JPS6232595B2 - - Google Patents

Info

Publication number
JPS6232595B2
JPS6232595B2 JP55063604A JP6360480A JPS6232595B2 JP S6232595 B2 JPS6232595 B2 JP S6232595B2 JP 55063604 A JP55063604 A JP 55063604A JP 6360480 A JP6360480 A JP 6360480A JP S6232595 B2 JPS6232595 B2 JP S6232595B2
Authority
JP
Japan
Prior art keywords
power
heating
frequency
reflected power
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55063604A
Other languages
Japanese (ja)
Other versions
JPS56159085A (en
Inventor
Tomotaka Nobue
Shigeru Kusuki
Takahito Kanazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6360480A priority Critical patent/JPS56159085A/en
Publication of JPS56159085A publication Critical patent/JPS56159085A/en
Publication of JPS6232595B2 publication Critical patent/JPS6232595B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、高周波加熱熱源が加熱室に供給する
入射電力および加熱室側から反射される反射電力
のうち少なくとも反射電力を検出する検出手段を
設けた高周波加熱装置に関するものであるり、そ
の目的とするところは反射電力の変化量に基づい
て加熱熱源を制御し自動加熱を行なうところにあ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-frequency heating device provided with a detection means for detecting at least reflected power out of the incident power supplied to a heating chamber by a high-frequency heating heat source and the reflected power reflected from the heating chamber side. The purpose is to control the heating heat source based on the amount of change in reflected power and perform automatic heating.

従来、高周波加熱装置において自動加熱を行な
う手段として、加熱室庫内の雰囲気温度を温度セ
ンサで検知するもの、被加熱物に温度検知センサ
を挿入して直接的に温度を検知するもの、被加熱
物が加熱されることによつて発生する水蒸気量を
温度センサで検知するもの、被加熱物の発生する
炭素分を含んだガスを検知するものなどが用いら
れているが、これらの検知手段を用いて自動加熱
を行なう場合、高周波加熱装置の本質であるとこ
ろ高周波加熱源の出力高周波パワーを被加熱物に
吸収させる際の加熱効率(被加熱物に吸収される
高周波パワーと高周波加熱源の出力高周波パワー
の比)が被加熱物の種類や大きさによつて大巾に
変化するために自動加熱を推進させる上で大きな
課題になつている。これは第1図を見ればより明
白となる。第1図は、高周波加熱装置の軽負荷効
率特性を示したもので、横軸は負荷である水の量
(c.c.)、縦軸は定格出力に対し水負荷2000c.c.の時の
加熱効率を100とした加熱効率を表わしたもので
あり、たとえば定格出力600Wに対して水負荷
2000c.c.の時に600Wすべてが負荷に吸収されると
すると水負荷100c.c.の時には約380Wしか負荷に吸
収されないことを示している。
Conventionally, methods for automatically heating in high-frequency heating equipment include those that detect the ambient temperature in the heating chamber with a temperature sensor, those that directly detect the temperature by inserting a temperature sensor into the heated object, and those that detect the temperature directly in the heated object. Temperature sensors are used to detect the amount of water vapor generated when an object is heated, and sensors are used to detect carbon-containing gas generated by heated objects. When performing automatic heating using a high-frequency heating device, the essence of a high-frequency heating device is the heating efficiency when the high-frequency power output from the high-frequency heating source is absorbed into the heated object (the high-frequency power absorbed by the heated object and the output of the high-frequency heating source). The ratio of high-frequency power) varies widely depending on the type and size of the object to be heated, which poses a major challenge in promoting automatic heating. This becomes clearer when looking at Figure 1. Figure 1 shows the light-load efficiency characteristics of high-frequency heating equipment. The horizontal axis is the amount of water (cc) that is the load, and the vertical axis is the heating efficiency when the water load is 2000 c.c. against the rated output. It expresses the heating efficiency with 100. For example, the water load is
If all 600W is absorbed by the load when the load is 2000c.c., then only about 380W is absorbed by the load when the water load is 100c.c.

