JPS6232391A - Pressure vessel for nuclear reactor - Google Patents
Pressure vessel for nuclear reactorInfo
- Publication number
- JPS6232391A JPS6232391A JP60171900A JP17190085A JPS6232391A JP S6232391 A JPS6232391 A JP S6232391A JP 60171900 A JP60171900 A JP 60171900A JP 17190085 A JP17190085 A JP 17190085A JP S6232391 A JPS6232391 A JP S6232391A
- Authority
- JP
- Japan
- Prior art keywords
- pressure vessel
- steel
- reactor pressure
- strength
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Pressure Vessels And Lids Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 [発明の技術分野1 本発明は原子炉圧力容器に関するものである。[Detailed description of the invention] [Technical field of invention 1 The present invention relates to a nuclear reactor pressure vessel.
[発明の技術的背景とその問題点1
原子炉圧力容器は、原子力発電所の心臓部とも言うべき
もので、その内部に炉心を収納している。[Technical background of the invention and its problems 1 A nuclear reactor pressure vessel can be called the heart of a nuclear power plant, and the reactor core is housed inside the reactor pressure vessel.
この原子炉圧力容器の使用条件は沸騰水型原子炉では約
TO気圧、300℃であり、また加圧水型原子炉では約
150気圧、約350℃であって、いずれにしても原子
炉圧力容器内面は、高温高圧純水に曝されている。これ
ら原子炉圧力容器の中には原子炉燃料が入っているため
その就仝性は信頼度の高いものが要求される。The operating conditions for this reactor pressure vessel are approximately TO atmospheric pressure and 300°C for a boiling water reactor, and approximately 150 atmospheres and approximately 350°C for a pressurized water reactor. is exposed to high temperature and high pressure pure water. Since these reactor pressure vessels contain reactor fuel, their reliability is required to be high.
一般に、脆性破壊NM造物が何の前ぶれもなく瞬時に破
壊する現象)を防止する観点から原子炉圧力容器用鋼材
には高靭性材料が用いられている。Generally, high-toughness materials are used as steel materials for reactor pressure vessels in order to prevent brittle fracture (a phenomenon in which NM structures break instantly without any warning).
一方、原子炉圧力容器は上述のようにその使用条件が高
圧であるため所定の強度(−引張強さ)が必要とされる
為原子炉圧力容器用鋼材には高強度材料の機能も併せて
必要となる。また原子炉圧ノ〕容器の内面は高温純水中
に曝されるため、この内面に耐食性の良好なステンレス
鋼で内張を行い、原子炉圧力容器の耐食性を向上させて
いる。一方、原子炉圧力容器の設R1は通産省告示第5
01号や米国ASME規格のような設計基準に基づいて
設計されており、その強度については充分なマージンを
持つように材料によって許容値が定められている。On the other hand, as mentioned above, the reactor pressure vessel is used under high pressure conditions, so a certain level of strength (-tensile strength) is required, so the steel material for the reactor pressure vessel also has the function of a high-strength material. It becomes necessary. Furthermore, since the inner surface of the reactor pressure vessel is exposed to high-temperature pure water, this inner surface is lined with stainless steel, which has good corrosion resistance, to improve the corrosion resistance of the reactor pressure vessel. On the other hand, the design of the reactor pressure vessel R1 is based on Ministry of International Trade and Industry notification 5.
It is designed based on design standards such as No. 01 and the American ASME standard, and tolerance values are determined depending on the material so that there is a sufficient margin for its strength.
第5図には現用の沸騰水型原子炉圧力容器の構造の一例
を示す。同図において、3は原子炉圧力容器、4はクラ
ッドである。ところで、1100MeW級の原子炉圧力
容器の板厚は1601111以上となり極厚鋼としての
取扱いが必要となり、極めて高い品質が要求される。通
常、原子炉圧力容器の板厚は次式で決定される。FIG. 5 shows an example of the structure of a currently used boiling water reactor pressure vessel. In the figure, 3 is a reactor pressure vessel, and 4 is a cladding. By the way, the plate thickness of a 1,100 MeW class nuclear reactor pressure vessel is 1,601,111 mm or more, so it must be handled as extremely thick steel, and extremely high quality is required. Normally, the plate thickness of the reactor pressure vessel is determined by the following formula.
