JP2004247128A - High-frequency heating device - Google Patents

High-frequency heating device Download PDF

Info

Publication number
JP2004247128A
JP2004247128A JP2003034840A JP2003034840A JP2004247128A JP 2004247128 A JP2004247128 A JP 2004247128A JP 2003034840 A JP2003034840 A JP 2003034840A JP 2003034840 A JP2003034840 A JP 2003034840A JP 2004247128 A JP2004247128 A JP 2004247128A
Authority
JP
Japan
Prior art keywords
value
power
impedance
heating
matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003034840A
Other languages
Japanese (ja)
Other versions
JP4120416B2 (en
JP2004247128A5 (en
Inventor
Tomotaka Nobue
等隆 信江
Kenji Yasui
健治 安井
Kazuhiko Asada
和彦 麻田
Koji Yoshino
浩二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003034840A priority Critical patent/JP4120416B2/en
Publication of JP2004247128A publication Critical patent/JP2004247128A/en
Publication of JP2004247128A5 publication Critical patent/JP2004247128A5/ja
Application granted granted Critical
Publication of JP4120416B2 publication Critical patent/JP4120416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of High-Frequency Heating Circuits (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency heating device capable of surely determining a finishing timing of a heated object. <P>SOLUTION: The device is provided with electrodes 12, 13 dielectrically heating the heated object 10, a high-frequency power source 15 generating a high frequency, a matching circuit 16 including a matching element 17 fitted between the high-frequency power source 15 and the electrodes 12, 13 and connected in series with the electrodes, a power detecting part 19, and a control part 21. The control part 21, after adjusting a matching state of the electrodes 12, 13 including the heated object at its initial heating period with the high-frequency power source 15, is to control only the matching element 17 connected in series in accordance with an elapse of heating time, and surely catches the finishing timing by simplifying behavioral judgment of an impedance of an electrode part including the heated object changing in accordance with a heating progress of the heated object to enable to automatically halt a heating operation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、被加熱物を電極で誘電加熱する高周波加熱装置に関するもので、特に、冷凍物の解凍加熱制御に特徴を有するものである。
【0002】
【従来の技術】
高周波加熱装置の代表である電子レンジは、被加熱物を直接的に加熱できるのでなべ釜を準備する必要がない簡便さでもって生活上の不可欠な機器になっている。また、この電子レンジの加熱の特徴は、加熱エネルギーを食品内部にまで供給できることであり、この特徴を冷凍食品の解凍に利用するということで冷凍食品が大量に流通してきた。
【0003】
電子レンジは、被加熱物を収納する加熱室の大きさが大概、幅寸法および奥行き寸法がそれぞれ30〜40cm、高さ寸法が20cm前後である。一方使用している周波数の波長は約12cmであり、加熱室内には強弱の電界分布が必ず生じ、さらには被加熱物の形状やその物理特性の影響が相乗されて局所加熱が発生することがある。冷凍食品の解凍においては、氷が解けて水になった領域に加熱エネルギーが集中するので局所加熱現象が顕著に現れ、部分煮えと未解凍とが共存してしまう問題を有している。
【0004】
一方、波長の長い高周波を利用し、加熱用の電極を用いて被加熱物を誘電加熱する方法は歴史が古く、いまでも工業用としてバッチ方式やベルトコンベア方式が用いられている。これらは大型の冷凍品の処理や冷凍品の多量処理のために大型の装置構成であり、かつ装置の操作も熟練者が行っている。
【0005】
一方、この加熱用の電極を用いた装置の家庭用装置への展開も古くから検討されてきたが、生活上の利便性、あるいは使用上の利便性の価値をユーザに提供できるまでには至っていない。従来のこの種高周波加熱装置としては、図8に示すような装置がある(例えば、特許文献1参照)。
【0006】
これは、図に示すように、高圧電源1および高周波電源2によって、加熱室3内の上部電極板4と下部電極板5の間に高周波の高電圧を供給し、両電極板4、5の間に高周波電界を生じさせることによって、両電極板4、5間に挟んだ被加熱物6を誘電加熱するものであった。
【0007】
【特許文献1】
特開平8−255682号公報
【0008】
【発明が解決しようとする課題】
しかしながら、前記従来の構成の高周波加熱装置では、被加熱物である冷凍物の形状を検知するためのセンサ類は備えられているものの、被加熱物の加熱の終了を適切に検知できる構成はなく、適切な仕上がり状態を得ることが難しく、加熱し過ぎた場合には煮えが発生すると同時に電力のムダ使いも起こり、逆に加熱不十分の場合は再度加熱を追加するなどの不具合を生じる課題を有していた。また、被加熱物の仕上がりを検知する方法としては、例えば表面温度を赤外線センサで検出する方法などがあるが、被加熱物の内部温度を検知することはできず、仕上がりを確実に検知することは難しかった。
【0009】
本発明は上記従来の課題を解決するもので、被加熱物の仕上がりタイミングを確実に判定する高周波加熱装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の高周波加熱装置は、被加熱物を含む電極のインピーダンス変化を利用するもので、制御部が加熱初期に被加熱物を含む電極と高周波電源との整合状態を調整するとともに、加熱時間経過に伴って電極に対して直列接続した整合素子のみを制御することとしたものである。
【0011】
これによって、被加熱物の加熱進行に伴って変化する被加熱物を含む電極部のインピーダンスの挙動判定を単純化し、仕上がりタイミングに到達する時点での被加熱物の物理変化に伴う電極部のインピーダンス変化の挙動を確実に捕らえることができ、加熱動作を自動的に停止させることによって、仕上がり状態が良く、電力のムダな消費も防ぐことができる。
【0012】
【発明の実施の形態】
請求項1に記載の発明は、被加熱物を誘電加熱する電極と、前記電極に給電する高周波を発生する高周波電源と、前記高周波電源と電極との間に設け電極に対して直列接続した整合素子を含む整合回路と、前記高周波電源と整合回路との間に設けた電力検知部と、前記電力検知部の検知信号に基づいて前記整合回路の整合素子の値を可変する制御部とを備え、前記制御部は加熱初期に被加熱物を含む電極と高周波電源との整合状態を調整するとともに、加熱時間経過に伴って前記直列接続した整合素子のみを制御することとした高周波加熱装置としたことにより、被加熱物の加熱進行に伴って変化する被加熱物を含む電極部のインピーダンスの挙動判定を単純化し、仕上がりタイミングに到達する時点での被加熱物の物理変化に伴う電極部のインピーダンス変化の挙動を確実に捕らえることができ、加熱動作を自動的に停止させることによって、仕上がり状態が良く、電力のムダな消費も防ぐことができる。
【0013】
請求項2に記載の発明は、制御部は、電力検知部が検知した反射電力が規定値を超過するまでは整合素子の制御を行わないこととした請求項1に記載の高周波加熱装置としたことにより、加熱初期の適切な整合状態形成の下で高周波電源の出力電力の被加熱物への供給を最大化し、被加熱物の内部の加熱を促進させ加熱時間の短縮化を図ることができる。
【0014】
請求項3に記載の発明は、制御部は、直列接続した整合素子のインピーダンス値を減少させる方向にのみ制御することとした請求項1に記載の高周波加熱装置としたことにより、被加熱物が加熱進行されることに伴う電極部のインピーダンス変化の挙動判定をさらに単純化することができる。
【0015】
請求項4に記載の発明は、制御部におけるインピーダンス値の減少程度の閾値は、反射電力が増加傾向と判定するまでを最大とした請求項3に記載の高周波加熱装置としたことにより、電極部側のインピーダンスを容量性インピーダンス領域に限定し、加熱進行に伴う反射電力の変化を増大方向のみに限定する制御とすることで、仕上がり検知の精度を高めることができる。
【0016】
請求項5に記載の発明は、制御部におけるインピーダンス値の減少程度の閾値は、電圧定在波比が一度低下した後、規定値を超過するまでとした請求項3に記載の高周波加熱装置としたことにより、入射電力と反射電力の両者の検知信号に基づき整合素子のインピーダンスの減少幅閾値を決めたことで、被加熱物へ供給する高周波電力の最大化をより確実に行うことができる。
【0017】
請求項6に記載の発明は、制御部は、電力検知部が検知する反射電力が規定値を超過した後、直列接続した整合素子のインダクタンス値を減少させることで、反射電力の値が増加傾向と判定したことを受けて加熱終了時間を決定する請求項1に記載の高周波加熱装置としたことにより、インピーダンス値を減少させたときに反射電力が増大するといういままでとは異なる変化に基づき、被加熱物の状態が仕上がり状態に近づいたと判定し、このタイミングに基づき最適な仕上がりを実現させることができる。
【0018】
請求項7に記載の発明は、規定値は、電力検知部が検知した入射電力に対する反射電力の比率を4%から20%の間の特定値とした請求項2または6に記載の高周波加熱装置としたことにより、4%未満では検知精度を確保するには高価な回路構成が要求されるが実用上の利便性はほとんど変わらないので無用の制御を解消できるし、20%超では、被加熱物に供給する電力量の減少が大きくなることで仕上がりまでの加熱時間が使用者の感覚として長くなってしまうことを解消させ、被加熱物の種類、大きさ、また加熱開始における被加熱物の温度などの条件が異なっても、精度の高い仕上がり検知が行える実用的な利便性をもった装置を提供できる。