また、被加熱物に吸収される高周波パワーPは
高周波加熱熱源の出力高周波パワーPi、その周波
数、被加熱物の比誘電率εr被加熱物の誘電体
力率tanδを用いて P=K・Pi・・εrtanδ ここでKは吸収常数 と表わすことができる。ところで同一被加熱物
に対してεrtanδは周波数とともに変化する
が、さらには、同一周波数において被加熱物の温
度によつてεrtanδは変化するため、被加熱物へ
の加熱効率は加熱時間に伴なつて変化することに
なる。第2図は被加熱物の温度とεrtanδの関係
を示す特性図である。横軸に温度〔℃〕、縦軸に
εrtanδを目盛つており、実線が魚、破線がH2O
に対する特性である。冷凍魚や氷に対しては吸収
される高周波パワーは少なくて0℃に近づくと急
速に吸収され、以後被加熱物の温度上昇に伴なつ
て吸収される高周波パワーは徐々に減少すること
が図に示されている。これはすなわち等量の高周
波パワーが加熱室に供給されているとすると、加
熱室側から反射する反射電力が被加熱物の温度上
昇に伴なつて変化することを示唆しており特に解
凍器への応用展開が考えられる。
In addition, the high-frequency power P absorbed by the heated object is calculated using the output high-frequency power Pi of the high-frequency heating heat source, its frequency, the relative dielectric constant ε r of the heated object, and the dielectric power factor tan δ of the heated object. ...ε r tanδ Here, K can be expressed as an absorption constant. By the way, ε r tan δ changes with the frequency for the same object to be heated, but furthermore, ε r tan δ changes depending on the temperature of the object at the same frequency, so the heating efficiency for the object is determined by the heating time. It will change accordingly. FIG. 2 is a characteristic diagram showing the relationship between the temperature of the heated object and ε r tan δ. The horizontal axis is temperature [℃] and the vertical axis is ε r tan δ, where the solid line is fish and the broken line is H 2 O.
It is a characteristic for The figure shows that the amount of high-frequency power absorbed by frozen fish and ice is small, and it is rapidly absorbed when the temperature approaches 0℃, and after that, the absorbed high-frequency power gradually decreases as the temperature of the heated object increases. It is shown. This means that if the same amount of high-frequency power is supplied to the heating chamber, the reflected power reflected from the heating chamber side will change as the temperature of the heated object increases, especially for the thawing device. Applications and developments are possible.

本発明は、以上の点に鑑みてなされたものであ
り、加熱開始時の反射電力値に基づいて負荷イン
ピーダンス可変器を制御するとともに以後加熱室
側から反射される反射電力の変化量に基づいて被
加熱物の加熱状態を判断し加熱熱源を制御する高
周波加熱装置を提供するものである。
The present invention has been made in view of the above points, and it controls a load impedance variable device based on the reflected power value at the start of heating, and thereafter controls the load impedance variable device based on the amount of change in the reflected power reflected from the heating chamber side. The present invention provides a high-frequency heating device that determines the heating state of an object to be heated and controls a heating heat source.

以下図面を参照に説明をする。 The explanation will be given below with reference to the drawings.

第3図は、本発明一実施例を示す高周波加熱装
置の構成図である。高周波加熱源1は、固体素子
を用いて構成された全固体高周波発生源で構成さ
れており、その出力端には、入射電力Pi、反射電
力Prを検出するマイクロストリツプ線路で構成
された2方向性結合器2が接続され、2方向性結
合器の出力端には、同軸―マイクロストリツプ線
路変換器と高周波パワー伝送線路である同軸伝送
線路3が接続され、その末端には加熱室4に高周
波を励振させるアンテナ5が構成されている。高
周波加熱熱源の出力高周波パワーすなわち入射電
力Piは、上記の2方向性結合器、同軸伝送線路、
アンテナを伝送して加熱室内に収容された被加熱
物6を誘電加熱する。7は高周波加熱熱源1の駆
動電源および負荷インピーダンス可変器8,9を
制御する制御器である。また同軸伝送線路3には
インピーダンス整合用のスタブチユーナ8,9が
λO/4(λO=C/ C:光速、O発振周波
数)間隔で構成されている。
FIG. 3 is a configuration diagram of a high frequency heating device showing an embodiment of the present invention. The high-frequency heating source 1 is composed of an all-solid-state high-frequency generation source constructed using solid-state elements, and the output end thereof is composed of a microstrip line that detects the incident power Pi and the reflected power Pr. A two-way coupler 2 is connected, and the output end of the two-way coupler is connected to a coaxial-to-microstrip line converter and a coaxial transmission line 3, which is a high frequency power transmission line. An antenna 5 that excites high frequency waves in the chamber 4 is configured. The output high-frequency power of the high-frequency heating heat source, that is, the incident power Pi, is determined by the two-way coupler, coaxial transmission line,
The object to be heated 6 housed in the heating chamber is dielectrically heated by transmitting the antenna. A controller 7 controls the drive power source of the high-frequency heating heat source 1 and the load impedance variable devices 8 and 9. Further, the coaxial transmission line 3 includes stub tunnelers 8 and 9 for impedance matching arranged at an interval of λ O /4 (λ O =C/C: speed of light, O oscillation frequency).

