JPS6232667A - Optical detector for superconductive tunnel junction - Google Patents

Optical detector for superconductive tunnel junction

Info

Publication number
JPS6232667A
JPS6232667A JP60172121A JP17212185A JPS6232667A JP S6232667 A JPS6232667 A JP S6232667A JP 60172121 A JP60172121 A JP 60172121A JP 17212185 A JP17212185 A JP 17212185A JP S6232667 A JPS6232667 A JP S6232667A
Authority
JP
Japan
Prior art keywords
electrode
tunnel barrier
upper electrode
superconductor
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60172121A
Other languages
Japanese (ja)
Other versions
JPH065790B2 (en
Inventor
Yoichi Enomoto
陽一 榎本
Juichi Noda
野田 壽一
Toshiaki Murakami
敏明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60172121A priority Critical patent/JPH065790B2/en
Publication of JPS6232667A publication Critical patent/JPS6232667A/en
Publication of JPH065790B2 publication Critical patent/JPH065790B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To convert weak signal to an electric signal up to a high frequency in a broad wavelength region of infrared rays, by providing a tunnel barrier vertically with respect to an intermediate layer in an upper electrode, on which light is projected, confining optically excited quasi-particles, utilizing high sensitivity of a superconductive optical detector, and implementing a high speed characteristic. CONSTITUTION:A low superconductive electrode 2 is provided on a substrate 1. An intermediate layer 3 of an insulator or a semiconductor, which forms a tunnel barrier, is formed on the electrode 2. An upper electrode 5 of a superconductor, which includes a tunnel barrier in the film, is provided. The upper and lower electrodes of the superconductor are isolated by an insulating layer 6. Each layer of these four layers 2, 3, 5 and 6 can be manufactured by a thin film forming technology utilizing a vacuum evaporation method or a sputtering method using a suitable target and a pattern forming technology utilizing a lithography method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、赤外の広い波長帯において高速で且つ高感度
な光検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a photodetector that is high speed and highly sensitive in a wide infrared wavelength band.

従来の技術 従来、光検出器として半導体材料を用いたものが開発さ
れてきている。しかし、半41では、そのエネルギーギ
ャップが幅広いため、フォトンのエネルギーが低い赤外
光では、ギャップを越える励起が起こらず、検出が不可
能である。
2. Description of the Related Art Conventionally, photodetectors using semiconductor materials have been developed. However, since the energy gap of the half 41 is wide, infrared light with low photon energy does not excite the photon across the gap, making detection impossible.

詳述するならば、光伝導を用いる光検出器では、高速化
をはかるには深い準位を導入したり、アモルファスを用
いたりすることでキャリア寿命を短くする必要があるが
、これらの手法により、逆に量子効率が大幅に下がり、
感度の低下が起こる。
To be more specific, in order to increase the speed of photodetectors that use photoconduction, it is necessary to shorten the carrier lifetime by introducing deep levels or using amorphous materials. , on the contrary, the quantum efficiency decreases significantly,
A decrease in sensitivity occurs.

一方、フォトダイオードでは、反応速度がCR時定数で
律速されるため、半導体の抵抗を下げ、接合の静電容量
を小さくすることで高速化が試みられているが、反対に
受光面積が小さくなり感度の低下が起きる。
On the other hand, in photodiodes, the reaction speed is determined by the CR time constant, so attempts have been made to increase the speed by lowering the resistance of the semiconductor and reducing the capacitance of the junction, but on the other hand, the light-receiving area becomes smaller. A decrease in sensitivity occurs.

このように、半導体材料を使用した光検出器では、高感
度と高速性を同時に満たすことが難しい。
As described above, it is difficult for photodetectors using semiconductor materials to simultaneously satisfy high sensitivity and high speed.

また、赤外域の低エネルギー・フォトンに対しても励起
現象が起きる超伝導体を用いた光検出器では、応答速度
は、準粒子のクーパ一対への緩和時間および超伝導体か
らのフォノンの逃げの時間で決まり、Q、 1nsec
以下の高速特性を実現することが困難であった。
Furthermore, in a photodetector using a superconductor that exhibits an excitation phenomenon even for low-energy photons in the infrared region, the response speed depends on the relaxation time of the quasiparticle to the Cooper pair and the escape of phonons from the superconductor. It is determined by the time of Q, 1nsec
It was difficult to achieve the following high-speed characteristics.