【0019】
請求項8に記載の発明は、直列接続した整合素子は、誘導性インピーダンス素子とした請求項1、3、6のいずれか1項に記載の高周波加熱装置としたことにより、被加熱物を含む電極部が容量性インピーダンスをとることに対してインピーダンスを対峙させる上で簡単であり、被加熱物の種類や大きさが異なった場合でも制御部の制御内容を感覚的かつ一義的に行うことができる。
【0020】
【実施例】
以下、本発明の実施例について、図面を参照して説明する。
【0021】
(実施例1)
図1は本発明の実施例1における高周波加熱装置を示すものである。
【0022】
図において、10は冷凍物である被加熱物、11は被加熱物10を載置する絶縁材料からなる載置板、12、13は被加熱物10を挟んで位置する電極である。電極12は載置板11の下方直下に載置板11と略平行に設けた高圧側電極であり、電極13は被加熱物10の上方に配した2枚の電極板13a、13bよりなるアース側電極であり、電極板13a、13bは矢印のように可動構成とし、使用しない時には左右の壁面側に回転移動する。電極板13a、13bを使用状態にした時、電極13と載置板11との隙間は、略60mmとしている。14は電極12、13を収納配置した加熱空間であり、電極13と同電位としている。また、被加熱物10をこの加熱空間14に出し入れする扉(図示していない)が設けられている。
【0023】
15は電極12、13に給電する高周波電源であり、13.56MHz帯あるいは27.12MHz帯の高周波を発生する。16は高周波電源15と電極12、13との間に設けた整合回路であり、誘導性インピーダンス素子よりなる整合素子17と容量性インピーダンス素子よりなる整合素子18とで構成し、整合素子17は電極12に直列接続とし、整合素子18は電極12に直列接続した整合素子17と電極13との間に接続配置している。
【0024】
また、電極12に直列接続した整合素子17は、一部に誘導性インピーダンスを可変させる構成としている。この可変構成としては、例えば、コイルを伸縮させる構成やコイル内部に挿入するフェライトコア材の挿入長を変化させる構成などを用いる。また、並列接続の整合素子18は、容量可変コンデンサを用いたり、複数のコンデンサを接続したり切り離したりして容量を離散的に変化させる構成などを用いる。
【0025】
19は整合回路16と高周波電源15との間に設けた電力検知部であり、CM型SWR回路を用いて構成している。この電力検知部19は、高周波電源15から整合回路16を経て電極12、13側に給電される入射電力および電極12、13側から高周波電源15に戻ってくる反射電力を検出するものである。
【0026】
20は高周波電源15を構成する各回路に供給する電力を発生する駆動電源である。21は電力検知部19が検出する入射電力および反射電力の検知信号に基づいて整合回路16の各電極12に直列接続した整合素子17、18のインピーダンスを可変させる制御部で、駆動電源20の出力も制御する。
【0027】
この制御部21は、電力検知部19が検知した反射電力が規定値を超過するまでは電極12に直列接続した整合素子17の制御を行わないものである。これにより、加熱初期の適切な整合状態形成の下で高周波電源の出力電力の被加熱物10への供給を最大化し、被加熱物10の内部の加熱を促進させ加熱時間の短縮化を図ることができる。
【0028】
また制御部21は、電極12に直列接続した整合素子17のインピーダンス値を減少させる方向にのみ制御することとしている。これにより、被加熱物10が加熱進行されることに伴う電極部のインピーダンス変化の挙動判定をさらに単純化することができる。
【0029】
そして、制御部21におけるインピーダンス値の減少程度の閾値は、反射電力が増加傾向と判定するまでを最大とするか、電圧定在波比が一度低下した後、規定値を超過するまでとした。
【0030】
そして、反射電力が増加傾向と判定するまでを最大とする制御を実行することで、電極部側のインピーダンスを容量性インピーダンス領域に限定し、加熱進行に伴う反射電力の変化を増大方向のみに限定させることで、仕上がり検知の精度を高めることができる。
【0031】
また、制御部21におけるインピーダンス値の減少程度の閾値を、電圧定在波比が一度低下した後、規定値を超過するまでとする制御を実行することは、入射電力と反射電力の両者の検知信号に基づき整合素子のインピーダンスの減少幅閾値を決めることであり、被加熱物10へ供給する高周波電力の最大化をより確実に行うことができる。
【0032】
さらに、制御部21は、電力検知部19が検知する反射電力が規定値を超過した後、電極12に直列接続した整合素子17のインダクタンス値を減少させることで、反射電力の値が増加傾向と判定したことを受けて加熱終了時間を決定するものである。すなわち、直列接続した整合素子17のインピーダンス値を減少させたときに反射電力が増大するといういままでとは異なる変化に基づき、被加熱物10の状態が仕上がり状態に近づいたと判定し、このタイミングに基づき最適な仕上がりを実現させることができる。
【0033】
また、前記した規定値は、電力検知部19が検知した入射電力に対する反射電力の比率を4%から20%の間の特定値としたものである。入力電力に対する反射電力の比率が4%未満ではこの比率の検知精度を確保するには高価な回路構成が要求されるが実用上の利便性はほとんど変わらないので無用の制御を解消できるし、比率が20%超では、被加熱物10に供給する電力量の減少が大きくなることで仕上がりまでの加熱時間が使用者の感覚として長くなってしまうことを解消させ、被加熱物の種類、大きさ、また加熱開始における被加熱物の温度などの条件が異なっても、精度の高い仕上がり検知が行える実用的な利便性をもった装置を提供できる。
【0034】
次に上記構成の動作と作用について図2を用いて説明する。
【0035】
図は、整合回路16の動作と作用をスミスチャート上に示したものである。被加熱物10を載置板11の上に載置し、電極13を可動させて電極12と略平行な状態に電極13を設定した時の電極部のインピーダンスは、一例として2.0−j250Ωである(図2の中でこのインピーダンス点は点22である)。この電極部のインピーダンスを高周波電源15の出力インピーダンスである50Ωに変換する作用を行うものが整合回路16である。この整合回路16の動作の理想的な一例を図2に示している。すなわち、直列接続した整合素子17を適切なインピーダンス値にすることで、電極部のインピーダンス(点22)は、点23に移動し、さらに整合素子18を適切なインピーダンス値にすることで点23を点24(すなわち50Ω)に変換する。
【0036】
電極部のインピーダンスは、被加熱物10の形状や種類に応じて変化するが、基本的には容量性インピーダンス値であり、誘導性インピーダンスからなる整合素子17を直列に介在させることによりインピーダンスを対峙させ、整合の制御状態のイメージを視覚的かつ直感的に判断でき、整合回路16の制御の単純化に一役を担わせることができる。
【0037】
次に図3を用いて実際の被加熱物10の加熱進行に伴ってインピーダンスがどのように変化するかについて説明する。図は整合回路16の入力位置25(図1参照)から電極12、13側を見たときのインピーダンスの変化を示すものである。26〜28の破線の円は、VSWR(電圧定在波比)がそれぞれ、1.5、2.0、2.5を示す。これらのVSWR値は、電力検知部19が検知した入射電力に対する反射電力の比率の特定値として選択している。なお、それぞれのVSWRの値に対応する反射電力の入射電力に対する比率は、それぞれ、4.0%、11.1%、18.3%である。
【0038】
被加熱物10として、冷凍マグロ(−18度、340g)を用い、初期に整合回路16を調整して整合回路16の入力位置25から電極12、13側を見たときのインピーダンスを50Ω(図3の点29)に設定した後、冷凍マグロを自然解凍(約3時間)した時のインピーダンス変化を示している。インピーダンス変化の最終ポイント(図3の点30)において、被加熱物10である冷凍マグロの状態は、少し力を入れると形が撓る状態であり、ドリップは無かった。図の特性から、冷凍物の解凍が進むことで冷凍物の比誘電率が増大し、電極部のコンデンサ容量分が増大していくことと、解凍が進み氷結帯を通った後は、身縮みなどによりインピーダンス変化がいままでとは異なる挙動を示すことが認められる。この現象は、被加熱物10の形状を変えても同様であった。
【0039】
本実施例は、上述したとおり、解凍が進むことで生じるインピーダンス変化の現象に基づくものであり、この現象を利用して解凍の終了判定を実用化するものである。
【0040】
本実施例が提供する被加熱物である冷凍物の解凍方法と、その解凍終了検知の具体的な制御内容を図4および図5を用いて説明する。
【0041】
図4は加熱制御のフローチャートであり、図5は図4の加熱制御に係わる負荷インピーダンスの変化特性を示す。
【0042】
被加熱物10である冷凍物を載置し、開閉扉を閉じた後、装置の加熱開始キーが使用者によって押されると、制御部21が加熱開始信号を受けてスタートS100からの処理が始まる。まずS101にて初期整合調整を行う。この調整にあたり、制御部21は駆動電源20の出力を制御し、高周波電源15の高周波出力を100W未満に設定して動作させる。そして、電力検知部19から得られる入射電力と反射電力の検知信号に基づいて反射電力が極小(理想的にはゼロ)になるように整合回路16の整合素子17、18のインピーダンス値を変化させる。S101における整合調整度合いの一つの目安としては、例えばVSWR値が1.5以下として調整を行う。なお、この初期整合調整(S101)は調整時間に限度を持たせ、最長で30秒としている。
【0043】
初期整合調整(S101)が完了すると、S102にて駆動電源20を制御し、高周波電源15の出力を最大(例えば、300W)に設定し、S103に進む。
【0044】
S103では、最大出力の下で、電力検知部19から得られる入射電力Pfと反射電力Prを検知し、これら二つの電力値に基づいて、(数1)に基づいてVSWR値を求める。
【0045】
【数1】

Figure 2004247128
【0046】
S104では、S103で求めたVSWR値を規定値、すなわち選択した特定値(2.0)と比較し、この特定値以下の場合はS103に戻る。すなわち、加熱開始後、VSWR値が2.0を越えるまでは整合回路16の制御は行わない。この間、被加熱物10には最大出力が供給され、内部の昇温が促進される。
【0047】
S104でVSWR値が2.0を越えると、S105に進みフラグ1を立てて、S106に進む。S106では、現在の反射電力Prを基準の反射電力Pr0に代入し、S107の整合素子調整のステップに進む。このS107では、整合回路16の構成要素の一つである電極12に直列接続した整合素子17のインピーダンス値を規定値だけ減少させる。整合素子17のインピーダンスを減少させる方法としては、コイルを伸張させる方法やコイル内部に挿入するフェライトコア材の挿入長を短くする方法などを用いる。そして、この制御には、ステッピングモータによる回転駆動制御を使用し、ステッピングモータのステップ数を規定し規定の回転角度だけモータ出力軸を回転させることとしている。
【0048】
その後、S108に進み、電力検知部19から現在の反射電力Prを検知し、基準の反射電力Pr0と比較する。現在の反射電力Prが基準の反射電力Pr0より小さい場合は、S109に進みフラグ1を引っ込めてS106に戻る。S108で現在の反射電力Prが基準の反射電力Pr0以上の場合、S110に進み、現在の反射電力Prを基準の反射電力Pr0に代入し、S111の整合素子調整のステップに進む。このS111は前述したS107と同様に、整合回路16の構成要素の一つである電極12に直列接続した整合素子17のインピーダンス値をさらに規定値だけ減少させる制御を行う。その後、S112に進み、再びS108と同様の判定をする。すなわち、現在の反射電力Prが基準の反射電力Pr0より小さい場合は、S109に進みフラグ1を引っ込めてS106に戻る。