第4図は、本発明一実施例を示す入射電力、反
射電力検出用の2方向性結合器の構成図である。
高周波加熱熱源の出力高周波パワーすなわち入射
電力Piはマイクロストリツプ主線路10を伝送す
る。この主線路10の出力端には同軸―マイクロ
ストリツプ線路変換器11を介して同軸伝送線路
3に接続される。主線路10と平行に所望の間隔
でもつて張られたマイクロストリツプ副線路12
により主線路10を伝送する入射電力Piと反射電
力Prに比例した電力量を夫々検波ダイオード1
3,14によつて電気信号に変換し、2方向性結
合器2の2出力端15,16に夫々入射電力Pi、
反射電力Prに等価な信号Pi′,Pr′を出力する。ま
た副線路12の中央部には終端低抗17が接続さ
れている。
FIG. 4 is a configuration diagram of a two-way coupler for detecting incident power and reflected power, showing one embodiment of the present invention.
The output high frequency power of the high frequency heating heat source, ie the incident power Pi, is transmitted through the microstrip main line 10. The output end of this main line 10 is connected to a coaxial transmission line 3 via a coaxial-to-microstrip line converter 11. Microstrip sub-line 12 stretched parallel to the main line 10 at desired intervals
The amount of power proportional to the incident power Pi and the reflected power Pr transmitted through the main line 10 is detected by the detection diode 1, respectively.
3 and 14 into electrical signals, and input the incident powers Pi and 2 to the two output terminals 15 and 16 of the two-way coupler 2, respectively.
It outputs signals Pi′ and Pr′ equivalent to the reflected power Pr. Further, a terminal resistor 17 is connected to the center of the sub-line 12.

第5図は本発明一実施例を示すインピーダンス
整合用スタブチユーナの構成図である。
FIG. 5 is a block diagram of an impedance matching stub tuner showing an embodiment of the present invention.

スタブチユーナ8,9は同軸線路で構成されて
おり、その内部導体18,19は高周波パワー伝
送線路である同軸伝送線路3の内部導体20と接
触または一体構成されており、スタブチユーナ
8,9には、内部導体18,19を外部導体と短
絡させる移動可能な短絡板21,22が構成され
ており、所望の位置に短絡板21,22を移動さ
せてインピーダンス整合を行なうものである。
The stub tuners 8 and 9 are composed of coaxial lines, and their internal conductors 18 and 19 are in contact with or integrally formed with the internal conductor 20 of the coaxial transmission line 3, which is a high frequency power transmission line. Movable shorting plates 21 and 22 are configured to short-circuit the inner conductors 18 and 19 with the outer conductor, and impedance matching is performed by moving the shorting plates 21 and 22 to desired positions.

第6図は本発明一実施例を示す高周波加熱装置
の制御シグナルフローブロツク線図である。
FIG. 6 is a control signal flow block diagram of a high frequency heating device showing one embodiment of the present invention.