ここで [:圧力容器胴の板厚
P:内圧
R:圧力容器胴の半径
に:定数
α:材料の耐力
上式から分るように、原子炉圧力容器の板厚【は内圧P
に比例し、材料の引張強度に反比例する。Here, [: Plate thickness of the pressure vessel shell P: Internal pressure R: Radius of the pressure vessel shell: Constant α: Proof capacity of the material As can be seen from the above equation, the plate thickness of the reactor pressure vessel [is the internal pressure P
and inversely proportional to the tensile strength of the material.
従って内圧即ち最高使用圧力が同じ条件では高強度材I
4rを用いる程板厚を薄くすることが出来、圧力容器の
軽量化が計れる。Therefore, under conditions of the same internal pressure, that is, the maximum working pressure, high-strength materials I
The more 4r is used, the thinner the plate can be and the lighter the pressure vessel can be.
しかしながら、一般には鉄鋼材料では材料の強度をあげ
た場合靭性値は低下する傾向にある。このことは材料に
切欠きゃ欠陥が存在した場合にこれらの切欠や欠陥から
不安定亀裂を起す可能性が高くなることを示している。However, in general, when the strength of a steel material is increased, the toughness value tends to decrease. This indicates that if there are notches or defects in the material, there is a high possibility that unstable cracks will occur from these notches or defects.
[発明の目的]
本発明は上記事情を考慮してなされたもので、その目的
は、高強度、高靭性の材料特性を有する鋼板を用いた原
子炉圧力容器を提供覆る・ことにある。[Object of the Invention] The present invention has been made in consideration of the above circumstances, and its object is to provide a nuclear reactor pressure vessel using a steel plate having material characteristics of high strength and high toughness.
[発明の概要]
本発明は上記目的を達成するために、高張力鋼を母材と
し、この母材の両側に軟鋼または不鋳鋼等の高靭性材を
接合することにより、高強度・高靭性特性を備えた鋼板
を用いた原子炉圧力容器に関するものである。そして、
接合材には母材より熱膨脹率の低い材料を使用すること
により原子炉運転時に内外面共圧縮の残留熱応力を発生
させて切欠き感度を低めるようにしたものである。[Summary of the Invention] In order to achieve the above object, the present invention uses high-strength steel as a base material and joins high-toughness materials such as mild steel or uncast steel to both sides of this base material, thereby achieving high strength and high toughness. This invention relates to a nuclear reactor pressure vessel using steel plates with special characteristics. and,
By using a material with a lower coefficient of thermal expansion than the base material for the bonding material, residual thermal stress of compression is generated on both the inner and outer surfaces during reactor operation, thereby reducing notch sensitivity.
[発明の実施例] 本発明の実施例を図を用いて説明する。[Embodiments of the invention] Embodiments of the present invention will be described with reference to the drawings.
第1図は本発明に係る鋼材の断面図を示すもので、80
〜100kg/ll1m2級の高張力鋼1の両側にステ
ンレス鋼2をクラッド溶接した例を示している。FIG. 1 shows a cross-sectional view of the steel material according to the present invention.
An example is shown in which stainless steel 2 is clad-welded on both sides of a high tensile strength steel 1 of ~100 kg/ll 1 m2 class.
第2図には本鋼材を用いた場合の応力−歪特性を実線で
示しており、また現用の原子炉圧力容器用として一般に
用いられている鋼材の応力−歪特性を1点鎖線で示して
いる。この第2図より明らかなように、原子炉圧力容器
の板厚を快定づける降伏応力は現用の鋼材に比べ木41
1材の方が遥かに高いことが分る。したがって、この降
伏応力の上背分に比例して原子炉圧力容器用鋼板の板J
?を薄くできる。これにより原子炉圧力容器の軽量化が
可能となる。たとえば、現用沸騰水型原子炉の原子炉圧
力容器の1ffiは約750tであるが、現用材(SF
VQ)の2倍の強度を持つ材料を使用することにより約
370tにすることができる。また同図中の破線はクラ
ッドの厚みによる材料の応力・歪関係も示しており、破
線で示すように実線に比ベクラツド厚さを厚くした方が
破断ひずみが増大しており、より高延性側に移行する。In Figure 2, the stress-strain characteristics when using this steel material are shown as solid lines, and the stress-strain characteristics of steel materials commonly used for current reactor pressure vessels are shown as dashed-dotted lines. There is. As is clear from Figure 2, the yield stress that determines the plate thickness of the reactor pressure vessel is 41% higher than that of currently used steel.
It turns out that 1 material is much more expensive. Therefore, plate J of the steel plate for reactor pressure vessel is proportional to the upper back of this yield stress.
