JPS6232278B2 - - Google Patents

Info

Publication number
JPS6232278B2
JPS6232278B2 JP15782079A JP15782079A JPS6232278B2 JP S6232278 B2 JPS6232278 B2 JP S6232278B2 JP 15782079 A JP15782079 A JP 15782079A JP 15782079 A JP15782079 A JP 15782079A JP S6232278 B2 JPS6232278 B2 JP S6232278B2
Authority
JP
Japan
Prior art keywords
plating
nickel
nickel plating
bath
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15782079A
Other languages
Japanese (ja)
Other versions
JPS5681695A (en
Inventor
Kazuo Deguchi
Nobuhiro Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uemera Kogyo Co Ltd
Original Assignee
Uemera Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uemera Kogyo Co Ltd filed Critical Uemera Kogyo Co Ltd
Priority to JP15782079A priority Critical patent/JPS5681695A/en
Publication of JPS5681695A publication Critical patent/JPS5681695A/en
Publication of JPS6232278B2 publication Critical patent/JPS6232278B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた耐食性めつき被膜を与える耐食
めつき方法に関する。 従来、自動車部品等に対する耐食めつきプロセ
スとして、ニツケルめつき後、無機微粒子を懸濁
するニツケルめつき浴にて薄いめつきを施して無
機微粒子が共析するニツケルめつき被膜を形成
し、この上にクロムめつきを行なうことにより、
微細ポアを有するクロムめつき被膜を得るマイク
ロポーラスクロムめつき法が知られており(特公
昭38−22119号、特公昭43−405号等)、この方法
によつて得られるめつき被膜は耐食性が比較的良
好であるため、広く採用されている。 しかるに、めつき被膜に対する耐食性の要求が
益々厳しくなつている現今においては、より高度
の耐食性を与える高耐食性めつきプロセスが求め
られている。また一般にめつき被膜の耐食性を向
上させるためにはめつき被膜を厚くすればする程
良いが、厚くめつきすることはめつきコストの上
昇を招き、かつめつき時間を長くしなければなら
ないので作業能率上問題が多く、このため比較的
薄い膜厚においても十分の耐食性を与えるめつき
プロセスが要求されている。 本発明者らは上記事情に鑑み、高耐食性めつき
被膜を与えるめつきプロセスにつき鋭意研究を行
なつた結果、ニツケルめつき後、微粒子共析ニツ
ケルめつきを行ない、この上に光沢ニツケルめつ
きを施してからクロムめつきその他の最終めつき
を施すことによつて得られる被膜が、従来のニツ
ケルめつき後、微粒子共析ニツケルめつきを行な
い、この上に直接クロムめつきその他の最終めつ
きを施すマイクロポーラスめつき法により得られ
る被膜に比べて耐食性が高く、このように微粒子
共析めつき被膜とクロムめつきその他の最終めつ
き被膜との間に光沢ニツケルめつき被膜を介在さ
せることにより、従来のマイクロポーラスめつき
法に比較して高耐食性のめつき被膜を与えること
を知見し、本発明をなすに至つた。 即ち、本発明は被めつき物に直接もしくは下地
めつきを施した後第1ニツケルめつきを行ない、
次いで微粒子共析ニツケルめつきを行ない、続い
て最終光沢ニツケルめつきを施し、最後にクロム
めつきもしくはその他の最終めつきを行なうこと
を特徴とする耐食めつき方法を提供するものであ
る。 以下、本発明につき詳しく説明する。 本発明において、被めつき物の材質には特に制
限はなく、鉄鋼、亜鉛、アルミニウム、銅、銅−
亜鉛合金その他の金属素地やABS樹脂その他の
プラスチツク素地上にその材質に応じた通常の方
法で所定の前処理を行つた後、これに本発明方法
を実施し得る。例えば、前処理として金属素地の
場合には、一般に金属表面を浸漬法及び/又は電
解法によりアルカリ脱脂した後、酸で中和する方
法が採用できる。アルミニウム素地の場合には表
面を活性化した後、亜鉛置換を行う方法が採用で
きる。また、プラスチツク素地の場合には、クロ
ム酸−硫酸混合液で化学エツチングする方法或い
は機械的粗化法を採用してプラスチツク表面を粗
化した後、この粗化したプラスチツク表面にパラ
ジウム等の触媒金属核を付着させる活性化工程を
行い、次いで無電解銅めつき、無電解ニツケルめ
つき等の無電解めつきを行つて、プラスチツク表
面を金属化する方法が採用できる。 本発明の耐食めつき方法の第1プロセスである
ニツケルめつきを行う前に、必要により所望の下
地めつきを行うことができる。この場合、この下
地めつきの種類は特に限定されず、被めつき物の
材質、用途等に応じて選択される。例えば、第1
プロセスであるニツケルめつきの前に、光沢銅め
つきを行うことができる。光沢銅めつきとしては
通常の硫酸銅めつき浴、ピロリン酸銅めつき浴、
青化銅めつき浴、その他の銅めつき浴を通常の浴
組成、めつき条件で使用することにより実施する
ことができる。 本発明において、第1プロセスとしてのニツケ
ルめつき(第1ニツケルめつき)は、このように
被めつき物表面上に直接もしくは所定の下地めつ
き被膜を形成した後に行われる。この第1ニツケ
ルめつきに用いる浴としては、通常の普通ニツケ
ル浴、半光沢ニツケル浴、光沢ニツケル浴のいず
れでもよい。また浴組成も硫酸ニツケル、塩化ニ
ツケル、ホウ酸を主体とするワツト浴が通常は用
いられるが、必ずしもこれに限定されない。しか
し、通常、めつき物の外観を良好にし、レベリン
グを良好にする点から半光沢ニツケル浴、光沢ニ
ツケル浴が好適に使用される。この場合、必要に
より半光沢ニツケルめつき後、光沢ニツケルめつ
きを行う等、従来公知の多層ニツケルめつき法を
採用することもできる。なお、この第1ニツケル
めつきのめつき条件は、浴の種類等に応じた通常
の条件が採用される。 具体的には、第1ニツケルめつき浴として下記
組成の浴が下記条件において好適に用いられる。
The present invention relates to a corrosion-resistant plating method that provides an excellent corrosion-resistant plating film. Conventionally, as a corrosion-resistant plating process for automobile parts, etc., after nickel plating, thin plating is applied in a nickel plating bath in which inorganic fine particles are suspended to form a nickel plating film in which the inorganic fine particles eutectoid. By applying chrome plating on top,
A microporous chromium plating method is known to obtain a chrome plating film with fine pores (Japanese Patent Publication No. 38-22119, Japanese Patent Publication No. 43-405, etc.), and the plating film obtained by this method is corrosion resistant. It has been widely adopted because of its relatively good performance. However, in these days when the requirements for corrosion resistance of plating films are becoming more and more severe, there is a need for a highly corrosion-resistant plating process that provides a higher degree of corrosion resistance. Generally, in order to improve the corrosion resistance of a plating film, the thicker the plating film, the better, but thicker plating increases the plating cost and requires longer plating time, which reduces work efficiency. Therefore, there is a need for a plating process that provides sufficient corrosion resistance even with a relatively thin film thickness. In view of the above circumstances, the present inventors conducted