前記2方向性結合器により得られた入射電力
Pi、反射電力Pr、対応して信号Pi′,Pr′(t)に
基づき、相対値検出器23はV(t)=
Pr′(t)/Pi′なる信号を出力する。ここで反射
電力信号Pr′(t)は、時々刻々変化することか
ら時間変数tの関数で示される。今時刻tOに加
熱が開始された時、初期相対値保持器24により
V(tO)=Pr′(tO)/Pi′なる信号量が加熱時
間中保持される。また加熱時間経過に伴ない時々
刻々変化するV(t)と上記V(tO)との差V
(tO)―V(t)なる信号が加熱熱源制御器25
に入力される。一方入射電力信号Piおよび被加熱
物に応じて選択されるMANUAL信号により、基
準信号発生器26が加熱時間を制御する加熱時間
制御基準信号VSを発生する。前記加熱熱源制御
器25は、上記のV(tO)―V(t)なる信号
と制御基準信号VSとの比較を行ない加熱源を制
御する制御信号VCを出力する。この制御信号VC
により高周波加熱熱源にその出力高周波パワーを
変えたり、高周波発生動作を終了したりするもの
である。
Incident power obtained by the two-way coupler
Based on Pi, the reflected power Pr, and correspondingly the signals Pi′, Pr′(t), the relative value detector 23 determines that V(t)=
A signal Pr'(t)/Pi' is output. Here, the reflected power signal Pr'(t) is expressed as a function of the time variable t since it changes moment by moment. When heating is started at the current time t O , the initial relative value holder 24 holds a signal amount of V(t O )=Pr'(t O )/Pi' during the heating time. Also, the difference V between V(t) and the above V(t O ), which changes moment by moment as the heating time elapses.
(t O )−V(t) is the heating heat source controller 25
is input. On the other hand, the reference signal generator 26 generates a heating time control reference signal V S for controlling the heating time based on the incident power signal Pi and the MANUAL signal selected depending on the object to be heated. The heating heat source controller 25 compares the signal V(t O )−V(t) with the control reference signal V S and outputs a control signal V C for controlling the heating source. This control signal V C
This changes the output high frequency power of the high frequency heating heat source or terminates the high frequency generation operation.

以下の説明は整合を考慮する時の基準面である
2方向性結合器の出力端から加熱室側をみた負荷
インピーダンスを高周波加熱熱源側を見た電源イ
ンピーダンスの整合状態があらかじめ設定した整
合範囲内の場合の動作説明である。以下にこの設
定した整合範囲外の場合の動作説明をする。これ
は前記負荷インピーダンスが加熱室内に収容した
被加熱物の種類や大きさにより大きな変化を生じ
て設定した整合範囲外の整合状態になつた場合で
ある。このような場合は第1図での説明で明らか
な様に高周波加熱効率が低下する。これを改善さ
せるためのものが前記負荷インピーダンス可変器
8,9である。
In the following explanation, the matching state of the load impedance viewed from the output end of the two-way coupler, which is the reference plane when considering matching toward the heating chamber side, and the source impedance viewed from the high-frequency heating heat source side is within the preset matching range. This is an explanation of the operation in the case of . The operation in the case outside the set matching range will be explained below. This is a case where the load impedance changes greatly depending on the type and size of the object to be heated housed in the heating chamber, resulting in a matching state outside the set matching range. In such a case, as is clear from the explanation with reference to FIG. 1, the high frequency heating efficiency decreases. The load impedance variable devices 8 and 9 are used to improve this problem.

この場合、インピーダンス可変信号発生器27
が入射電力信号Piと初期相対値信号VO(t)に
基づき、負荷インピーダンスと電源インピーダン
スの整合状態をあらかじめ設定した整合範囲内に
移すべく前記スタブチユーナ8,9の短絡板2
1,22を所望の位置に移動させる負荷インピー
ダンス可変信号VIMP1,VIMP2を発生させる。こ
こで短絡板を移動させる手段はサーボ機構を用い
て自動的に行なうこともできるし、操作パネルに
設けた負荷インピーダンス可変レバーなどにより
手動で行なうこともできる。
In this case, the variable impedance signal generator 27
is the shorting plate 2 of the stub tunnelers 8 and 9 in order to shift the matching state of the load impedance and power supply impedance to a preset matching range based on the incident power signal Pi and the initial relative value signal V O (t).
1 and 22 to desired positions are generated. The shorting plate can be moved automatically using a servo mechanism, or manually using a variable load impedance lever provided on the operation panel.

