 1.0 to 3.0.
JP17261085A 1985-08-05 1985-08-05 Laser oscillator Pending JPS6232675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17261085A JPS6232675A (en) 1985-08-05 1985-08-05 Laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17261085A JPS6232675A (en) 1985-08-05 1985-08-05 Laser oscillator

Publications (1)

Publication Number Publication Date
JPS6232675A true JPS6232675A (en) 1987-02-12

Family

ID=15945061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17261085A Pending JPS6232675A (en) 1985-08-05 1985-08-05 Laser oscillator

Country Status (1)

Country Link
JP (1) JPS6232675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482581A (en) * 1987-09-25 1989-03-28 Oputo Chem Kk Delay ionization type gas laser exciting system and gas laser equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482581A (en) * 1987-09-25 1989-03-28 Oputo Chem Kk Delay ionization type gas laser exciting system and gas laser equipment

Similar Documents

Publication Publication Date Title
US4547883A (en) Long pulse laser with sequential excitation
JPS6232675A (en) Laser oscillator
JPS62249493A (en) Eximer laser device provideo with automatic preliminary ionization
JP3771690B2 (en) Pulse laser discharge circuit
JP2614231B2 (en) Gas laser device
JP3154584B2 (en) Discharge excitation gas laser device
JP3263137B2 (en) Gas laser device
JP2600747B2 (en) Laser device
JP3432854B2 (en) Pulse gas laser oscillator
JP3764257B2 (en) Coaxial gas laser device
JPS62190784A (en) Pulse laser oscillator
JPH05206552A (en) Gas laser device
JPH0535585B2 (en)
JPS6281077A (en) X-ray automatically preionizing, discharge type laser
JPH02222183A (en) Pulse laser oscillator
JPH0340476A (en) Gas laser exciting method and gas laser device
JPH0528514B2 (en)
JPS6218781A (en) Laser oscillator
JPS6232672A (en) Laser oscillator
JPH08125500A (en) Pulse power supply device for klystron
JPH0716054B2 (en) Laser oscillator
JPH0690047A (en) Discharge pumping excimer laser oscillator
JPH0677567A (en) Exciting circuit for laser
JPH0220082A (en) Discharge type excimer laser apparatus
JPS61218187A (en) Gas laser device