? can be made thinner. This makes it possible to reduce the weight of the reactor pressure vessel. For example, 1ffi of the reactor pressure vessel of a modern boiling water reactor is approximately 750 tons;
By using a material with twice the strength of VQ), it can be made approximately 370t. The broken line in the figure also shows the stress/strain relationship of the material depending on the cladding thickness, and as shown by the broken line, the larger the cladding thickness compared to the solid line, the greater the fracture strain, and the higher the ductility. to move to.
尚この第2図は母材である高張力鋼と比較材である現用
原子炉圧力容器材の板厚を同一にしてそれにクラッド溶
接を行った際の結果を示している。Note that FIG. 2 shows the results when clad welding was performed on high-strength steel as a base material and a current reactor pressure vessel material as a comparison material with the same plate thickness.
第3図は全板厚を一定にした時の材料の応力・歪関係を
第2図と同じケースについて示したものである。いづれ
の場合においてもクラツド材の方が高強度を示している
とか分る。これ【^板厚を現状通りとした場合、本発明
による鋼材を用いれば、強度的信頼性が向上することを
示している。Figure 3 shows the stress/strain relationship of the material when the total plate thickness is kept constant for the same case as Figure 2. It can be seen that in all cases, the clad material exhibits higher strength. This shows that if the plate thickness is kept as it is, the strength and reliability will be improved by using the steel material according to the present invention.
第4図はステンレスクラッドを行った鋼板の板厚方向の
応力分布を示したものである。常温において応力値は共
に0″であるが、熱膨脹率は高張力鋼で12.90 X
10−6 till/ll”c、ステンレス鋼で17
.62 x 10−6 am/im”cであり、高張力
鋼とステンレスクラッドの熱膨脹率の差により温度の上
昇とともにクラッド側で圧縮、母材側で引張の熱応力を
発生する。原子炉運転時においては、この熱応力の成分
以外に内圧による応力が加わるため、内面においても引
張応力となるが圧縮熱応力によりその大きさは小さくな
る。このように本発明によれば、板肉外表面に圧縮応力
を付加できる。FIG. 4 shows the stress distribution in the thickness direction of a steel plate coated with stainless steel. Both stress values are 0'' at room temperature, but the coefficient of thermal expansion is 12.90X for high-strength steel.
10-6 till/ll”c, 17 in stainless steel
.. 62 x 10-6 am/im"c, and due to the difference in coefficient of thermal expansion between high-strength steel and stainless steel cladding, compressive thermal stress is generated on the cladding side and tensile stress is generated on the base material side as the temperature rises. During reactor operation In addition to this thermal stress component, stress due to internal pressure is added, so tensile stress also occurs on the inner surface, but its magnitude is reduced due to compressive thermal stress.In this way, according to the present invention, the stress on the outer surface of the plate is reduced. Compressive stress can be added.
一般に、割れのような欠陥は、板表面に発生することが
多く、これが引張応力で進展する。従って、本発明にに
る鋼材を用いると、割れの発生および進展を予防するこ
とが期待できる。Generally, defects such as cracks often occur on the plate surface, and these defects develop due to tensile stress. Therefore, the use of the steel material according to the present invention can be expected to prevent the occurrence and propagation of cracks.
また、原子炉圧力容器の外面クラツド材にカドミウムボ
ロン等の中性子吸収の大きな材料または遮蔽効果の大き
な鉛を使用することにより、被曝の低減化も計れる。In addition, by using a material with high neutron absorption such as cadmium boron or lead with a high shielding effect for the outer cladding material of the reactor pressure vessel, it is possible to reduce radiation exposure.
なお、応カー歪関係は用途に応じて変えることができる
ため、原子炉圧力容器のみならず他の機器への応用も可
能になる。Note that the stress-response strain relationship can be changed depending on the application, so it can be applied not only to nuclear reactor pressure vessels but also to other equipment.
し発明の効果]
以1−説明したように、本発明によれば高張力鋼をは材
に高靭性材を接合することにより高強度・高靭性材を作
ることができるので、原子炉圧力容器の板厚を薄くし、
軽量化することができる。[Effects of the Invention] As explained in 1-1 above, according to the present invention, a high-strength, high-toughness material can be made by joining a high-strength steel material to a high-toughness material. Reduce the plate thickness of
It can be made lighter.