intensive research on a plating process that provides a highly corrosion-resistant plating film, and as a result, after nickel plating, fine particle eutectoid nickel plating was performed, and then glossy nickel plating was applied on top of this. The film obtained by applying chrome plating or other final plating after applying chromium plating or other final plating is applied by performing fine particle eutectoid nickel plating after conventional nickel plating, and directly applying chrome plating or other final plating on this. It has higher corrosion resistance than the coating obtained by the microporous plating method, in which a glossy nickel plating film is interposed between the fine particle eutectoid plating film and the chrome plating or other final plating film. As a result, the present inventors discovered that a plated film with higher corrosion resistance than the conventional microporous plating method can be obtained, leading to the present invention. That is, the present invention performs the first nickel plating directly on the plated object or after applying the base plating,
The object of the present invention is to provide a corrosion-resistant plating method characterized in that fine-particle eutectoid nickel plating is then performed, followed by final bright nickel plating, and finally chrome plating or other final plating. The present invention will be explained in detail below. In the present invention, there are no particular restrictions on the material of the plated material, including steel, zinc, aluminum, copper, and copper.
The method of the present invention can be applied to a metal substrate such as a zinc alloy, or a plastic substrate such as an ABS resin, after having undergone a predetermined pretreatment in a conventional manner depending on the material. For example, in the case of a metal substrate, a method can generally be adopted in which the metal surface is degreased with alkali by a dipping method and/or an electrolytic method, and then neutralized with an acid. In the case of an aluminum base material, a method of activating the surface and then substituting it with zinc can be adopted. In the case of plastic substrates, after roughening the plastic surface by chemical etching with a chromic acid-sulfuric acid mixture or mechanical roughening, a catalytic metal such as palladium is applied to the roughened plastic surface. A method can be adopted in which the plastic surface is metallized by carrying out an activation step to attach nuclei, and then carrying out electroless plating such as electroless copper plating or electroless nickel plating. Before performing nickel plating, which is the first process of the corrosion-resistant plating method of the present invention, desired base plating can be performed if necessary. In this case, the type of base plating is not particularly limited, and is selected depending on the material of the object to be plated, its use, etc. For example, the first
Bright copper plating can be performed before the nickel plating process. For bright copper plating, ordinary copper sulfate plating bath, copper pyrophosphate plating bath,
This can be carried out by using a copper bronze plating bath or other copper plating baths with normal bath compositions and plating conditions. In the present invention, nickel plating as the first process (first nickel plating) is performed directly or after forming a predetermined base plating film on the surface of the object to be plated. The bath used for this first nickel plating may be any of the usual ordinary nickel baths, semi-bright nickel baths, and bright nickel baths. Further, as for the bath composition, a Watt bath mainly composed of nickel sulfate, nickel chloride, and boric acid is usually used, but the composition is not necessarily limited thereto. However, in general, semi-bright nickel baths and bright nickel baths are preferably used because they improve the appearance of the plated object and improve leveling. In this case, a conventionally known multilayer nickel plating method may be employed, such as semi-bright nickel plating followed by bright nickel plating, if necessary. Note that the plating conditions for this first nickel plating are normal conditions depending on the type of bath and the like. Specifically, a bath having the following composition is suitably used as the first nickel plating bath under the following conditions.