発明が解決しようとする問題点 本発明は、これらの欠点を除去して、赤外域において高
速且つ高感度な光検出器を提供せんとするものである。
Problems to be Solved by the Invention The present invention aims to eliminate these drawbacks and provide a high-speed and highly sensitive photodetector in the infrared region.

問題点を解決するための手段 本発明によるならば、超伝導体薄膜の下部電極と、トン
ネル障壁をなす中間層と、超伝導体薄膜の上部電極との
3層構造からなる光検出器において、光が照射される上
部電極中に、中間層に対して垂直にトンネルバリアを設
け、光励起された準粒子の閉じ込みを図り、それにより
、超伝導体光検出記の高感度を活しつつ高速特性を実現
する。
Means for Solving the Problems According to the present invention, in a photodetector having a three-layer structure of a lower electrode of a superconductor thin film, an intermediate layer forming a tunnel barrier, and an upper electrode of a superconductor thin film, A tunnel barrier is provided perpendicular to the intermediate layer in the upper electrode that is irradiated with light to confine the photoexcited quasiparticles, thereby making use of the high sensitivity of superconductor photodetection and high speed detection. Realize the characteristics.

第1図は、本発明による超伝導体を用いた光検出器の構
造図を示すものであり、基板1上に下部の超伝導電極2
が設けられ、その上にトンネル障壁をなす絶縁体又は半
導体の中間層3が形成されており、更に、膜内にトンネ
ルバリア4を含む超伝導体による上部電極5が設けられ
ている。そして、超伝導体の上下電極2と5は絶縁層6
により分離されている。これらの4つの層2.3.5.
6の各層は、それぞれ真空蒸着法あるいは、適当なター
ゲットを用いたスパッター法による薄膜形成技術および
リングラフ法によるパターン形成技術により製作するこ
とができる。
FIG. 1 shows a structural diagram of a photodetector using a superconductor according to the present invention, in which a lower superconducting electrode 2 is placed on a substrate 1.
An insulating or semiconductor intermediate layer 3 serving as a tunnel barrier is formed thereon, and an upper electrode 5 made of a superconductor including a tunnel barrier 4 in the film is further provided. The upper and lower electrodes 2 and 5 of the superconductor are formed by an insulating layer 6.
Separated by These four layers 2.3.5.
Each of the layers 6 can be manufactured by a vacuum evaporation method, a thin film forming technique using a sputtering method using an appropriate target, and a pattern forming technique using a phosphor graph method.

芸月 次に光照射7にともなう動作について説明する。Geizuki Next, the operation associated with the light irradiation 7 will be explained.

一般に超伝導状態では電子はクーパ一対を形成し、フェ
ルミレベルよりエネルギーがΔだけ低いレベルとなる。
Generally, in a superconducting state, electrons form a Cooper pair, and the energy is at a level Δ lower than the Fermi level.

一方、クーパ一対は外部エネルギーにより破壊され、対
を組まない単一電子となる。この電子は準粒子と呼ばれ
、フェルミレベルより6以上高いエネルギーにある。こ
の準粒子の最もエネルギーの低い電子状態と、クーパ一
対のレベルとの間には2△だけのエネルギー・ギッヤプ
がある。
On the other hand, the Cooper pair is destroyed by external energy and becomes a single electron without forming a pair. This electron is called a quasiparticle and has an energy six or more higher than the Fermi level. There is an energy gap of 2△ between the lowest energy electronic state of this quasiparticle and the level of the Cooper pair.

第2図に同種の超伝導材料を電極として用いたトンネル
接合における電流(I)−電圧(V)特性を示す。
FIG. 2 shows current (I)-voltage (V) characteristics in a tunnel junction using the same type of superconducting material as an electrode.

(a)はトンネル接合に電圧が印加されてない超伝導状
態を、わ)はバイアス電圧が超伝導エネルギーギャップ
幅△の2倍よりも低い場合を、(C)はバイアス電圧が
2Δを越えた場合である。(a)ではクーパ一対のトン
ネルは可能で、超伝導電流が流れるが、準粒子はトンネ
ル障壁により、両者間で密度差があっても流れる可能性
は小さい。(b)および(C)ではクーパ一対は、バイ
アス電圧に比例した振動数で、トンネル障壁をトンネル
するが(交流ジョゼフソン効果)、直流の電流成分とし
ては寄与しない。従って、I−V特性は第2図に示され
るとおり、ら〕では超伝導中に熱等で励起された準粒子
のトンネルに伴う小さな電流が、(C)では電圧により
励起される大きな電流が流れることになる。
(a) shows the superconducting state when no voltage is applied to the tunnel junction, (a) shows the case when the bias voltage is lower than twice the superconducting energy gap width △, and (C) shows the case when the bias voltage exceeds 2Δ. This is the case. In (a), tunneling between the pair of Coopers is possible and a superconducting current flows, but the quasi-particles are unlikely to flow due to the tunnel barrier even if there is a density difference between them. In (b) and (C), the Cooper pair tunnels through the tunnel barrier at a frequency proportional to the bias voltage (AC Josephson effect), but does not contribute as a DC current component. Therefore, as shown in Figure 2, the I-V characteristics are as follows: In case (a), a small current accompanying the tunneling of quasiparticles excited by heat during superconductivity occurs, and in case (c), a large current caused by voltage excitation occurs. It will flow.