【0049】
S112で現在の反射電力Prが基準の反射電力Pr0以上の場合、S113に進み、フラグ1が立っているかどうかを判定し、立っていない場合はS103に戻り、立っている場合は、S114に進む。このS113では、整合回路16の電極12に直列接続した整合素子17のインピーダンス値を減少させる制御を2回繰返した時に、それぞれの時点での反射電力Prが基準の反射電力Pr0よりも大きい場合にのみS114に進む。すなわち、この状態において、インピーダンス値を減少させることは反射電力を増大させることと認識し、被加熱物10の解凍が仕上り状態にあると判定させている。この後、S114では、適当な時間だけ高周波電源15の動作を継続させ、S115に進み、高周波電源15の出力を停止させる。そして、加熱が終了したことを使用者に報知させる。
【0050】
このS114における時間は、加熱開始からこのS114のステップに到達するまでの総時間に予め規定した定数を乗じて得られる時間としたり、規定時間、例えば15秒、としたりする方法を採っている。
【0051】
なお、上記説明ではインピーダンス値を連続減少させる工程は2回としたが、これに限定されるものではない。
【0052】
以上に説明した制御内容に基づく電極側を見た時のインピーダンス変化の一例を図5に示す。図5中の3つの破線円は図3と同様のVSWR値を示す。S101の調整後のインピーダンスが点100、S105に進んだ時点のインピーダンスが点101(黒色四角)、再びS103に戻った時点のインピーダンスが点102、そして再びS105に進んだ時点のインピーダンスが点103、さらに再びS103に戻った時点のインピーダンスが点104、さらに再びS105に進んだ時点のインピーダンスが点105である。その後、S108の判定がYes(インピーダンス点106)、S112の判定がYes(インピーダンス点107)となり、S113でYesとなってS114に進む。この後、15秒加熱を継続しインピーダンス点108で加熱を終了させている。以上の動作により、適切な時点で解凍動作を終了させることができた。
【0053】
(実施例2)
次に、本発明の実施例2における高周波加熱装置について、図6および図7を用いて説明する。実施例1と基本構成は同一であるので説明を省略し、相違する制御内容についてのみ説明する。
【0054】
図6は加熱制御のフローチャートであり、図7は図6の加熱制御に係わる負荷インピーダンスの変化特性を示す。
【0055】
被加熱物10である冷凍物を載置し、開閉扉を閉じた後、装置の加熱開始キーが使用者によって押されると、制御部21が加熱開始信号を受けてスタートS200からの処理が始まる。まずS201にて初期整合調整を行う。この調整内容は実施例1と同様であり説明は省略する。
【0056】
初期整合調整(S201)が完了すると、S202にて駆動電源20を制御し、高周波電源15の出力を最大(例えば、300W)に設定し、S203に進む。
【0057】
S203では、最大出力の下で、電力検知部19から得られる入射電力Pfと反射電力Prを検知し、これら二つの電力値に基づいて、(数1)によりVSWR値を求める。
【0058】
S204では、S203で求めたVSWR値を第一の規定値、すなわち選択した第一の特定値(2.0)と比較し、第一の特定値以下の場合はS203に戻る。すなわち、加熱開始後、VSWR値が2.0を越えるまでは整合回路16の制御は行わない。この間、被加熱物10は最大出力が供給され、内部の昇温が促進される。
【0059】
S204でVSWR値が2.0を越えると、S205に進みフラグ1を立てて、S206に進む。S206は整合素子調整のステップであり、整合回路16の構成要素の一つである電極12に直列接続した整合素子17のインピーダンス値を規定値だけ減少させる。整合素子17のインピーダンスを減少させる方法も、実施例1と同様であり説明を省略する。
【0060】
その後、S207に進み、電力検知部19から得られる入射電力Pfと反射電力Prを検知し、これら二つの電力値に基づいて、(数1)によりVSWR値を求め、S208に進む。S208では現在のVSWRの値を第二の規定値、すなわち選択した第二の特定値(1.8)と比較する。現在のVSWR値が第二の特定値より小さい場合は、S209に進みフラグ1を引っ込めてS206に戻る。S208で現在のVSWR値が第二の特定値以上の場合、S210の整合素子調整のステップに進む。このS210は前述したS206と同様に整合回路16の構成要素の一つである電極12に直列接続した整合素子17のインピーダンス値をさらに規定値だけ減少させる制御を行う。その後、S211に進み、再び電力検知部19から得られる入射電力Pfと反射電力Prを検知し、これら二つの電力値に基づいて、(数1)によりVSWR値を求め、S212に進む。
【0061】
S212では、現在のVSWR値を第三の規定値、すなわち選択した第三の特定値(1.5)と比較し、S208と同様の判定をする。すなわち、現在のVSWR値が第三の特定値より小さい場合は、S209に進みフラグ1を引っ込めてS206に戻る。S212で現在のVSWR値が第三の特定値以上の場合、S213に進み、フラグ1が立っているかどうかを判定し、立っていない場合はS203に戻り、立っている場合は、S214に進む。
【0062】
このS213では、整合回路16の電極12に直列接続した整合素子17のインピーダンス値を減少させる制御を2回繰返した時に、それぞれの時点でのVSWR値がそれぞれの時点での規定値(すなわち選択した特定値)よりも大きい場合にのみS214に進む。すなわち、この状態において、電極12に直列接続した整合素子17のインピーダンス値を減少させることは反射電力を増大させることと認識し、被加熱物10の解凍が仕上り状態にあると判定させている。この後、S214では、適当な時間だけ高周波電源15の動作を継続させてS215に進んで高周波電源15の出力を停止させる。そして、加熱が終了したことを使用者に報知させる。
【0063】
このS214における時間についても実施例1と同様であり説明は省略する。なお、上記説明ではインピーダンス値を連続減少させる工程は2回としたが、これに限定されるものではない。
【0064】
以上に説明した実施例2の制御内容に基づく電極側を見た時のインピーダンス変化の一例を図7に示す。図7中の3つの破線円は図3と同様のVSWR値を示す。S201の調整後のインピーダンスが点200、S205に進んだ時点のインピーダンスが点201(黒色四角)、再びS203に戻った時点のインピーダンスが点202、そして再びS205に進んだ時点のインピーダンスが点203、さらに再びS203に戻った時点のインピーダンスが点204、さらに再びS205に進んだ時点のインピーダンスが点205である。その後、S208の判定がYes(インピーダンス点206)、S212の判定がYes(インピーダンス点207)となり、S213でYesとなってS214に進む。この後、15秒加熱を継続しインピーダンス点208で加熱を終了させている。以上の動作により、適切な時点で解凍動作を終了させることができた。
【0065】
【発明の効果】
以上のように、本発明の高周波加熱装置は、被加熱物を含む電極のインピーダンス変化を利用するもので、制御部が加熱初期に被加熱物を含む電極と高周波電源との整合状態を調整するとともに、加熱時間経過に伴って電極に対して直列接続の整合素子のみを制御することにより、被加熱物の加熱進行に伴って変化する被加熱物を含む電極部のインピーダンスの挙動判定を単純化し、仕上がりタイミングに到達する時点での被加熱物の物理変化に伴う電極部のインピーダンス変化の挙動を確実に捕らえることができ、加熱動作を自動的に停止させることによって、仕上がり状態が良く、電力のムダな消費も防ぐことができる。
【図面の簡単な説明】
【図1】本発明の実施例1における高周波加熱装置の構成図
【図2】同高周波加熱装置の整合回路の作用を示すスミスチャート
【図3】同高周波加熱装置における冷凍物の解凍に伴うインピーダンス変化特性を示すスミスチャート
【図4】同高周波加熱装置における制御部のフローチャート
【図5】同高周波加熱装置における制御部のフローチャートに基づくインピーダンス変化特性を示すスミスチャート
【図6】本発明の実施例2における高周波加熱装置の制御部のフローチャート
【図7】同高周波加熱装置における制御部のフローチャートに基づくインピーダンス変化特性を示すスミスチャート
【図8】従来の高周波加熱装置の構成図
【符号の説明】
10 被加熱物
12、13 電極
15 高周波電源
16 整合回路
17 直列接続した整合素子
18 整合素子
19 電力検知部
21 制御部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency heating device for dielectrically heating an object to be heated with an electrode, and particularly has a feature in thawing heating control of frozen material.
[0002]
[Prior art]
2. Description of the Related Art A microwave oven, which is a typical example of a high-frequency heating device, has become an indispensable device in daily life because it can directly heat an object to be heated, so that it is not necessary to prepare a pot. The feature of the heating of the microwave oven is that heating energy can be supplied to the inside of the food, and the frozen food has been distributed in large quantities by utilizing this feature for thawing the frozen food.
[0003]
2. Description of the Related Art In a microwave oven, a heating chamber for storing an object to be heated generally has a size of about 30 to 40 cm in width and depth, and about 20 cm in height. On the other hand, the wavelength of the frequency used is about 12 cm, a strong and weak electric field distribution always occurs in the heating chamber, and the local heating may occur due to the synergistic effect of the shape of the object to be heated and its physical characteristics. is there. In the thawing of frozen foods, the heating energy is concentrated in the region where the ice has melted and turned into water, so that a local heating phenomenon appears remarkably, and there is a problem that partially boiled and unthawed coexist.
[0004]