【表】 また、半光沢剤、光沢剤としては通常使用され
ている公知のものを通常の添加量において用いる
ことができる。例えば、半光沢剤としてクマリ
ン、ホルマリン、2−ブチン−1,4−ジオール
及びその誘導体を単独で又は組み合せて使用する
ことができる。光沢剤としては一次光沢剤として
1,5−、1,6−又は2,5−ナフタリンジス
ルホン酸ソーダ、1,3,6−ナフタリントリス
ルホン酸ソーダ、ベンゼンスルホン酸ソーダ等の
スルホン酸類、ベンゼンスルホンアミド、パラト
ルエンスルホンアミド等のスルホンアミド類、サ
ツカリン等のスルホンイミド類、スルフイン酸
類、スルホン類等を単独で又は組合せて用いるこ
とができ、また二次光沢剤として2−ブチン−
1,4−ジオール及びその誘導体、プロパギルア
ルコール及びその誘導体、包水クロラール及びそ
の誘導体、エチレンシアンヒドリン及びその誘導
体、チオ尿素及びその誘導体、アゾ染料、クマリ
ン、ホルマリン等を単独で又は組合せて用いるこ
ととができる。 なお、前記浴にはピツト防止のための湿潤剤、
その他の所望の成分を加えてもよい。 前記第1ニツケルめつきによる被膜厚さは、本
発明方法により、従来の耐食めつきプロセスに比
較して優れた耐食性めつき被膜が得られるので、
かなり薄くてもよく、例えば約2μでも差支えな
いが、より高度な耐食性を与える点からは、被め
つき物に直接第1ニツケルめつきを施す場合は約
5μ以上、より望ましくは6μ以上である。被め
つき物に下地めつきを行つた後、この第1ニツケ
ルめつきを施す場合は、下地めつきと第1ニツケ
ルめつきとの総計膜厚が約5μ以上、より望まし
くは約6μ以上である。即ち、後述する高応力ニ
ツケルめつき前の総計めつき厚さが約5μ以上、
より望ましくは6μ以上になるようにめつきする
ことが好ましい。特に、下地めつきとして銅めつ
きを施す場合は、第1ニツケルメツキによる被膜
厚さを1〜2μとした場合、銅メツキの厚さは6
〜8μ以上、より望ましくは10μ以上とする(即
ち、ニツケルめつき単独の場合の約2倍以上の厚
さ)ことが更に好ましい。また、第1ニツケルめ
つき厚さ或いは第1ニツケルめつきと下地めつき
との総計膜厚は、厚くなればなる程耐食性は向上
するが、経済性の点から考えて約50μが上限であ
り、通常は約30μ以下の膜厚でよい。 次に、本発明では前記第1ニツケルめつき被膜
上に微粒子共析ニツケルめつきを施す。この微粒
子共析ニツケルめつき浴としては例えば特公昭38
−22119、同43−405号公報等に開示されている公
知のものが使用でき、その通常のめつき条件で用
いることができる。具体的には、上述したワツト
浴に微粒子を懸濁したものが好適に使用される。
この場合、微粒子としては浴に不溶のものであれ
ばよく、有機、無機の別は問わないが、一般には
5μ以下の硫酸バリウム、硫酸ストロンチウム、
リン酸バリウム、炭酸ニツケル、フツ化カルシウ
ム、酸化ジルコニウム、酸化チタン、酸化アルミ
ニウム、カオリン、ガラス粉末、シリカ等の無機
微粒子の1種又は2種以上が好ましく用いられ
る。なお、これら微粒子の懸濁量は、微粒子の種
類、その粒径等により相違するが、5〜500g/
である。また、この微粒子共析ニツケルめつき
浴中には光沢剤や湿潤剤、界面活性剤等を添加す
ることができる。 前記微粒子共析ニツケルめつきの膜厚は約0.3
μ以上、特に0.5〜4μとすることが好ましい。 本発明においては、微粒子共析ニツケルめつき
を行つた後、最終光沢ニツケルめつきを行う。最
終光沢ニツケルめつきの浴としては公知のものを
使用することができ、またその光沢剤も公知のも
のを使用し得る。 具体的には、前記第1ニツケルめつきの説明の
ところで述べた組成、条件の浴、光沢剤(一次光
沢剤、二次光沢剤)が好ましく用いられる。 なお、微粒子共析ニツケルめつき後の最終光沢
ニツケルの厚さは、約0.5μ以上とすることが好
ましい。その上限は特に制限はないが、一般には
10μである。特に好ましくは約0.5〜5μの膜厚
であり、通常は1〜2μで十分である。 前記最終光沢ニツケルめつきを行つた後は、通
常はクロムめつきを施すが、クロム合金めつき
(例えばクロム−ニツケル)、或いは錫−コバルト
合金めつき等の所望の最終めつきを施すこともで
きる。これら最終めつきとしては、そのめつきの
種類に応じた通常の組成の浴を通常のめつき条件
で採用できる。例えば、クロムめつき浴として
は、サージエント浴、ケイフツ化物等のフツ化物
含有浴、クロム酸を含有しない三価のクロムから
なる浴、その他適宜な浴が用いられ、またその膜
厚は0.05μ以上、通常は0.1〜0.3μである。最終
めつき後の後処理としては通常の方法が採用でき
る。一般には、最終めつき後、水洗、乾燥すれば
よい。 本発明に係る高耐食めつきプロセスは、上述し
たように被めつき物に直接もしくは下地めつきを
施した後第1ニツケルめつきを行い、次いで微粒
子共析ニツケルめつきを行い、更に最終光沢ニツ
ケルめつきを施し、最後にクロムめつきもしくは
その他の最終めつきを行うことを特徴とするもの
で、これにより従来のマイクロポーラスめつき法
に比較して更に優れた耐食性めつき被膜を形成し
得たものである。 本発明によれば、上述したようにめつき被膜の
耐食性が良好であるため、従来と同程度の耐食性
の要求に対してはめつき被膜全体を薄くすること
ができ、従つてこのようにめつき厚さを減少させ
ることができるため、めつきコストの低減、めつ
き時間の短縮化が達成でき、作業能率の改善を計
ることができる。また、このように高耐食めつき
被膜が得られるため、形状の複雑な部品、深い窪
みを有する部品等の低電流密度部分から錆の発生
し易い部品に本発明法は好適に採用される。 更に、本発明方法は、微粒子共析ニツケルめつ
き後に行なう最終光沢ニツケルめつきとして、通
常の光沢ニツケルめつき浴を通常の作業条件で使
用することができ、また従来のめつき工程に簡単
に組入れることができ、この点からも有利であ
る。 以下、実施例と比較例を示し、本発明を更に具
体的に説明する。 〔実施例、比較例〕 下記に示す工程に従い、みがき鋼板(10cm×5
cm)を電解脱脂した後、酸洗した。次に、第1光
沢ニツケルめつきを施し、更に微粒子共析ニツケ
ルめつきを施し、次いで最終光沢ニツケルめつき
を施した後、クロムめつきを行ない、耐食性試験
片(実施例)を得た。 比較のため、最終光沢ニツケルめつきを行なわ
なかつた以外は上記と同様にして、比較耐食性試
験片を得た。 次に、各試験片を用いてCASS試験(JIS D
201)を行ない、その耐食性を評価した。結果を
第1図及び第2図に示す。なお、第1図は全ニツ
ケルめつきの厚さが10μの場合の結果、第2図は
全ニツケルめつきの厚さが15μの場合の結果で、
サイクル数(1サイクル=16時間連続噴霧)とレ