第1図は本発明に係る鋼板の断面図、第2図は本発明の
鋼板と現用の原子炉圧力容器鋼板の応力−歪線図、第ご
3図は全板厚を一定にした場合の鋼材の応力−歪線図、
第4図は原子炉運転時における熱応力分子fi図、第5
図は現用の沸騰水型原子炉圧力容器の断面図である。
1・・・高張力鋼
2・・・ステンレス鋼
(8733)代理人 弁理士 猪 股 祥 晃(ほか1
名)
第 1
皆 ス
史 g
第4図
第 5 図Figure 1 is a sectional view of the steel plate according to the present invention, Figure 2 is a stress-strain diagram of the steel plate of the present invention and the steel plate of a current nuclear reactor pressure vessel, and Figure 3 is a diagram of the stress-strain curve when the total plate thickness is kept constant. Stress-strain diagram of steel material,
Figure 4 is the thermal stress molecule fi diagram during reactor operation, Figure 5
The figure is a cross-sectional view of a current boiling water reactor pressure vessel. 1...High tensile steel 2...Stainless steel (8733) Agent Patent attorney Yoshiaki Inomata (and 1 others)
Name) Part 1 History g Figure 4 Figure 5
Claims (2)
は不鋳鋼等の高靭性材を接合することにより、高強度・
高靭性特性を備えた鋼板を用いたことを特徴とする原子
炉圧力容器。(1) By using high-strength steel as the base material and joining high-toughness materials such as mild steel or uncast steel on both sides of this base material, high strength and
A nuclear reactor pressure vessel characterized by using a steel plate with high toughness characteristics.
特許請求の範囲第1項記載の原子炉圧力容器。(2) The nuclear reactor pressure vessel according to claim 1, wherein a material having a lower coefficient of thermal expansion than the base material is used as the bonding material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60171900A JPS6232391A (en) | 1985-08-06 | 1985-08-06 | Pressure vessel for nuclear reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60171900A JPS6232391A (en) | 1985-08-06 | 1985-08-06 | Pressure vessel for nuclear reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6232391A true JPS6232391A (en) | 1987-02-12 |
Family
ID=15931892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60171900A Pending JPS6232391A (en) | 1985-08-06 | 1985-08-06 | Pressure vessel for nuclear reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6232391A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06312255A (en) * | 1993-04-28 | 1994-11-08 | Yoji Yamashita | Method for supplying ingot into metal melting furnace |
-
1985
- 1985-08-06 JP JP60171900A patent/JPS6232391A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06312255A (en) * | 1993-04-28 | 1994-11-08 | Yoji Yamashita | Method for supplying ingot into metal melting furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5493592A (en) | Nuclear-reactor fuel rod with double-layer cladding tube and fuel assembly containing such a fuel rod | |
EP0326896B1 (en) | Nuclear fuel element having oxidation resistant cladding | |
US4029545A (en) | Nuclear fuel elements having a composite cladding | |
US5517541A (en) | Inner liners for fuel cladding having zirconium barriers layers | |
US4775508A (en) | Zirconium alloy fuel cladding resistant to PCI crack propagation | |
US5247550A (en) | Corrosion resistant zirconium liner for nuclear fuel rod cladding | |
US4879093A (en) | Ductile irradiated zirconium alloy | |
US3620691A (en) | Zirconium structure | |
US3850584A (en) | Fuel element can for a nuclear reactor | |
EP0192405B1 (en) | Nuclear fuel claddings | |
US5524032A (en) | Nuclear fuel cladding having an alloyed zirconium barrier layer | |
JPS60211388A (en) | Coated pipe for nuclear fuel element | |
EP0409405A2 (en) | Nuclear fuel element, and method of forming same | |
US4778648A (en) | Zirconium cladded pressurized water reactor nuclear fuel element | |
US5417780A (en) | Process for improving corrosion resistance of zirconium or zirconium alloy barrier cladding | |
JPS58195185A (en) | Zirconium alloy membrane having improved corrosion resistance | |
CA1209726A (en) | Zirconium alloy barrier having improved corrosion resistance | |
JPS6232391A (en) | Pressure vessel for nuclear reactor | |
US2950188A (en) | Method of suppressing ual4 formation in u-al alloys | |
JPS60122386A (en) | Control body for absorbing neutron | |
Koester et al. | DEVELOPMENT OF NIOBIUM-BASE ALLOYS FOR USE IN A NUCLEAR SUPERHEATER. Quarterly Progress Report for October-December 1963 | |
KR100272296B1 (en) | Nuclear reactor fuel rod with double layer cladding tube | |
Graber et al. | Annual progress report on reactor fuels and materials development for FY 1964 | |
Isserow | The Aqueous Corrosion of Zircaloy Clad Thorium | |
JPS5860286A (en) | Cladding tube of nuclear fuel element |