On the other hand, the method of dielectrically heating an object to be heated using a heating electrode using a high frequency having a long wavelength has a long history, and a batch method or a belt conveyor method is still used for industrial use. These are large-sized apparatus configurations for processing large-sized frozen products and large-scale processing of frozen products, and the operation of the apparatus is also performed by skilled personnel.
[0005]
On the other hand, the application of the device using the heating electrode to a home device has been considered for a long time, but it has not been possible to provide users with the value of convenience in life or convenience in use. Not in. As a conventional high-frequency heating apparatus of this type, there is an apparatus as shown in FIG. 8 (for example, see Patent Document 1).
[0006]
As shown in the figure, a high-frequency power is supplied between the upper electrode plate 4 and the lower electrode plate 5 in the heating chamber 3 by the high-voltage power supply 1 and the high-frequency power supply 2, The object to be heated 6 sandwiched between the two electrode plates 4 and 5 is dielectrically heated by generating a high-frequency electric field therebetween.
[0007]
[Patent Document 1]
JP-A-8-255682
[0008]
[Problems to be solved by the invention]
However, in the high-frequency heating device having the conventional configuration, although sensors for detecting the shape of the frozen material to be heated are provided, there is no configuration capable of appropriately detecting the end of heating of the heated object. However, it is difficult to obtain an appropriate finish, and if overheating occurs, boiling may occur, and at the same time wasteful use of electric power may occur.If heating is insufficient, heating may be added again. Had. Further, as a method of detecting the finish of the object to be heated, for example, there is a method of detecting the surface temperature with an infrared sensor, but it is not possible to detect the internal temperature of the object to be heated, and it is necessary to reliably detect the finish. Was difficult.
[0009]
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a high-frequency heating device that reliably determines a finish timing of an object to be heated.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the high-frequency heating device of the present invention utilizes an impedance change of an electrode including an object to be heated. Is adjusted, and only the matching elements connected in series to the electrodes are controlled as the heating time elapses.
[0011]
This simplifies the behavior determination of the impedance of the electrode unit including the object to be heated, which changes with the progress of heating of the object to be heated, and the impedance of the electrode unit due to the physical change of the object to be heated at the time of finishing. The change behavior can be reliably captured, and the heating operation is automatically stopped, so that the finished state is good and wasteful consumption of power can be prevented.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, an electrode for dielectrically heating an object to be heated, a high frequency power supply for generating a high frequency for supplying power to the electrode, and a matching provided between the high frequency power supply and the electrode and connected in series to the electrode. A matching circuit including an element, a power detection unit provided between the high-frequency power supply and the matching circuit, and a control unit that varies a value of the matching element of the matching circuit based on a detection signal of the power detection unit. The control unit adjusts the matching state between the electrode including the object to be heated and the high-frequency power source in the initial stage of heating, and controls only the series-connected matching elements as the heating time elapses. This simplifies the determination of the impedance behavior of the electrode section including the object to be heated, which changes with the progress of heating of the object to be heated, and allows the electrode section associated with the physical change of the object to be heated at the finish timing. The behavior of the impedance changes can be reliably captured, by the heating operation automatically stopped, finished state is good, it can be prevented even power unnecessary consumption.
[0013]
The invention according to claim 2 is the high-frequency heating device according to claim 1, wherein the control unit does not control the matching element until the reflected power detected by the power detection unit exceeds a specified value. Thereby, the supply of the output power of the high-frequency power supply to the object to be heated can be maximized under an appropriate matching state at the beginning of heating, and the heating of the object to be heated can be promoted to shorten the heating time. .
[0014]
According to a third aspect of the present invention, the control unit controls only the direction in which the impedance value of the series-connected matching elements is reduced in the high-frequency heating apparatus according to the first aspect. It is possible to further simplify the behavior determination of the change in the impedance of the electrode unit caused by the progress of heating.