ところで、第2図の(a)とら)の状態では、トンネル
する粒子が異なるため、ジョゼフソン接合は、クーパ一
対と準粒子を識別し分離するフィルターとしての機能を
もつ。すなわち、状態(a)ではクーパ一対はバリアを
透過するが、準粒子は移動できずに蓄積される。他方、
ら)では、準粒子はバリアを通過し、直流電流に寄与す
るが、クーパ一対は、寄与しない。この特性に注目し、
臨界電流値の異なる接合を直列に接続し、バイアス電流
により各接合の状態を電圧状態あるいは超伝導状態に適
当に置くことにより、準粒子とクーパ一対を用いる素子
の効率化をはかることができる。
By the way, in the state shown in (a) in FIG. 2, the particles that tunnel are different, so the Josephson junction functions as a filter that identifies and separates the Cooper pair and the quasiparticle. That is, in state (a), the Cooper pair passes through the barrier, but the quasiparticles cannot move and accumulate. On the other hand,
et al.), the quasiparticle passes through the barrier and contributes to the direct current, but the Cooper pair does not. Focusing on this characteristic,
By connecting junctions with different critical current values in series and appropriately placing each junction in a voltage state or a superconducting state using a bias current, it is possible to improve the efficiency of an element using a pair of quasiparticles and a Cooper.

第1図の光検出器において、トンネル接合を構成してい
る超伝導体5に、2Δのギャップ幅を越えるエネルギー
をもつ光を照射するとクーパ一対が破壊され、超伝導体
に吸収された光子数(光量)に比例する準粒子が、上部
電極5中に生成される。
In the photodetector shown in Figure 1, when the superconductor 5 constituting the tunnel junction is irradiated with light with energy exceeding the gap width of 2Δ, the Cooper pair is destroyed, and the number of photons absorbed by the superconductor is Quasiparticles proportional to (the amount of light) are generated in the upper electrode 5.

トンネル障壁すなわちトンネル接合部3が第2図(b)
の状態にバイアスされていると、光により励起された上
部電極5中の準粒子は接合障壁3をトンネルし電流とし
て流れる。この電流値を測定することにより光検出(フ
ォトン検波)が可能である。
The tunnel barrier or tunnel junction 3 is shown in FIG. 2(b).
When biased in this state, the quasiparticles in the upper electrode 5 excited by light tunnel through the junction barrier 3 and flow as a current. By measuring this current value, optical detection (photon detection) is possible.

第2図のI−V特性で破線は、光照射した場合の特性を
表わしている。
The broken line in the IV characteristics in FIG. 2 represents the characteristics when light is irradiated.

第3図に典型的な検出回路を示す。第3図の検出回路は
、定電圧源8、超伝導光検出接合9、負荷抵抗Rを存し
、その抵抗Rは、高速動作の場合、測定系とのインピー
ダンス整合から50Ωが良く選択される。なお、この回
路で、定電圧源の出力電圧を■、にした場合の負荷直線
の例を第2図の[−V特性中に示す。光照射により、こ
の負荷直線上を動作点が移動し、光検出が可能である。
FIG. 3 shows a typical detection circuit. The detection circuit shown in FIG. 3 includes a constant voltage source 8, a superconducting photodetection junction 9, and a load resistor R, and in the case of high-speed operation, 50Ω is often selected as the resistance R from the viewpoint of impedance matching with the measurement system. . In this circuit, an example of the load straight line when the output voltage of the constant voltage source is set to {circle around (2)} is shown in the [-V characteristic in FIG. 2]. By light irradiation, the operating point moves on this load straight line, and light detection is possible.