短絡板21,22を移動させる信号により短絡
21,22が移動されたならば、移動完了を知ら
せる移動完了信号VM1,VM2と短絡板を移動させ
る信号VIMP1,VIMP2により、初期相対値保持器
24の保持信号V(tO)をリセツトするリセツ
ト信号RESETを制御信号発生器28が出力す
る。このリセツト信号RESETにより初期相対値
保持器24は、短絡板が移動完了した後の時刻t1
において、新らたな初期相対値V(t1)を保持
し、上記に説明した動作に基づき加熱熱源が制御
される。なお短絡板を移動させて負荷インピーダ
ンスを修正する際には、インピーダンス可変信号
発生器27より高周波加熱熱源である全固体高周
波発生源を構成する固体発振器の駆動電源を
OFFにして高周波発生動作を停止させる停止信
号STOPが加熱熱源制御器25に送られて高周波
発生動作を中断する。そして負荷インピーダンス
の修正が完了したならば、停止信号STOPを解除
するクリア信号CLEARが制御信号発生器28よ
りインピーダンス可変信号発生器27に送られ、
高周波発生動作の中断が解除され高周波加熱熱源
が動作状態になる。
When the short circuits 21 and 22 are moved by the signal that moves the short circuit plates 21 and 22, the initial relative value is determined by the movement completion signals V M1 and V M2 that notify the completion of movement and the signals V IMP1 and V IMP2 that move the short circuit plates. A control signal generator 28 outputs a reset signal RESET that resets the holding signal V(t O ) of the holder 24. This reset signal RESET sets the initial relative value holder 24 to the time t 1 after the shorting plate has completed its movement.
, the new initial relative value V(t 1 ) is held and the heating heat source is controlled based on the operation described above. In addition, when moving the shorting plate to correct the load impedance, the variable impedance signal generator 27 outputs the driving power for the solid-state oscillator that constitutes the all-solid-state high-frequency generation source, which is the high-frequency heating heat source.
A stop signal STOP to turn off and stop the high frequency generation operation is sent to the heating heat source controller 25 to interrupt the high frequency generation operation. When the modification of the load impedance is completed, a clear signal CLEAR for canceling the stop signal STOP is sent from the control signal generator 28 to the variable impedance signal generator 27.
The interruption of the high frequency generation operation is canceled and the high frequency heating heat source becomes operational.

なお上記説明においては高周波加熱熱源にその
出力高周波パワーを容易にかつ連続的に変えるこ
とができる全固体高周波発生源を用いたが、マグ
ネトロンなどの電子管式発振器を加熱熱源とする
高周波加熱装置においては、出力高周波パワーは
デユーテイ制御であることから、反射電力のみを
検出して制御することが可能なことは明らかであ
る。また本発明の範囲内で種々の変形が可能であ
る。たとえば高周波パワー伝送導電管の管壁面よ
りアイリスなどを挿入してインピーダンス可変を
行なうことや2つの導波管を用いた2方向性結合
器導波管と同軸線路を用いた2方向性結合器など
がある。
In the above explanation, an all-solid-state high-frequency generation source whose output high-frequency power can be easily and continuously changed was used as the high-frequency heating heat source. Since the output high frequency power is duty controlled, it is clear that it is possible to detect and control only the reflected power. Moreover, various modifications are possible within the scope of the present invention. For example, impedance can be varied by inserting an iris or the like into the wall of a high-frequency power transmission conductive tube, or a two-way coupler using two waveguides, or a two-way coupler using a waveguide and a coaxial line. There is.