[0015]
According to a fourth aspect of the present invention, in the high frequency heating device according to the third aspect, the threshold value of the degree of decrease in the impedance value in the control unit is set to be maximum until the reflected power is determined to be increasing. By limiting the impedance on the side to the capacitive impedance region and controlling the change in reflected power with the progress of heating only in the increasing direction, the accuracy of the finish detection can be improved.
[0016]
The invention according to claim 5 is the high-frequency heating apparatus according to claim 3, wherein the threshold value of the degree of decrease in the impedance value in the control unit is set such that the voltage standing wave ratio once drops and then exceeds a specified value. By doing so, the threshold of the width of decrease in the impedance of the matching element is determined based on the detection signals of both the incident power and the reflected power, so that the high-frequency power supplied to the object to be heated can be more reliably maximized.
[0017]
According to a sixth aspect of the present invention, after the reflected power detected by the power detection unit exceeds the specified value, the control unit decreases the inductance value of the series-connected matching elements, thereby increasing the value of the reflected power. By determining the heating end time in response to the determination that the high-frequency heating device according to claim 1, based on a different change that the reflected power increases when the impedance value is reduced, It is determined that the state of the object to be heated is close to the finished state, and the optimum finished state can be realized based on this timing.
[0018]
According to a seventh aspect of the present invention, in the high frequency heating apparatus according to the second or sixth aspect, the prescribed value is a specific value between 4% and 20% of a ratio of the reflected power to the incident power detected by the power detection unit. If it is less than 4%, an expensive circuit configuration is required to secure the detection accuracy, but practical convenience is hardly changed, so that unnecessary control can be eliminated. This eliminates the need for the user to increase the heating time before finishing due to the large decrease in the amount of power supplied to the object, and the type and size of the object to be heated and the It is possible to provide a practically convenient device capable of performing highly accurate finish detection even when conditions such as temperature are different.
[0019]
The invention according to claim 8 includes a high-frequency heating device according to any one of claims 1, 3, and 6, wherein the matching elements connected in series include an object to be heated. It is easy to make the electrodes face the impedance with respect to the capacitive impedance, and it is possible to perform the control contents of the control unit intuitively and uniquely even when the type and size of the object to be heated are different. it can.
[0020]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
(Example 1)
FIG. 1 shows a high-frequency heating device according to a first embodiment of the present invention.
[0022]
In the figure, reference numeral 10 denotes an object to be heated, which is a frozen product; 11, a mounting plate made of an insulating material on which the object to be heated 10 is to be mounted; The electrode 12 is a high voltage side electrode provided immediately below the mounting plate 11 and substantially in parallel with the mounting plate 11, and the electrode 13 is a ground made up of two electrode plates 13 a and 13 b disposed above the object 10 to be heated. The electrode plates 13a, 13b are movable as shown by arrows, and rotate to the left and right wall surfaces when not in use. When the electrode plates 13a and 13b are used, the gap between the electrode 13 and the mounting plate 11 is approximately 60 mm. Reference numeral 14 denotes a heating space in which the electrodes 12 and 13 are housed and arranged, and has the same potential as the electrode 13. Further, a door (not shown) for taking the object to be heated 10 into and out of the heating space 14 is provided.
[0023]
Reference numeral 15 denotes a high frequency power supply for supplying power to the electrodes 12 and 13, which generates a high frequency in a 13.56 MHz band or a 27.12 MHz band. Reference numeral 16 denotes a matching circuit provided between the high-frequency power supply 15 and the electrodes 12 and 13. The matching circuit 16 includes a matching element 17 formed of an inductive impedance element and a matching element 18 formed of a capacitive impedance element. The matching element 18 is connected between the electrode 13 and the matching element 17 connected in series to the electrode 12.
[0024]
The matching element 17 connected in series to the electrode 12 is configured to partially change the inductive impedance. As this variable configuration, for example, a configuration that expands and contracts the coil, a configuration that changes the insertion length of the ferrite core material inserted inside the coil, and the like are used. Further, the matching element 18 connected in parallel uses a variable capacitance capacitor, or connects and disconnects a plurality of capacitors to discretely change the capacitance.
[0025]
Reference numeral 19 denotes a power detection unit provided between the matching circuit 16 and the high-frequency power supply 15, and is configured using a CM-type SWR circuit. The power detector 19 detects the incident power supplied from the high frequency power supply 15 to the electrodes 12 and 13 via the matching circuit 16 and the reflected power returning to the high frequency power supply 15 from the electrodes 12 and 13.
[0026]
Reference numeral 20 denotes a drive power supply that generates power to be supplied to each circuit constituting the high-frequency power supply 15. A control unit 21 changes the impedance of matching elements 17 and 18 connected in series to each electrode 12 of the matching circuit 16 based on detection signals of incident power and reflected power detected by the power detection unit 19. Also control.
[0027]
The control unit 21 does not control the matching element 17 connected in series to the electrode 12 until the reflected power detected by the power detection unit 19 exceeds a specified value. Thereby, the supply of the output power of the high-frequency power supply to the object to be heated 10 is maximized under an appropriate matching state at the initial stage of heating, the heating of the inside of the object to be heated 10 is promoted, and the heating time is shortened. Can be.
[0028]
Further, the control unit 21 performs control only in the direction of decreasing the impedance value of the matching element 17 connected in series to the electrode 12. This makes it possible to further simplify the determination of the behavior of the impedance change of the electrode portion caused by the heating of the object 10 to be heated.
[0029]
Then, the threshold value of the degree of decrease in the impedance value in the control unit 21 is set to a maximum value until the reflected power is determined to be increasing, or until the voltage standing wave ratio once decreases and exceeds a specified value.
[0030]
By performing control to maximize the reflected power until it is determined that the reflected power is increasing, the impedance on the electrode side is limited to the capacitive impedance region, and the change in the reflected power accompanying the progress of heating is limited only to the increasing direction. By doing so, the accuracy of the finish detection can be improved.
[0031]
Executing the control in which the threshold value of the degree of decrease in the impedance value in the control unit 21 until the voltage standing wave ratio once decreases and exceeds the specified value is executed by detecting both the incident power and the reflected power. This is to determine the threshold value of the decrease width of the impedance of the matching element based on the signal, so that the high-frequency power supplied to the object to be heated 10 can be maximized more reliably.
[0032]
Furthermore, after the reflected power detected by the power detection unit 19 exceeds the specified value, the control unit 21 decreases the inductance value of the matching element 17 connected in series to the electrode 12, thereby increasing the reflected power value. The heating end time is determined based on the determination. That is, it is determined that the state of the object to be heated 10 is close to the finished state based on a different change that the reflected power increases when the impedance value of the matching element 17 connected in series is reduced. Based on this, an optimal finish can be realized.
[0033]
Further, the above-mentioned specified value is a value in which the ratio of the reflected power to the incident power detected by the power detection unit 19 is a specific value between 4% and 20%. If the ratio of the reflected power to the input power is less than 4%, an expensive circuit configuration is required to secure the detection accuracy of this ratio, but practical convenience is hardly changed, and unnecessary control can be eliminated. Exceeds 20%, the decrease in the amount of electric power supplied to the object to be heated 10 is increased, so that the heating time until finishing is lengthened as a user's feeling, and the type and size of the object to be heated are eliminated. Further, even if conditions such as the temperature of the object to be heated at the start of heating are different, it is possible to provide a practically convenient device capable of performing highly accurate finish detection.
[0034]
Next, the operation and operation of the above configuration will be described with reference to FIG.
[0035]
The figure shows the operation and operation of the matching circuit 16 on a Smith chart. The impedance of the electrode portion when the object to be heated 10 is mounted on the mounting plate 11 and the electrode 13 is moved to set the electrode 13 in a state substantially parallel to the electrode 12 is, for example, 2.0-j250Ω. (This impedance point is point 22 in FIG. 2). The matching circuit 16 performs an operation of converting the impedance of the electrode section into 50Ω, which is the output impedance of the high frequency power supply 15. An ideal example of the operation of the matching circuit 16 is shown in FIG. That is, by setting the matching element 17 connected in series to an appropriate impedance value, the impedance of the electrode unit (point 22) moves to the point 23, and the matching element 18 is set to an appropriate impedance value to change the point 23 to an appropriate impedance value. Convert to point 24 (ie, 50Ω).
[0036]
Although the impedance of the electrode portion changes according to the shape and type of the object to be heated 10, it is basically a capacitive impedance value, and the impedance is opposed by interposing a matching element 17 made of inductive impedance in series. Thus, the image of the matching control state can be visually and intuitively determined, and can play a role in simplifying the control of the matching circuit 16.