この超伝導トンネル現象を用いる光検出器では、電子を
トンネルさせるために、接合抵抗が低く抑えられており
、また電極も超伝導体であるため抵抗が零である。この
ため検出器の等価回路に、直列、並列に入る抵抗は、非
常に小さく、電気回路的な遅れを起こすRC定数は小さ
くなる。実際、同種の構造からなるジョセフソン接合を
用いたスイッチング回路では、既に6 X 10− ”
 secの応答速度が報告されている。
In a photodetector that uses this superconducting tunneling phenomenon, junction resistance is kept low because electrons are tunneled, and since the electrodes are also superconducting, the resistance is zero. Therefore, the resistances connected in series and in parallel to the equivalent circuit of the detector are extremely small, and the RC constant that causes delays in the electric circuit becomes small. In fact, a switching circuit using a Josephson junction with the same type of structure already has 6 x 10-"
A response speed of sec is reported.

次に準粒子の緩和特性を述べる。励起準粒子は、ある時
間でフォノンを放出して、クーパ一対に緩和する。この
緩和時間は、フォノンとの相互作用を過程中に含むため
、超伝導機構に関係し、電子−フォノン相互作用が強い
強結合超伝導体では10− ” sec程度と、また相
互作用が弱い弱結合超伝導体では、それより長いと見積
られている。一方、準粒子の速度は、フェルミ面の電子
の速度とほぼ同じであるため、通常約LO8cm/se
cである。従って、光照射で励起された準粒子は、運動
遣保存則のため、上部電極5(膜厚約0.1μm)を表
面から底面のバリアまで直線的に運動して横断するに要
する時間は10− ” secとなる。このため、準粒
子はクーパ一対に緩和することなく、バリアをトンネル
することができる。なお、準粒子のクーパ一対への緩和
で生じるフォノンによる準粒子励起は、下部電極2で起
きるためトンネル電流に寄与しない。
Next, we will discuss the relaxation properties of quasiparticles. The excited quasiparticle releases a phonon over a certain period of time and relaxes into a pair of Coopers. This relaxation time is related to the superconducting mechanism because it includes interaction with phonons during the process, and is about 10-'' sec for strongly coupled superconductors with strong electron-phonon interactions, and for weakly coupled superconductors with strong electron-phonon interactions. In coupled superconductors, it is estimated to be longer; on the other hand, the velocity of quasiparticles is approximately the same as the velocity of electrons at the Fermi surface, so it is usually around LO8 cm/sec.
It is c. Therefore, due to the law of conservation of motion, the time required for the quasiparticles excited by light irradiation to move linearly across the upper electrode 5 (film thickness approximately 0.1 μm) from the surface to the bottom barrier is 10 − ” sec. Therefore, the quasiparticle can tunnel through the barrier without relaxing into the Cooper pair. Note that the quasiparticle excitation by phonons caused by the relaxation of the quasiparticle into the Cooper pair is caused by the lower electrode 2. It does not contribute to tunnel current because it occurs in

以上の他に励起準粒子は、フォノンあるいは電極5中の
欠陥により散乱される。この過程は、電気抵抗と同じも
のであり、室温では10−”〜1O−15secで起き
る。しかし、極低温ではフォノン密度が低下するため、
フォノンによる散乱確率は下がる。
In addition to the above, the excited quasiparticles are scattered by phonons or defects in the electrode 5. This process is the same as electrical resistance, and occurs in 10-" to 10-15 seconds at room temperature. However, at extremely low temperatures, the phonon density decreases, so
The probability of scattering by phonons decreases.

このため、準粒子は電極中での衝突なしにトンネル層へ
浸入し、透過する。
Therefore, quasiparticles penetrate and pass through the tunnel layer without collisions in the electrodes.

次に、準粒子がバリア層をトンネルする過程を考えてみ
る。バリア層の厚みが数nmと薄く、しかもl子トンネ
ル効果のため、通過時間は短時間である。ところで、準
粒子がバリア層を透過するのは確率過程であり、一部の
準粒子はバリアで反射され、上部電極5に戻り、緩和時
間に遅れを起こす。この確率は接合部のバイアス電圧に
依存し、高い電圧程、透過確率が上がり、緩和時間は短
くなる。
Next, let us consider the process by which quasiparticles tunnel through the barrier layer. The thickness of the barrier layer is as thin as several nanometers, and the passage time is short due to the l-son tunnel effect. Incidentally, the transmission of quasiparticles through the barrier layer is a stochastic process, and some quasiparticles are reflected by the barrier and return to the upper electrode 5, causing a delay in the relaxation time. This probability depends on the bias voltage at the junction; the higher the voltage, the higher the transmission probability and the shorter the relaxation time.