イテイングナンバーとの関係で示す。 めつき工程 1 陰極電解脱脂 組成 メタケイ酸ナトリウム 10g/ ソーダ灰 10〃 水酸化ナトリウム 30〃 トリポリリン酸ナトリウム 10〃 アニオン活性剤 0.1〃 陰極電流密度 10A/dm2 時間 1〜2分 温度 60〜65℃ 2 水洗 3 酸洗 10重量%硫酸水溶液 時間 10秒 温度 20℃ 4 水洗 5 第1光沢ニツケルめつき 6 水洗 7 高応力ニツケルめつき 8 水洗 9 最終光沢ニツケルめつき 10 水洗 11 クロムめつき(ハルセル試験) 12 水洗 13 乾燥 光沢ニツケルめつき浴(第1及び最終) 硫酸ニツケル(NiSO4・6H2O) 280g/ 塩化ニツケル(NiCl2・6H2O) 45〃 ホウ酸 40〃 サツカリン 2〃 2−ブチン−1,4−ジオール 0.2〃 PH 4 めつき条件 温 度 50℃ 陰極電流密度 4A/dm2 撹 拌 空気 微粒子共析ニツケルめつき浴 硫酸ニツケル(NiSO4・6H2O) 280g/ 塩化ニツケル(NiCl2・6H2O) 45〃 ホウ酸 40〃 酸化ケイ素(SiO2) 25〃 酸化ジルコニウム(Zr2O3) 1.5〃 サツカリン 2〃 2−ブチン−1,4−ジオール 0.2〃 PH 3.3 温 度 60℃ 陰極電流密度 4A/dm2 撹 拌 空気 クロムめつき浴 無水クロム酸(CrO3) 250g/ 三価クロム(Cr3+) 2.0〃 硫 酸 2.5〃 温 度 45℃
[Table] Additionally, commonly used semi-brightening agents and brightening agents can be used in the usual amounts. For example, coumarin, formalin, 2-butyne-1,4-diol and their derivatives can be used alone or in combination as semi-brighteners. As a primary brightening agent, sulfonic acids such as 1,5-, 1,6- or 2,5-sodium naphthalene disulfonate, 1,3,6-sodium naphthalene trisulfonate, sodium benzenesulfonate, benzenesulfone, etc. Sulfonamides such as amide, paratoluenesulfonamide, sulfonimides such as saccharin, sulfinic acids, sulfones, etc. can be used alone or in combination, and as a secondary brightener, 2-butyne-
1,4-diol and its derivatives, propargyl alcohol and its derivatives, chloral hydrate and its derivatives, ethylene cyanohydrin and its derivatives, thiourea and its derivatives, azo dyes, coumarin, formalin, etc. alone or in combination It can be used. In addition, the bath contains a wetting agent to prevent pitting,
Other desired ingredients may also be added. The thickness of the coating formed by the first nickel plating is such that the method of the present invention provides a corrosion-resistant plating coating that is superior to the conventional corrosion-resistant plating process.
It may be quite thin, for example about 2μ, but from the point of view of providing higher corrosion resistance, when applying the first nickel plating directly to the plated object, the thickness should be about 5μ or more, more preferably 6μ or more. . If the first nickel plating is applied after the base plating has been applied to the object to be plated, the total thickness of the base plating and the first nickel plating should be about 5μ or more, more preferably about 6μ or more. be. That is, the total plating thickness before the high stress nickel plating described below is about 5μ or more,
More desirably, it is preferable to plate to a thickness of 6μ or more. In particular, when applying copper plating as a base plating, if the film thickness of the first nickel plating is 1 to 2 μm, the thickness of the copper plating is 6 μm.
It is further preferable that the thickness is 8 μm or more, more preferably 10 μm or more (that is, the thickness is about twice or more that of nickel plating alone). Furthermore, the corrosion resistance improves as the thickness of the first nickel plating or the total thickness of the first nickel plating and the base plating increases, but from an economic point of view, the upper limit is about 50μ. , usually a film thickness of about 30 μm or less is sufficient. Next, in the present invention, fine particle eutectoid nickel plating is applied on the first nickel plating film. For example, this fine-particle eutectoid nickel plating bath is
-22119, 43-405, and the like can be used, and can be used under normal plating conditions. Specifically, the above-mentioned Wat bath in which fine particles are suspended is preferably used.
In this case, the fine particles need only be insoluble in the bath, and it does not matter whether they are organic or inorganic, but generally barium sulfate, strontium sulfate,
One or more types of inorganic fine particles such as barium phosphate, nickel carbonate, calcium fluoride, zirconium oxide, titanium oxide, aluminum oxide, kaolin, glass powder, and silica are preferably used. The suspended amount of these fine particles varies depending on the type of fine particles, their particle size, etc., but is 5 to 500 g/
It is. Further, brighteners, wetting agents, surfactants, etc. can be added to this fine particle eutectoid nickel plating bath. The film thickness of the fine particle eutectoid nickel plating is approximately 0.3
It is preferably 0.5 to 4 μ, particularly 0.5 to 4 μ. In the present invention, after performing fine particle eutectoid nickel plating, final bright nickel plating is performed. As the final bright nickel plating bath, any known bath may be used, and any known brightening agent may be used. Specifically, baths and brighteners (primary brightener, secondary brightener) having the composition and conditions described in the description of the first nickel plating are preferably used. The thickness of the final glossy nickel after fine particle eutectoid nickel plating is preferably about 0.5 μm or more. There is no particular upper limit, but generally
It is 10μ. Particularly preferred is a film thickness of about 0.5 to 5 .mu.m, and usually 1 to 2 .mu.m is sufficient. After the final bright nickel plating is performed, chrome plating is usually applied, but a desired final plating such as chromium alloy plating (for example, chrome-nickel) or tin-cobalt alloy plating may also be applied. can. For the final plating, a bath having a normal composition depending on the type of plating can be used under normal plating conditions. For example, as a chromium plating bath, a sergeant bath, a bath containing fluorides such as silicate, a bath made of trivalent chromium that does not contain chromic acid, and other appropriate baths are used, and the film thickness is 0.05μ or more. , usually 0.1-0.3μ. For post-processing after final plating, conventional methods can be employed. Generally, after final plating, it is sufficient to wash with water and dry. In the highly corrosion-resistant plating process according to the present invention, as described above, the first nickel plating is performed directly on the object to be plated or after the base plating is applied, followed by fine particle eutectoid nickel plating, and then the final gloss This method is characterized by applying nickel plating and finally chrome plating or other final plating, which forms a corrosion-resistant plating film that is even better than the conventional microporous plating method. That's what I got. According to the present invention, since the corrosion resistance of the plating film is good as described above, the entire plating film can be made thinner to meet the same level of corrosion resistance requirements as in the past. Since the thickness can be reduced, plating costs can be reduced, plating time can be shortened, and work efficiency can be improved. Further, since a highly corrosion-resistant plating film can be obtained in this way, the method of the present invention is suitably employed for parts that are susceptible to rust from low current density areas, such as parts with complex shapes and parts with deep depressions. Furthermore, the method of the present invention allows the use of a normal bright nickel plating bath under normal working conditions for the final bright nickel plating after fine particle eutectoid nickel plating, and is easily integrated into the conventional plating process. It is also advantageous from this point of view. EXAMPLES Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples. [Example, Comparative Example] According to the process shown below, a polished steel plate (10 cm x 5
cm) was electrolytically degreased and then pickled. Next, first bright nickel plating was applied, further fine particle eutectoid nickel plating was applied, then final bright nickel plating was applied, and then chrome plating was performed to obtain a corrosion resistance test piece (example). For comparison, comparative corrosion resistance test pieces were obtained in the same manner as above except that final bright nickel plating was not performed. Next, CASS test (JIS D
201) to evaluate its corrosion resistance. The results are shown in FIGS. 1 and 2. Furthermore, Figure 1 shows the results when the thickness of all nickel plating is 10μ, and Figure 2 shows the results when the thickness of all nickel plating is 15μ.
It is shown by the relationship between the number of cycles (1 cycle = 16 hours of continuous spraying) and the rating number. Plating process 1 Cathode electrolysis degreasing Composition Sodium metasilicate 10g/Soda ash 10〃 Sodium hydroxide 30〃 Sodium tripolyphosphate 10〃 Anion activator 0.1〃 Cathode current density 10A/dm 2 hours 1-2 minutes Temperature 60-65℃ 2 Water washing 3 Acid washing 10% by weight sulfuric acid aqueous solution Time 10 seconds Temperature 20℃ 4 Water washing 5 First bright nickel plating 6 Water washing 7 High stress nickel plating 8 Water washing 9 Final gloss nickel plating 10 Water washing 11 Chrome plating (Hull Cell test) 12 Water washing 13 Dry bright nickel plating bath (first and final) Nickel sulfate (NiSO 4 6H 2 O) 280g / Nickel chloride (NiCl 2 6H 2 O) 45〃 Boric acid 40〃 Satucalin 2〃 2-Butyne- 1,4-diol 0.2〃 PH 4 Plating condition temperature 50℃ Cathode current density 4A/dm 2 Stirring Air particulate eutectoid nickel plating bath Nickel sulfate (NiSO 4 6H 2 O) 280g/ Nickel chloride (NiCl 2・6H 2 O) 45〃 Boric acid 40〃 Silicon oxide (SiO 2 ) 25〃 Zirconium oxide (Zr 2 O 3 ) 1.5〃 Satucalin 2〃 2-Butyne-1,4-diol 0.2〃 PH 3.3 Temperature 60℃ Cathode Current density 4A/dm 2 stirring Air chromium plating bath Chromic anhydride (CrO 3 ) 250g/Trivalent chromium (Cr 3+ ) 2.0〃 Sulfuric acid 2.5〃 Temperature 45℃