[0037]
Next, how the impedance changes with the actual progress of heating the object to be heated 10 will be described with reference to FIG. The figure shows a change in impedance when the electrodes 12 and 13 are viewed from the input position 25 of the matching circuit 16 (see FIG. 1). The dashed circles 26 to 28 indicate VSWRs (voltage standing wave ratios) of 1.5, 2.0, and 2.5, respectively. These VSWR values are selected as specific values of the ratio of the reflected power to the incident power detected by the power detection unit 19. The ratio of the reflected power to the incident power corresponding to each VSWR value is 4.0%, 11.1%, and 18.3%, respectively.
[0038]
A frozen tuna (−18 degrees, 340 g) is used as the object to be heated 10, and the matching circuit 16 is initially adjusted to have an impedance of 50Ω when the electrodes 12 and 13 are viewed from the input position 25 of the matching circuit 16. 3 shows the impedance change when the frozen tuna is naturally thawed (about 3 hours) after setting at point 29). At the final point of the impedance change (point 30 in FIG. 3), the state of the frozen tuna, which is the object to be heated 10, is such that the shape bends when a little force is applied, and there is no drip. From the characteristics in the figure, as the thawing of the frozen product progresses, the relative permittivity of the frozen product increases, and the capacitance of the capacitor in the electrode section increases. It is recognized that the impedance change shows a different behavior due to the above. This phenomenon was the same even when the shape of the object to be heated 10 was changed.
[0039]
As described above, this embodiment is based on the phenomenon of impedance change caused by the progress of defrosting, and makes practical use of this phenomenon to determine the end of defrosting.
[0040]
A method of thawing a frozen material, which is a heated object, provided by the present embodiment and specific control contents for detecting the end of thawing will be described with reference to FIGS. 4 and 5.
[0041]
FIG. 4 is a flowchart of the heating control, and FIG. 5 shows a change characteristic of a load impedance related to the heating control of FIG.
[0042]
After placing the frozen object as the object to be heated 10 and closing the opening / closing door, when the user presses the heating start key of the apparatus, the control unit 21 receives a heating start signal and starts the processing from start S100. . First, an initial alignment adjustment is performed in S101. In this adjustment, the control unit 21 controls the output of the drive power supply 20 and operates the high-frequency power supply 15 with the high-frequency output set to less than 100 W. Then, the impedance values of the matching elements 17 and 18 of the matching circuit 16 are changed based on the detection signals of the incident power and the reflected power obtained from the power detector 19 so that the reflected power is minimized (ideally, zero). . As one guide of the degree of matching adjustment in S101, for example, adjustment is performed with a VSWR value of 1.5 or less. Note that the initial alignment adjustment (S101) has a limit to the adjustment time, which is set to a maximum of 30 seconds.
[0043]
When the initial matching adjustment (S101) is completed, the driving power supply 20 is controlled in S102, the output of the high-frequency power supply 15 is set to the maximum (for example, 300 W), and the process proceeds to S103.
[0044]
In S103, the incident power Pf and the reflected power Pr obtained from the power detection unit 19 are detected under the maximum output, and a VSWR value is obtained based on (Equation 1) based on these two power values.
[0045]
(Equation 1)
Figure 2004247128
[0046]
In S104, the VSWR value obtained in S103 is compared with a specified value, that is, the selected specific value (2.0). When the VSWR value is equal to or smaller than the specific value, the process returns to S103. That is, after the start of heating, the control of the matching circuit 16 is not performed until the VSWR value exceeds 2.0. During this time, the maximum output is supplied to the object to be heated 10, and the internal temperature rise is promoted.
[0047]
If the VSWR value exceeds 2.0 in S104, the process proceeds to S105, sets a flag 1, and proceeds to S106. In S106, the current reflected power Pr is substituted for the reference reflected power Pr0, and the process proceeds to the matching element adjustment step in S107. In S107, the impedance value of the matching element 17 connected in series to the electrode 12, which is one of the components of the matching circuit 16, is reduced by a specified value. As a method of reducing the impedance of the matching element 17, a method of extending the coil, a method of shortening the insertion length of the ferrite core material inserted inside the coil, or the like is used. For this control, rotation drive control by a stepping motor is used, the number of steps of the stepping motor is defined, and the motor output shaft is rotated by a specified rotation angle.
[0048]
Thereafter, the process proceeds to S108, where the current reflected power Pr is detected from the power detection unit 19, and is compared with the reference reflected power Pr0. If the current reflected power Pr is smaller than the reference reflected power Pr0, the process proceeds to S109, the flag 1 is retracted, and the process returns to S106. If the current reflected power Pr is equal to or greater than the reference reflected power Pr0 in S108, the process proceeds to S110, where the current reflected power Pr is substituted for the reference reflected power Pr0, and proceeds to the matching element adjustment step in S111. In step S111, as in step S107, control is performed to further reduce the impedance value of the matching element 17 connected in series to the electrode 12, which is one of the components of the matching circuit 16, by a specified value. Thereafter, the process proceeds to S112, and the same determination as in S108 is performed again. That is, when the current reflected power Pr is smaller than the reference reflected power Pr0, the process proceeds to S109, the flag 1 is retracted, and the process returns to S106.
[0049]
If the current reflected power Pr is equal to or greater than the reference reflected power Pr0 in S112, the process proceeds to S113, and it is determined whether the flag 1 is set. If not, the process returns to S103. . In S113, when the control for reducing the impedance value of the matching element 17 connected in series to the electrode 12 of the matching circuit 16 is repeated twice, when the reflected power Pr at each time point is larger than the reference reflected power Pr0. Only proceeds to S114. That is, in this state, it is recognized that decreasing the impedance value increases the reflected power, and the thawing of the object to be heated 10 is determined to be in a finished state. Thereafter, in S114, the operation of the high-frequency power supply 15 is continued for an appropriate time, and the process proceeds to S115, in which the output of the high-frequency power supply 15 is stopped. Then, the user is notified that the heating is completed.
[0050]
The time in step S114 is a time obtained by multiplying the total time from the start of heating to the step in step S114 by a predetermined constant, or a specified time, for example, 15 seconds.
[0051]
In the above description, the process of continuously decreasing the impedance value is performed twice, but the present invention is not limited to this.
[0052]
FIG. 5 shows an example of an impedance change when the electrode side is viewed based on the control contents described above. The three broken circles in FIG. 5 indicate the same VSWR values as in FIG. The impedance after the adjustment in S101 is point 100, the impedance at the point when the process proceeds to S105 is point 101 (black square), the impedance when the process returns to S103 is point 102, and the impedance when the process again proceeds to S105 is the point 103. Further, the impedance when returning to S103 again is point 104, and the impedance when further proceeding to S105 is point 105. Thereafter, the determination in S108 is Yes (impedance point 106), the determination in S112 is Yes (impedance point 107), and the determination in S113 is Yes, and the process proceeds to S114. Thereafter, heating is continued for 15 seconds, and the heating is terminated at the impedance point 108. With the above operation, the decompression operation can be completed at an appropriate time.
[0053]
(Example 2)
Next, a high-frequency heating device according to a second embodiment of the present invention will be described with reference to FIGS. Since the basic configuration is the same as that of the first embodiment, a description thereof will be omitted, and only different control contents will be described.
[0054]
FIG. 6 is a flowchart of the heating control, and FIG. 7 shows a change characteristic of the load impedance related to the heating control of FIG.
[0055]
After placing the frozen object as the object to be heated 10 and closing the opening / closing door, when the user presses the heating start key of the apparatus, the control unit 21 receives a heating start signal and starts the processing from start S200. . First, initial alignment adjustment is performed in S201. The details of this adjustment are the same as in the first embodiment, and a description thereof will be omitted.
[0056]
When the initial matching adjustment (S201) is completed, the driving power supply 20 is controlled in S202, the output of the high-frequency power supply 15 is set to the maximum (for example, 300 W), and the process proceeds to S203.
[0057]
In S203, the incident power Pf and the reflected power Pr obtained from the power detection unit 19 are detected under the maximum output, and the VSWR value is obtained from (Equation 1) based on these two power values.
[0058]
In S204, the VSWR value obtained in S203 is compared with the first specified value, that is, the selected first specific value (2.0). When the VSWR value is equal to or smaller than the first specific value, the process returns to S203. That is, after the start of heating, the control of the matching circuit 16 is not performed until the VSWR value exceeds 2.0. During this time, the heated object 10 is supplied with the maximum output, and the internal temperature rise is promoted.