以上、本発明は、少なくとも反射電力を検出す
る検出手段と負荷インピーダンスと電源インピー
ダンスの整合をはかるインピーダンス可変器を付
加した高周波加熱装置において、高周波加熱時の
加熱効率を高めべく加熱開始時の反射電力量また
は反射電力と入射電力の相対比に基づいてインピ
ーダンス可変器を制御するとともに初期反射電力
を保持しておき加熱経過に伴なつて変化する反射
電力量または反射電力と入射電力の相対比に基づ
き加熱熱源の出力電力を制御するものであり、被
加熱物の加熱進捗度合を時々刻々掌握でき、加熱
時間が被加熱物に応じて自動的に設定され、いわ
ゆる自動加熱を行なうことができること、装置と
しての負荷への高周波加熱効率を高め省エネルギ
をはかることができること、反射電力を減らすこ
とにより高周波加熱熱源の破損を防止できかつ寿
命をのばすことができること、さらには冷凍被加
熱物の解凍加熱制御を容易に行なうことができる
効果を奏する。
As described above, the present invention provides a high-frequency heating device equipped with at least a detection means for detecting reflected power and an impedance variable device for matching load impedance and source impedance. The variable impedance is controlled based on the amount of reflected power or the relative ratio of reflected power and incident power, and the initial reflected power is maintained and changes as the heating progresses based on the amount of reflected power or the relative ratio of reflected power and incident power. The device controls the output power of the heating heat source, allows you to grasp the heating progress of the object to be heated from moment to moment, automatically sets the heating time according to the object to be heated, and performs so-called automatic heating. It is possible to increase the efficiency of high-frequency heating to the load as a fuel, save energy, and reduce reflected power to prevent damage to the high-frequency heating heat source and extend its life. This has the effect of making it easy to carry out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の高周波加熱装置の軽負荷効率
特性図、第2図は被加熱物の温度とεr・tanδの
関係を示す特性図、第3図は本発明一実施例を示
す高周波加熱装置の構成図、第4図は本発明一実
施例を示す入射電力、反射電力検出用の2方向性
結合器の構成図、第5図は本発明一実施例を示す
インピーダンス整合用スタブチユーナの構成図、
第6図は本発明一実施例を示す高周波加熱装置の
制御シグナルフローブロツク線図である。 1……高周波加熱熱源、2……2方向性結合器
(電力検出器)、4……加熱室、6……被加熱物、
7……制御器、8,9……スタブチユーナ(イン
ピーダンス可変器)、24……初期相対値保持
器、25……加熱熱源制御器、27……インピー
ダンス可変信号発生器、Pi,Pi′……入射電力、
Pr,Pr′……反射電力、Pr′,tO……初期反射電
力値、Pr′(t)/Pi′……入射電力と反射電力の
相対比。
Fig. 1 is a light-load efficiency characteristic diagram of a conventional high-frequency heating device, Fig. 2 is a characteristic diagram showing the relationship between the temperature of the heated object and ε r and tan δ, and Fig. 3 is a high-frequency heating device showing an embodiment of the present invention. FIG. 4 is a block diagram of a heating device; FIG. 4 is a block diagram of a two-way coupler for detecting incident power and reflected power according to an embodiment of the present invention; FIG. 5 is a block diagram of a stub tuner for impedance matching according to an embodiment of the present invention. Diagram,
FIG. 6 is a control signal flow block diagram of a high frequency heating device showing one embodiment of the present invention. 1... High-frequency heating heat source, 2... Two-directional coupler (power detector), 4... Heating chamber, 6... Heated object,
7... Controller, 8, 9... Stub tuner (impedance variable device), 24... Initial relative value holder, 25... Heating heat source controller, 27... Impedance variable signal generator, Pi, Pi'... incident power,
Pr, Pr'... Reflected power, Pr', t O ... Initial reflected power value, Pr'(t)/Pi'... Relative ratio of incident power and reflected power.

Claims (1)

【特許請求の範囲】 1 被加熱物を収容する加熱室と、前記加熱室に
給電するマイクロ波エネルギを発生する高周波加
熱熱源と、前記加熱室への入射電力および前記加
熱室からの反射電力のうち少なくとも反射電力を
検出する電力検出器と、前記電力検出器と加熱室
との間のマイクロ波エネルギ伝送路に付設された
インピーダンス可変器と、加熱開始時に反射電力
量が予じめ設定した量以下になるように前記イン
ピーダンス可変器を制御するとともにこの制御後
の初期反射電力値を保持し、この初期反射電力値
と加熱時間経過に伴なつて変化する反射電力値と
の差の電力変化量に基づいて前記高周波加熱熱源
の出力電力を制御する制御器とを有する高周波加
熱装置。 2 電力検出器は入射電力と反射電力を検出する
構成とし、反射電力と入射電力の相対比に基づい
て加熱開始時に前記相対比が予じめ設定した値以
下になるようにインピーダンス可変器を制御する
とともにこの制御後の初期相対値を保持し、この
初期相対値と加熱時間径過に伴なつて変化する相
対値との差の相対比変化量に基づいて高周波加熱
熱源の出力電力を制御した特許請求の範囲第1項
記載の高周波加熱装置。
[Scope of Claims] 1. A heating chamber that accommodates an object to be heated, a high-frequency heating heat source that generates microwave energy to supply power to the heating chamber, and a power source that controls incident power to the heating chamber and reflected power from the heating chamber. At least a power detector for detecting reflected power, a variable impedance device attached to a microwave energy transmission path between the power detector and the heating chamber, and a preset amount of reflected power at the start of heating. The variable impedance is controlled as follows, and the initial reflected power value after this control is held, and the power change amount is the difference between this initial reflected power value and the reflected power value that changes as the heating time elapses. and a controller that controls output power of the high-frequency heating heat source based on. 2 The power detector is configured to detect incident power and reflected power, and the variable impedance is controlled based on the relative ratio of reflected power and incident power so that the relative ratio becomes less than a preset value at the start of heating. At the same time, the initial relative value after this control was held, and the output power of the high-frequency heating heat source was controlled based on the relative ratio change amount of the difference between this initial relative value and the relative value that changed as the heating time elapsed. A high frequency heating device according to claim 1.
JP6360480A 1980-05-13 1980-05-13 High frequency heater Granted JPS56159085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6360480A JPS56159085A (en) 1980-05-13 1980-05-13 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6360480A JPS56159085A (en) 1980-05-13 1980-05-13 High frequency heater

Publications (2)

Publication Number Publication Date
JPS56159085A JPS56159085A (en) 1981-12-08
JPS6232595B2 true JPS6232595B2 (en) 1987-07-15

Family

ID=13234047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6360480A Granted JPS56159085A (en) 1980-05-13 1980-05-13 High frequency heater

Country Status (1)

Country Link
JP (1) JPS56159085A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054578U (en) * 1991-06-27 1993-01-22 理化工業株式会社 Heat dissipator for heating element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364533B1 (en) * 1999-10-14 2002-12-16 엘지전자 주식회사 Foreign matter collection device for washing machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533785A (en) * 1978-06-14 1980-03-10 Berstorff Gmbh Masch Hermann Method of and device for heating in induction by microwave energy
JPS5549632A (en) * 1978-10-05 1980-04-10 Tdk Corp Electronic oven

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533785A (en) * 1978-06-14 1980-03-10 Berstorff Gmbh Masch Hermann Method of and device for heating in induction by microwave energy
JPS5549632A (en) * 1978-10-05 1980-04-10 Tdk Corp Electronic oven

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054578U (en) * 1991-06-27 1993-01-22 理化工業株式会社 Heat dissipator for heating element

Also Published As

Publication number Publication date
JPS56159085A (en) 1981-12-08

Similar Documents

Publication Publication Date Title
US5075600A (en) Piezoelectrically actuated variable capacitor
EP0234528B1 (en) Apparatus for microwave heating of ceramic
JP4757664B2 (en) Microwave supply source device
JPS6232595B2 (en)
JP2004247128A (en) High-frequency heating device
JP3843818B2 (en) Gas cracker
US5319313A (en) Power coupler with adjustable coupling factor for accelerator cavities
US3621481A (en) Microwave energy phase shifter
CA2055362A1 (en) Microwave heating apparatus
JPS6315710B2 (en)
JP3019239B2 (en) microwave
JP2676940B2 (en) High frequency heating equipment
JPS62252184A (en) Gas laser device
JPH08195277A (en) High frequency heating device
WO2019140589A1 (en) Wireless power transfer system and transfer method therefor
JP3331279B2 (en) High frequency heating equipment
CN114672790B (en) Microwave plasma chemical vapor deposition system
JPS6228553B2 (en)
JPH05326134A (en) High-frequency heating device
JPS639357B2 (en)
CN109698107A (en) Surface wave plasma equipment
JP2615497B2 (en) High frequency heating equipment
JP3261188B2 (en) High frequency heating equipment
JPH07122356A (en) High frequency heater
JP3343559B2 (en) Automatic temperature control device