【表】 第1図及び第2図の結果から明らかなように、
微粒子共析ニツケルめつきを行なつた後、光沢ニ
ツケルめつきを施すことにより、従来のマイクロ
ポーラスクロムめつき法に比較して、高耐食性め
つき被膜が得られることが知見された。
[Table] As is clear from the results in Figures 1 and 2,
It has been found that by performing fine particle eutectoid nickel plating followed by bright nickel plating, a highly corrosion resistant plating film can be obtained compared to the conventional microporous chrome plating method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明の一実施例
及び従来のマイクロポーラスクロム法によつて得
られためつき被膜の耐食性をCASS試験法により
調べた場合におけるサイクル数とレイテイングナ
ンバーとの関係を示すグラフである。
Figures 1 and 2 show the relationship between the number of cycles and the rating number when the corrosion resistance of the impregnated coating obtained by one embodiment of the present invention and the conventional microporous chromium method was investigated by the CASS test method, respectively. This is a graph showing.

Claims (1)

【特許請求の範囲】[Claims] 1 被めつき物に直接もしくは下地めつきを施し
た後第1ニツケルめつきを行ない、次いで微粒子
共析ニツケルめつきを行ない、続いて最終光沢ニ
ツケルめつきを施し、最後にクロムめつきもしく
はその他の最終めつきを行なうことを特徴とする
耐食めつき方法。
1 After applying direct or base plating to the object to be plated, first nickel plating, then fine particle eutectoid nickel plating, then final gloss nickel plating, and finally chrome plating or other plating. A corrosion-resistant plating method characterized by performing final plating.
JP15782079A 1979-12-05 1979-12-05 Plating method to provide corrosion resistance Granted JPS5681695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15782079A JPS5681695A (en) 1979-12-05 1979-12-05 Plating method to provide corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15782079A JPS5681695A (en) 1979-12-05 1979-12-05 Plating method to provide corrosion resistance

Publications (2)

Publication Number Publication Date
JPS5681695A JPS5681695A (en) 1981-07-03
JPS6232278B2 true JPS6232278B2 (en) 1987-07-14

Family

ID=15658014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15782079A Granted JPS5681695A (en) 1979-12-05 1979-12-05 Plating method to provide corrosion resistance

Country Status (1)

Country Link
JP (1) JPS5681695A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765235B2 (en) * 1986-08-22 1995-07-12 スズキ株式会社 Decorative plating method
JPH0765236B2 (en) * 1986-08-22 1995-07-12 スズキ株式会社 Decorative plating method
JPH01309997A (en) * 1988-06-09 1989-12-14 Kanto Kasei Kogyo Kk Method for obtaining copper-nickel-chromium bright electroplating having excellent corrosion resistance and plating film obtained thereby
JPH0774471B2 (en) * 1990-03-08 1995-08-09 荏原ユージライト株式会社 High corrosion resistance nickel plating method
JPH07111000B2 (en) * 1990-04-09 1995-11-29 荏原ユージライト株式会社 High corrosion resistance nickel plating method
US5922478A (en) * 1997-04-30 1999-07-13 Masco Corporation Article having a decorative and protective coating
US6106958A (en) * 1997-04-30 2000-08-22 Masco Corporation Article having a coating
JP4494310B2 (en) * 2005-08-05 2010-06-30 柿原工業株式会社 Film formation method for copper-free resin plating
PT1870489E (en) 2006-04-19 2008-09-30 Ropal Ag Method to obtain a corrosion-resistant and shiny substrate
JP5070767B2 (en) * 2006-08-28 2012-11-14 トヨタ自動車株式会社 Plating process and fine pitch wiring board manufacturing method
JP4911622B2 (en) * 2007-09-21 2012-04-04 柿原工業株式会社 Defect prevention method for microporous plating
JP2013119049A (en) * 2011-12-06 2013-06-17 Inoac Corp Method for producing metal porous body and grease filter

Also Published As

Publication number Publication date
JPS5681695A (en) 1981-07-03

Similar Documents

Publication Publication Date Title
US2745799A (en) Processes for coating aluminum and alloys thereof
US3152971A (en) Electrodeposition of fine-grained lustrous nickel
US3664933A (en) Process for acid copper plating of zinc
JPS6232278B2 (en)
US4765871A (en) Zinc-nickel electroplated article and method for producing the same
Schwartz Deposition from aqueous solutions: an overview
US3866289A (en) Micro-porous chromium on nickel-cobalt duplex composite plates
US5234574A (en) Process for direct zinc electroplating of aluminum strip
US4411961A (en) Composite electroplated article and process
US4384929A (en) Process for electro-depositing composite nickel layers
US3247082A (en) Electrodeposition of a corrosion resistant coating
US5534358A (en) Iron-plated aluminum alloy parts
US20230398571A1 (en) Corrosion-resistant magnesium alloy with a multi-level protective coating and preparation process thereof
US3691027A (en) Method of producing corrosion resistant chromium plated articles
US3970527A (en) Electroformation of the running track of a rotary internal combustion engine
US3009238A (en) Protective and decorative nickel coatings
KR930002744B1 (en) Nickel plating solution nickel-chromium electroplating method and nickel-chromium plating film
US5620583A (en) Platinum plating bath
US5516419A (en) Hard iron plating of aluminum/aluminum alloys using sulfamate/sulfate solutions
US3703448A (en) Method of making composite nickel electroplate and electrolytes therefor
US4487665A (en) Electroplating bath and process for white palladium
CN108950617B (en) Tellurium-containing zinc-nickel alloy electroplating solution and electroplating process thereof
WO2019215287A1 (en) Nickel comprising layer array and a method for its manufacturing
US20040154928A1 (en) Use of N-allyl substituted amines and their salts as brightening agents in nickel plating baths
US4549942A (en) Process for electrodepositing composite nickel layers