以上から電気回路および準粒子の緩和過程を考慮した検
出素子の応答速度は10− ” see以下となる。
From the above, the response speed of the detection element takes into account the electric circuit and the quasi-particle relaxation process, which is 10-''see or less.

有限温度の場合、熱励起で生じる準粒子によりトンネル
電流が流れ暗電流となる。この暗電流は、雑音として作
用し、S/N比を低下させる。この暗電流値は、熱励起
準粒子密度に比例するため温度Tに依存し、exp (
−Δ/kT)に比例する。このため、温度の低下により
減少し、絶対零度では零となる。従って、検出素子温度
を下げることにより低雑音となり、微弱光の高感度検出
が可能となる。なお、温度が下がっても構造は変化せず
、したがって高速応答特性は保たれる。
In the case of a finite temperature, a tunnel current flows due to quasiparticles generated by thermal excitation, resulting in a dark current. This dark current acts as noise and reduces the S/N ratio. This dark current value is proportional to the thermally excited quasiparticle density, so it depends on the temperature T, and exp (
−Δ/kT). Therefore, it decreases as the temperature decreases, and becomes zero at absolute zero. Therefore, by lowering the detection element temperature, noise is reduced, and highly sensitive detection of weak light becomes possible. Note that the structure does not change even if the temperature decreases, so the high-speed response characteristics are maintained.

ところで、超伝導体のエネルギー・ギャップΔはmeV
と狭い。このため波長が1mmまでの遠赤外光に対して
も準粒子は励起され、トンネル電流が流れる。従って、
広い波長域にわたって高速の光信号を検出することがで
きる。一方、高いエネルギーをもつ波長の短い赤外線が
入射した場合、準粒子緩和による時間遅れか起き、応答
速度の低下が生じる。すなわち、高エネルギーに励起し
た準粒子は、クーロン力あるいは磁場を介してクーパ一
対とあるいはフォノンと相互作用し、低エネルギー状態
へ緩和する。この過程で再びクーパ一対が壊れ、新たに
準粒子が生成され、第4図(a)に図解するように、ト
ンネルバリア4がない場合には、上部電極内に拡散する
。例えば波長1μmの光により励起された準粒子は、フ
ェルミエネルギーと同程度のエネルギー(#10’にで
速度の増加は105cm/5ec)をもつため、パウリ
排他律による電子−電子相互作用の確率低下は起こらず
、短時間(10−” sec )にクーパ一対と衝突し
、準粒子励起が生じることになる。また、この準粒子の
運動で生じる磁界によ茗クーパ一対破壊も同程度の時間
起きる。この準粒子は、空間的に拡がるため最終的にフ
ォノンを放出し、クーパ一対にもどるまでトンネル電流
に寄与する。従って、電流の立ち下りは、準粒子のクー
パ一対への緩和時間(= IQ−” 5ec)だけ続き
、尾を引くことになる。
By the way, the energy gap Δ of a superconductor is meV
And narrow. Therefore, quasiparticles are excited even by far infrared light with a wavelength of up to 1 mm, and a tunnel current flows. Therefore,
High-speed optical signals can be detected over a wide wavelength range. On the other hand, when infrared rays with high energy and short wavelengths are incident, a time delay occurs due to quasiparticle relaxation, resulting in a decrease in response speed. That is, a quasiparticle excited to high energy interacts with a Cooper pair or a phonon via Coulomb force or a magnetic field, and relaxes to a low energy state. In this process, the pair of Coopers is broken again, new quasiparticles are generated, and as illustrated in FIG. 4(a), they diffuse into the upper electrode in the absence of the tunnel barrier 4. For example, a quasiparticle excited by light with a wavelength of 1 μm has an energy comparable to the Fermi energy (the increase in velocity at #10' is 105 cm/5 ec), so the probability of electron-electron interaction decreases due to the Pauli exclusion law. does not occur, but collides with a pair of Coopers in a short time (10-" sec), resulting in quasiparticle excitation. Also, the destruction of a pair of Coopers occurs in a similar amount of time due to the magnetic field generated by the movement of this quasiparticle. As this quasiparticle spreads spatially, it eventually emits phonons and contributes to the tunneling current until it returns to the Cooper pair.Therefore, the fall of the current is equal to the relaxation time of the quasiparticle to the Cooper pair (= IQ -" 5ec), and the tail will be drawn.

他方、第4図0:l)に図解するように、上部電極5中
にトンネルバリア4を形成し、それを超伝導状態とする
と先に述べた様に準粒子のトンネルは起こりにくい。こ
のため光励起で生じた準粒子の拡散運動はバリアで止め
られ、上部電極5内の広い空間領域への拡散は起きない
。更に、電極の外に拡散したとしても、それがバリアで
囲まれた領域に再び浸入する確率は小さい。このように
、光により励起した準粒子はバリアで囲まれた狭い領域
に閉じ込められるため、空間的に拡がることで生じる立
ち下りの遅れはなくなり、高速応答が可能となる。なお
、第4図かられかるように、電流は下部電極から上部電
極へと流さねばならない。
On the other hand, as illustrated in FIG. 4 (0:l), if a tunnel barrier 4 is formed in the upper electrode 5 and brought into a superconducting state, tunneling of quasiparticles is unlikely to occur as described above. Therefore, the diffusion movement of quasiparticles generated by photoexcitation is stopped by the barrier, and diffusion into a wide spatial area within the upper electrode 5 does not occur. Moreover, even if it diffuses out of the electrode, the probability that it will re-enter the area surrounded by the barrier is small. In this way, the quasiparticles excited by light are confined in a narrow region surrounded by a barrier, so there is no fall delay caused by spatial spread, and high-speed response is possible. Note that, as can be seen from FIG. 4, the current must flow from the lower electrode to the upper electrode.

実施例 以下、本発明の詳細な説明する。しかし、本発明はこれ
ら実施例になんら限定されるものではない。
EXAMPLES The present invention will be described in detail below. However, the present invention is not limited to these examples in any way.

実施例I Ba(Pbo、 7BI0.3) 1.504なる組成
の磁器をターゲットとして、高周波スパッタでアルゴン
と酸素の各50%の混合気体のガス圧10−’Torr
下、プレート電圧1.4にVにおいて、500℃に加熱
した5rTi03単結晶基板(110)向上に、厚さ約
1500人のBaPbo、 7BIO,303なる組成
の単結晶薄膜を形成した。こうして得られた薄膜は8〜
9にの超伝導温度をもつ。次に、その単結晶薄膜をフォ
トリングラフ法と化学エッチ法により下部電極に成形す
る。次にバリア層としてA1゜03を約30人の厚さに
形成した。この場合A l 203磁器をターゲットと
してRFスパッタ法で、基板温度300℃で堆積させた
。このAl2O3バリア層の上に基板温度は300℃と
変えずに直ちに高周波スパッタ法で他の条件は下部電極
形成と同じスパッタ条件でBaPbo、 tBlo、 
303の多結晶薄膜を厚さ2000人堆積させた。この
多結晶薄膜は、結晶粒界に沿って基板に垂直にトンネル
バリアが形成されており、Al2O3バリアよりも、ジ
ョゼフソン臨界電流値が大きい。従って、電極内のトン
ネル接合を超伝導状態としたまま、Al2O3バリアを
電圧状態にすることが可能であり、準粒子トンネル電流
変化を観測することで光検出ができた。
Example I Ba (Pbo, 7BI0.3) A porcelain with a composition of 1.504 was used as a target, and a gas mixture of 50% each of argon and oxygen was heated at a gas pressure of 10-'Torr by high-frequency sputtering.
Below, a single crystal thin film having a composition of BaPbo, 7BIO, 303 with a thickness of about 1500 was formed on a 5rTi03 single crystal substrate (110) heated to 500° C. at a plate voltage of 1.4V. The thin film thus obtained was 8~
It has a superconducting temperature of 9. Next, the single crystal thin film is formed into a lower electrode by photolithography and chemical etching. Next, A1°03 was formed to a thickness of about 30 mm as a barrier layer. In this case, deposition was performed by RF sputtering using Al 203 porcelain as a target at a substrate temperature of 300°C. On this Al2O3 barrier layer, BaPbo, tBlo, and
A polycrystalline thin film of 303 was deposited to a thickness of 2000. In this polycrystalline thin film, a tunnel barrier is formed perpendicularly to the substrate along the grain boundaries, and the Josephson critical current value is larger than that of the Al2O3 barrier. Therefore, it was possible to bring the Al2O3 barrier into a voltage state while keeping the tunnel junction in the electrode in a superconducting state, and optical detection was possible by observing changes in the quasiparticle tunneling current.

実施例2 高周波スパッタ法により500℃に加熱したサファイア
基板上にNb金属薄膜を約3000人堆積して、下部電
極を形成する。次にバリア層としてA1゜03を下部電
極上に約30人の厚さに、電子ビーム蒸着法により堆積
させる。このAl2O3バリア層上に、直ちに、pb覆
結晶金属薄膜を形成する。pbは、純酸素10− ’T
orrのペルジャー内で蒸着法により堆積した。その結
果形成された上部電極の多結晶膜は、結晶粒界に沿って
薄い酸化膜が蒸着中に形成されトンネルバリアとなる。
Example 2 A lower electrode is formed by depositing about 3,000 Nb metal thin films on a sapphire substrate heated to 500° C. by high-frequency sputtering. Next, A1°03 as a barrier layer is deposited on the lower electrode to a thickness of about 30 nm by electron beam evaporation. A pb overcrystal metal thin film is immediately formed on this Al2O3 barrier layer. pb is pure oxygen 10-'T
It was deposited by evaporation method in a pelger at orr. The polycrystalline film of the upper electrode formed as a result becomes a tunnel barrier by forming a thin oxide film during vapor deposition along the grain boundaries.

このトンネルバリアはAl2O3バリアよりもジョゼフ
ソン臨界電流値が大きく、従って、前述の動作が可能で
あり、高速の光検出ができる。
This tunnel barrier has a larger Josephson critical current value than the Al2O3 barrier, so the above-described operation is possible and high-speed photodetection is possible.

発明の詳細 な説明したように、本発明の光検出器は赤外の広い波長
域で弱い光を高周波まで電気信号に変換することができ
る。この電気信号は、超伝導トンネル接合の電流変化で
あるため、高速スイッチング特性をもつジョセフソン接
合を用いた回路系と同一冷却槽中で接続し、信号処理の
動作をさせることができる。このような点から赤外域で
の高速光通信用あるC)は高速の物理現象解析用の検出
器として有用である。
As described in detail, the photodetector of the present invention is capable of converting weak light in a wide infrared wavelength range up to high frequencies into electrical signals. Since this electrical signal is a current change in a superconducting tunnel junction, it can be connected in the same cooling bath as a circuit system using a Josephson junction with high-speed switching characteristics, and can be used for signal processing. From this point of view, C) for high-speed optical communication in the infrared region is useful as a detector for high-speed physical phenomenon analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光検出器の断面図、 第2図は検出器の電流−電圧特性と動作特性を示すグラ
フ、 第3図は測定回路系の一例の回路図、 第4図は光励起準粒子の電極内での挙動を説明するもの
で、(a)は、上部電極内にトンネルバリアがない場合
、ら)は、上部電極内に超伝導状態のトンネルバリアが
ある場合である。 (主な参照番号) 1・・基板、 2・・下部電極、 3・・トンネルバリアをなす中間層、 4・・トンネルバリア、  5・・上部電極、6・・絶
縁層、 7・・入射光、 8・・定電圧源、 9・・光検出器、 R・・負荷抵抗
Fig. 1 is a cross-sectional view of the photodetector of the present invention, Fig. 2 is a graph showing the current-voltage characteristics and operating characteristics of the detector, Fig. 3 is a circuit diagram of an example of a measurement circuit system, and Fig. 4 is a photoexcitation This explains the behavior of quasiparticles within the electrode, where (a) is the case where there is no tunnel barrier in the upper electrode, and (a) is the case where there is a superconducting tunnel barrier in the upper electrode. (Main reference numbers) 1. Substrate, 2. Lower electrode, 3. Intermediate layer forming a tunnel barrier, 4. Tunnel barrier, 5. Upper electrode, 6. Insulating layer, 7. Incident light. , 8... Constant voltage source, 9... Photodetector, R... Load resistance

Claims (3)

【特許請求の範囲】[Claims] (1)超伝導体薄膜からなる下部電極と、該下部電極上
に設けられトンネル障壁を形成する中間層と、該中間層
上に設けられ垂直にトンネルバリア層が形成されている
超伝導薄膜からなる上部電極とを具備して3層構造から
なることを特徴とする超伝導トンネル接合光検出器。
(1) A lower electrode made of a superconductor thin film, an intermediate layer provided on the lower electrode to form a tunnel barrier, and a superconducting thin film provided on the intermediate layer with a tunnel barrier layer formed vertically. What is claimed is: 1. A superconducting tunnel junction photodetector comprising a three-layer structure and an upper electrode.
(2)前記上部電極は、酸化物超伝導体BaPb_1_
−_xBi_xO(但し、0.05≦x≦0.35)多
結晶薄膜で形成されていることを特徴とする特許請求の
範囲第1項記載の超伝導トンネル接合光検出器。
(2) The upper electrode is an oxide superconductor BaPb_1_
The superconducting tunnel junction photodetector according to claim 1, characterized in that it is formed of a polycrystalline thin film -_xBi_xO (0.05≦x≦0.35).
(3)前記上部電極は、Pb多結晶金属薄膜で形成され
ていることを特徴とする特許請求の範囲第1項記載の超
伝導トンネル接合光検出器。
(3) The superconducting tunnel junction photodetector according to claim 1, wherein the upper electrode is formed of a Pb polycrystalline metal thin film.
JP60172121A 1985-08-05 1985-08-05 Superconducting tunnel junction photodetector Expired - Lifetime JPH065790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172121A JPH065790B2 (en) 1985-08-05 1985-08-05 Superconducting tunnel junction photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172121A JPH065790B2 (en) 1985-08-05 1985-08-05 Superconducting tunnel junction photodetector

Publications (2)

Publication Number Publication Date
JPS6232667A true JPS6232667A (en) 1987-02-12
JPH065790B2 JPH065790B2 (en) 1994-01-19

Family

ID=15935940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172121A Expired - Lifetime JPH065790B2 (en) 1985-08-05 1985-08-05 Superconducting tunnel junction photodetector

Country Status (1)

Country Link
JP (1) JPH065790B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281133A1 (en) * 1987-03-05 1988-09-07 Sumitomo Electric Industries Limited Electricity-light transmitting composite wire
JPS647007A (en) * 1987-06-30 1989-01-11 Hamamatsu Photonics Kk Optical integrated circuit
JPH0368181A (en) * 1989-08-07 1991-03-25 Nippon Telegr & Teleph Corp <Ntt> Superconducting photodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281133A1 (en) * 1987-03-05 1988-09-07 Sumitomo Electric Industries Limited Electricity-light transmitting composite wire
JPS647007A (en) * 1987-06-30 1989-01-11 Hamamatsu Photonics Kk Optical integrated circuit
JPH0368181A (en) * 1989-08-07 1991-03-25 Nippon Telegr & Teleph Corp <Ntt> Superconducting photodetector

Also Published As

Publication number Publication date
JPH065790B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
Gol’Tsman et al. Picosecond superconducting single-photon optical detector
Mears et al. Energy‐resolving superconducting x‐ray detectors with charge amplification due to multiple quasiparticle tunneling
Dieleman et al. Observation of Andreev reflection enhanced shot noise
Nahum et al. Hot‐electron microcalorimeters as high‐resolution x‐ray detectors
Angloher et al. Energy resolution of 12 eV at 5.9 keV from Al-superconducting tunnel junction detectors
Mears et al. High-resolution superconducting x-ray detectors with two aluminum trapping layers
JP2002518853A (en) Superconducting tunnel junction device
US4578691A (en) Photodetecting device
JP2552371B2 (en) Radiation detection element and Josephson element
US5057485A (en) Light detecting superconducting Josephson device
JP5076051B2 (en) Electromagnetic wave detecting element and electromagnetic wave detecting device using the same
JPS6232667A (en) Optical detector for superconductive tunnel junction
EP0291050A2 (en) Superconducting device
US5338934A (en) Radiation detecting device and method for fabricating the same
Krchnavek et al. Transport in reversibly laser‐modified YBa2Cu3O7− x superconducting thin films
Milostnaya et al. Superconducting single photon nanowire detectors development for IR and THz applications
Ruby et al. Silicon-coupled Josephson junctions and super-Schottky diodes with coplanar electrodes
Uematsu et al. Intrinsic Josephson effect in La 2− x Sr x CuO 4 mesa junctions with niobium counter electrode
US5121173A (en) Proximity effect very long wavlength infrared (VLWIR) radiation detector
JPH08236823A (en) Superconducting radiation detecting device and its manufacture
Charaev et al. Single-photon detection using large-scale high-temperature MgB2 sensors at 20 K
Wilson et al. A new noise source in superconducting tunnel junction photon detectors
JPS6370581A (en) Superconducting tunnel junction photodetector and manufacture thereof
Gundlach et al. Photoresponse and barrier height of Pb‐Pb oxide‐Pb sandwich structures
Camerlingo et al. Preliminary results on tunnel junctions on YBCO bulk with an artificial barrier