[0059]
If the VSWR value exceeds 2.0 in S204, the process proceeds to S205, a flag 1 is set, and the process proceeds to S206. S206 is a matching element adjustment step, in which the impedance value of the matching element 17 connected in series to the electrode 12, which is one of the components of the matching circuit 16, is reduced by a specified value. The method for reducing the impedance of the matching element 17 is also the same as in the first embodiment, and a description thereof will be omitted.
[0060]
Thereafter, the process proceeds to S207, where the incident power Pf and the reflected power Pr obtained from the power detection unit 19 are detected, and based on these two power values, the VSWR value is obtained by (Equation 1), and the process proceeds to S208. In S208, the current VSWR value is compared with a second specified value, that is, the selected second specific value (1.8). If the current VSWR value is smaller than the second specific value, the process proceeds to S209, retracts the flag 1, and returns to S206. When the current VSWR value is equal to or more than the second specific value in S208, the process proceeds to the matching element adjustment step in S210. In step S210, as in step S206, control is performed to further reduce the impedance value of the matching element 17 connected in series to the electrode 12, which is one of the components of the matching circuit 16, by a specified value. Thereafter, the process proceeds to S211, the incident power Pf and the reflected power Pr obtained from the power detector 19 are detected again, and based on these two power values, the VSWR value is obtained by (Equation 1), and the process proceeds to S212.
[0061]
In S212, the current VSWR value is compared with a third specified value, that is, the selected third specific value (1.5), and the same determination as in S208 is performed. That is, if the current VSWR value is smaller than the third specific value, the process proceeds to S209, retracts the flag 1, and returns to S206. If the current VSWR value is equal to or more than the third specific value in S212, the process proceeds to S213, and it is determined whether the flag 1 is set. If not, the process returns to S203. If the flag is set, the process proceeds to S214.
[0062]
In S213, when the control for reducing the impedance value of the matching element 17 connected in series to the electrode 12 of the matching circuit 16 is repeated twice, the VSWR value at each time becomes the specified value at each time (that is, the selected value). Only when it is larger than (specific value), the process proceeds to S214. That is, in this state, it is recognized that decreasing the impedance value of the matching element 17 connected in series to the electrode 12 increases the reflected power, and the thawing of the object to be heated 10 is determined to be in a finished state. Thereafter, in S214, the operation of the high-frequency power supply 15 is continued for an appropriate time, and the process proceeds to S215, in which the output of the high-frequency power supply 15 is stopped. Then, the user is notified that the heating is completed.
[0063]
The time in step S214 is the same as in the first embodiment, and a description thereof will not be repeated. In the above description, the process of continuously decreasing the impedance value is performed twice, but the present invention is not limited to this.
[0064]
FIG. 7 shows an example of an impedance change when the electrode side is viewed based on the control content of the second embodiment described above. Three dashed circles in FIG. 7 indicate the same VSWR values as in FIG. The impedance after the adjustment in S201 is point 200, the impedance at the time when the process proceeds to S205 is a point 201 (black square), the impedance at the time when the process returns to S203 is the point 202, and the impedance when the process again proceeds to S205 is the point 203. Further, the impedance when returning to S203 is point 204, and the impedance when returning to S205 is point 205. Thereafter, the determination in S208 is Yes (impedance point 206), the determination in S212 is Yes (impedance point 207), and the determination in S213 is Yes, and the process proceeds to S214. Thereafter, heating is continued for 15 seconds, and the heating is terminated at the impedance point 208. With the above operation, the decompression operation can be completed at an appropriate time.
[0065]
【The invention's effect】
As described above, the high-frequency heating device of the present invention utilizes the impedance change of the electrode including the object to be heated, and the control unit adjusts the matching state between the electrode including the object to be heated and the high-frequency power supply in the initial stage of heating. At the same time, by controlling only the matching element connected in series to the electrode as the heating time elapses, the impedance behavior of the electrode section including the object to be heated, which changes as the heating of the object to be heated, is simplified. However, the behavior of the impedance change of the electrode portion due to the physical change of the object to be heated at the time when the finishing timing is reached can be reliably grasped, and by automatically stopping the heating operation, the finished state is good and the power consumption is good. Wasteful consumption can also be prevented.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a high-frequency heating device according to a first embodiment of the present invention.
FIG. 2 is a Smith chart showing the operation of a matching circuit of the high-frequency heating device.
FIG. 3 is a Smith chart showing an impedance change characteristic of the high-frequency heating device with thawing of a frozen material.
FIG. 4 is a flowchart of a control unit in the high-frequency heating device.
FIG. 5 is a Smith chart showing impedance change characteristics based on a flowchart of a control unit in the high-frequency heating device.
FIG. 6 is a flowchart of a control unit of the high-frequency heating device according to the second embodiment of the present invention.
FIG. 7 is a Smith chart showing impedance change characteristics based on a flowchart of a control unit in the high-frequency heating device.
FIG. 8 is a configuration diagram of a conventional high-frequency heating device.
[Explanation of symbols]
10 Heated object
12, 13 electrodes
15 High frequency power supply
16 Matching circuit
17 Matching elements connected in series
18 Matching element
19 Power detector
21 Control unit

Claims (8)

被加熱物を誘電加熱する電極と、前記電極に給電する高周波を発生する高周波電源と、前記高周波電源と電極との間に設け電極に対して直列接続した整合素子を含む整合回路と、前記高周波電源と整合回路との間に設けた電力検知部と、前記電力検知部の検知信号に基づいて前記整合回路の整合素子の値を可変する制御部とを備え、前記制御部は加熱初期に被加熱物を含む電極と高周波電源との整合状態を調整するとともに、加熱時間経過に伴って前記直列接続した整合素子のみを制御することとした高周波加熱装置。An electrode for dielectrically heating the object to be heated, a high-frequency power supply for generating a high-frequency power supplied to the electrode, a matching circuit including a matching element provided between the high-frequency power supply and the electrode and connected in series to the electrode; A power detection unit provided between the power supply and the matching circuit; and a control unit that changes a value of a matching element of the matching circuit based on a detection signal of the power detection unit. A high-frequency heating apparatus that adjusts a matching state between an electrode including a heating object and a high-frequency power source, and controls only the series-connected matching elements as the heating time elapses. 制御部は、電力検知部が検知した反射電力が規定値を超過するまでは整合素子の制御を行わないこととした請求項1に記載の高周波加熱装置。The high-frequency heating device according to claim 1, wherein the control unit does not control the matching element until the reflected power detected by the power detection unit exceeds a specified value. 制御部は、直列接続した整合素子のインピーダンス値を減少させる方向にのみ制御することとした請求項1に記載の高周波加熱装置。The high-frequency heating device according to claim 1, wherein the control unit controls only in a direction to decrease the impedance value of the matching elements connected in series. 制御部におけるインピーダンス値の減少程度の閾値は、反射電力が増加傾向と判定するまでを最大とした請求項3に記載の高周波加熱装置。The high-frequency heating apparatus according to claim 3, wherein the threshold value of the degree of decrease in the impedance value in the control unit is a maximum until the reflected power is determined to be increasing. 制御部におけるインピーダンス値の減少程度の閾値は、電圧定在波比が一度低下した後、規定値を超過するまでとした請求項3に記載の高周波加熱装置。The high-frequency heating apparatus according to claim 3, wherein the threshold value of the degree of decrease in the impedance value in the control unit is set to be a value after the voltage standing wave ratio once drops and exceeds a specified value. 制御部は、電力検知部が検知する反射電力が規定値を超過した後、直列接続した整合素子のインダクタンス値を減少させることで、反射電力の値が増加傾向と判定したことを受けて加熱終了時間を決定する請求項1に記載の高周波加熱装置。After the reflected power detected by the power detection unit exceeds the specified value, the control unit reduces the inductance value of the series-connected matching elements, and determines that the value of the reflected power is increasing, and thus ends the heating. The high-frequency heating device according to claim 1, wherein the time is determined. 規定値は、電力検知部が検知した入射電力に対する反射電力の比率を4%から20%の間の特定値とした請求項2または6に記載の高周波加熱装置。7. The high-frequency heating apparatus according to claim 2, wherein the specified value is a specific value between 4% and 20% of a ratio of reflected power to incident power detected by the power detection unit. 直列接続した整合素子は、誘導性インピーダンス素子とした請求項1、3、6のいずれか1項に記載の高周波加熱装置。7. The high-frequency heating device according to claim 1, wherein the matching elements connected in series are inductive impedance elements.
JP2003034840A 2003-02-13 2003-02-13 High frequency heating device Expired - Fee Related JP4120416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034840A JP4120416B2 (en) 2003-02-13 2003-02-13 High frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034840A JP4120416B2 (en) 2003-02-13 2003-02-13 High frequency heating device

Publications (3)

Publication Number Publication Date
JP2004247128A true JP2004247128A (en) 2004-09-02
JP2004247128A5 JP2004247128A5 (en) 2006-03-23
JP4120416B2 JP4120416B2 (en) 2008-07-16

Family

ID=33020420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034840A Expired - Fee Related JP4120416B2 (en) 2003-02-13 2003-02-13 High frequency heating device

Country Status (1)

Country Link
JP (1) JP4120416B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253210A (en) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd High frequency heating device
JP2008270112A (en) * 2007-04-25 2008-11-06 Matsushita Electric Ind Co Ltd Control method of high-frequency heating device
JP2018022677A (en) * 2016-08-05 2018-02-08 エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. Device and method for detecting completion of decompression operation
CN108521691A (en) * 2018-03-19 2018-09-11 上海点为智能科技有限责任公司 Radio frequency defrosting heating equipment
EP3639676A1 (en) * 2018-10-19 2020-04-22 NXP USA, Inc. Defrosting apparatus with repositionable electrode
EP3617628A4 (en) * 2017-06-06 2020-06-24 Haier Smart Home Co., Ltd. Thawing method for thawing apparatus
US11039512B2 (en) 2016-08-05 2021-06-15 Nxp Usa, Inc. Defrosting apparatus with lumped inductive matching network and methods of operation thereof
US11039511B2 (en) 2018-12-21 2021-06-15 Nxp Usa, Inc. Defrosting apparatus with two-factor mass estimation and methods of operation thereof
US11089661B2 (en) 2018-12-14 2021-08-10 Nxp Usa, Inc. Defrosting apparatus with repositionable electrodes
JP2021118084A (en) * 2020-01-24 2021-08-10 シャープ福山セミコンダクター株式会社 Control device, high frequency heating device, and control method of control device
US11160145B2 (en) 2017-09-29 2021-10-26 Nxp Usa, Inc. Drawer apparatus for radio frequency heating and defrosting
US11166352B2 (en) 2018-12-19 2021-11-02 Nxp Usa, Inc. Method for performing a defrosting operation using a defrosting apparatus
CN113933348A (en) * 2020-06-29 2022-01-14 宝山钢铁股份有限公司 Self-adaptive uniform induction heating system and method for thermal wave detection
US11382190B2 (en) 2017-12-20 2022-07-05 Nxp Usa, Inc. Defrosting apparatus and methods of operation thereof
US11570857B2 (en) 2018-03-29 2023-01-31 Nxp Usa, Inc. Thermal increase system and methods of operation thereof
US11800608B2 (en) 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof
WO2024008119A1 (en) * 2022-07-06 2024-01-11 青岛海尔电冰箱有限公司 Control method for heating device, and heating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257850A (en) * 1998-03-10 1999-09-24 Nara Prefecture Method and apparatus for dielectric heating
JP2002056964A (en) * 2001-06-18 2002-02-22 Sharp Corp Dielectric heating device
JP2003347034A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd High frequency defrosting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257850A (en) * 1998-03-10 1999-09-24 Nara Prefecture Method and apparatus for dielectric heating
JP2002056964A (en) * 2001-06-18 2002-02-22 Sharp Corp Dielectric heating device
JP2003347034A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd High frequency defrosting device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253210A (en) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd High frequency heating device
JP2008270112A (en) * 2007-04-25 2008-11-06 Matsushita Electric Ind Co Ltd Control method of high-frequency heating device
JP2018022677A (en) * 2016-08-05 2018-02-08 エヌエックスピー ユーエスエイ インコーポレイテッドNXP USA,Inc. Device and method for detecting completion of decompression operation
US11632829B2 (en) 2016-08-05 2023-04-18 Nxp Usa, Inc. Apparatus and methods for detecting defrosting operation completion
JP6998669B2 (en) 2016-08-05 2022-02-04 エヌエックスピー ユーエスエイ インコーポレイテッド Devices and methods for detecting the completion of the decompression operation
US11039512B2 (en) 2016-08-05 2021-06-15 Nxp Usa, Inc. Defrosting apparatus with lumped inductive matching network and methods of operation thereof
EP3617628A4 (en) * 2017-06-06 2020-06-24 Haier Smart Home Co., Ltd. Thawing method for thawing apparatus
US11197352B2 (en) 2017-06-06 2021-12-07 Haier Smart Home Co., Ltd. Thawing method for thawing device
US11160145B2 (en) 2017-09-29 2021-10-26 Nxp Usa, Inc. Drawer apparatus for radio frequency heating and defrosting
US11382190B2 (en) 2017-12-20 2022-07-05 Nxp Usa, Inc. Defrosting apparatus and methods of operation thereof
CN108521691A (en) * 2018-03-19 2018-09-11 上海点为智能科技有限责任公司 Radio frequency defrosting heating equipment
US11570857B2 (en) 2018-03-29 2023-01-31 Nxp Usa, Inc. Thermal increase system and methods of operation thereof
US11800608B2 (en) 2018-09-14 2023-10-24 Nxp Usa, Inc. Defrosting apparatus with arc detection and methods of operation thereof
EP3639676A1 (en) * 2018-10-19 2020-04-22 NXP USA, Inc. Defrosting apparatus with repositionable electrode
US11528926B2 (en) 2018-10-19 2022-12-20 Nxp Usa, Inc. Defrosting apparatus with repositionable electrode
US11089661B2 (en) 2018-12-14 2021-08-10 Nxp Usa, Inc. Defrosting apparatus with repositionable electrodes
US11166352B2 (en) 2018-12-19 2021-11-02 Nxp Usa, Inc. Method for performing a defrosting operation using a defrosting apparatus
US11039511B2 (en) 2018-12-21 2021-06-15 Nxp Usa, Inc. Defrosting apparatus with two-factor mass estimation and methods of operation thereof
JP2021118084A (en) * 2020-01-24 2021-08-10 シャープ福山セミコンダクター株式会社 Control device, high frequency heating device, and control method of control device
JP7377726B2 (en) 2020-01-24 2023-11-10 シャープセミコンダクターイノベーション株式会社 Control device, high frequency heating device, and control method for the control device
CN113933348A (en) * 2020-06-29 2022-01-14 宝山钢铁股份有限公司 Self-adaptive uniform induction heating system and method for thermal wave detection
CN113933348B (en) * 2020-06-29 2024-01-09 宝山钢铁股份有限公司 Self-adaptive homogenizing induction heating system and method for thermal wave detection
WO2024008119A1 (en) * 2022-07-06 2024-01-11 青岛海尔电冰箱有限公司 Control method for heating device, and heating device

Also Published As

Publication number Publication date
JP4120416B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP2004247128A (en) High-frequency heating device
US11229094B2 (en) Combined RF and thermal heating system and methods of operation thereof
US11382190B2 (en) Defrosting apparatus and methods of operation thereof
EP3280225B1 (en) Defrosting apparatus with lumped inductive matching network and methods of operation thereof
US9398646B2 (en) Microwave heating device and microwave heating control method
US20180110098A1 (en) High-frequency dielectric heating device
EP2345304B1 (en) Device and method for heating using rf energy
US20200084844A1 (en) Defrosting apparatus with mass estimation and methods of operation thereof
JP2005056781A (en) High-frequency heating device
CN107131529A (en) A kind of high-power commercial electromagnetic stove and its Poewr control method
EP3639676B1 (en) Defrosting apparatus with repositionable electrode
JP2007336781A5 (en)
JP3843887B2 (en) High frequency thawing device
JP2024505975A (en) Method for controlling susceptor heating of an aerosol generation device using a boost converter
US20200205247A1 (en) Defrosting apparatus with two-factor mass estimation and methods of operation thereof
EP4114143A1 (en) Defrosting method for heating apparatus, and heating apparatus
CN103634957B (en) High frequency heating device and frequency control method thereof
JP3640621B2 (en) Dielectric heating device
JP6877291B2 (en) High frequency defroster
EP3740034B1 (en) Combined rf and thermal heating system with heating time estimation
JP2020145114A (en) High frequency defrosting device
CN112272423B (en) Electromagnetic induction heating control method, electromagnetic heating device, and storage medium
CN113170541B (en) High-frequency heating device
US11985752B2 (en) Inductor assembly, impedance matching network and system including inductor assembly
CN112584565B (en) Electromagnetic heating circuit heating treatment method, electromagnetic heating circuit and appliance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees