JPS6231996Y2 - - Google Patents

Info

Publication number
JPS6231996Y2
JPS6231996Y2 JP1981138977U JP13897781U JPS6231996Y2 JP S6231996 Y2 JPS6231996 Y2 JP S6231996Y2 JP 1981138977 U JP1981138977 U JP 1981138977U JP 13897781 U JP13897781 U JP 13897781U JP S6231996 Y2 JPS6231996 Y2 JP S6231996Y2
Authority
JP
Japan
Prior art keywords
layer
heating wire
horizontally wound
horizontally
bimetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981138977U
Other languages
Japanese (ja)
Other versions
JPS5844709U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13897781U priority Critical patent/JPS5844709U/en
Publication of JPS5844709U publication Critical patent/JPS5844709U/en
Application granted granted Critical
Publication of JPS6231996Y2 publication Critical patent/JPS6231996Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Insulated Conductors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、自動車計器、特に燃料計、冷却水温
計、油圧計、電圧計等の指針作動用及びこれら計
器回路の電圧調整用に使用するバイメタルの加温
に用いられる発熱電線の改良に関するものであ
る。 従来のバイメタル用発熱電線は、電熱線に電気
絶縁用ガラス糸を2層ないし4層交互に反対方向
に横巻被覆し、その上にシリコーン樹脂塗料を含
浸塗布焼付した構造の電線であつた。 しかし、このような従来の発熱電線は、近年の
自動巻線機の採用に伴なつて要求されつつある厳
しい品質特性と高い信頼性を必ずしも充分に満た
しうるものではなくなつてきた。一方、バイメタ
ルの巻線時及び実車走行時にガラス絶縁層が破壊
し、電熱線とバイメタルが短絡するという欠陥も
発生している。更に、可撓性を良くするために2
官能基の多いシリコーン樹脂塗料を含浸焼付塗料
として用いているため、200℃付近に通電加熱さ
れると、Si−OH(ケイ素−ヒドロキシル)間の
縮合反応が起つて炭化水素系ガスを発生し、バイ
メタル先端に設けられている電気接点の動作不良
の原因ともなつていた。 また、最近になつてガラス糸に代えて芳香族ポ
リアミド繊維を電熱線に横巻きし、これにポリア
ミドイミドまたはポリイミド樹脂塗料を含浸塗布
し、焼付硬化させた発熱電線が提案されている。
しかし、このような電線では、有機質の繊維を用
いていることから、たとえば時折経験されるよう
な発熱電線に異常電流が流れた場合に、被覆層全
体が炭化してしまつて短絡を起すという危険があ
る。また、ワイヤブラシ等で被覆層を取り除くと
きに、ガラス糸には見られないケバ立ち様の繊維
のほつれが見られ、バイメタルへの巻線作業性を
損う。 本考案はこれらの諸問題を解決することを目的
とするもので、添付図面に示す如く、電熱線1の
上に電気絶縁用ガラス糸を横巻した第1横巻層2
を設け、その上に芳香族ポリアミド繊維を横巻し
た第2横巻層3を設け、さらにその上にポリアミ
ドイミド樹脂塗料又はポリイミド樹脂塗料を含浸
後に焼付して得た含浸塗布焼付層4を設けてなる
電線である。 ここに、芳香族ポリアミド繊維とは、例えばポ
リ−m−フエニレン・イソフタルアミドあるいは
ポリ−p−フエニレン・テレフタルアミド等が挙
げられる。 以下に本考案について更に詳細に説明する。 一般に、電熱線の被覆層の厚さにはその性質上
一定の制限があり、通常は電熱線直径と同一ない
しほぼ半分の厚さの被覆層を設ける。余り厚いと
巻線時に被覆の内側層と外側層との間にセン断応
力が作用して層剥離あるいは表面割れの原因とな
る。一方、余り薄いと所期の絶縁効果が得られな
い。したがつて、本考案においても、被覆層の厚
さは、好ましくは電熱線直径と同一ないしほぼ半
分程度にする。 本考案においてはかかる被覆層はガラス糸横巻
層と芳香族ポリアミド繊維横巻層から構成され、
前者が上記被覆内側層、後者が外側層をそれぞれ
構成することとなる。該ガラス糸横巻層は直接に
電熱線に被覆され、一方、芳香族ポリアミド繊維
の横巻層は上記ガラス糸横巻層を介して電熱線に
巻かれる。 なお、外側層に含浸塗布された塗料はこの外側
層に含浸されるため、焼付後はこの外側層と一体
になつて外殻層を形成するが、添付図面では説明
の便宜上、この塗料の含浸塗布焼付層をひとつの
独立した層として示してある。 かかる構成を備えた本考案によれば、まず第一
に、バイメタル巻線時に受ける変形が比較的少な
い内側層をガラス糸からなる第一横巻層とするこ
とにより、バイメタル巻線時におけるガラス糸の
破壊が防止されると共に、電熱線にガラス糸が密
着していることから、ガラス糸のもつすぐれた熱
伝導性が確保され、有効に利用される。さらに、
ガラス糸横巻層が内側層として介在するために、
時折経験される異常電流通電時における450℃を
超える温度においても、絶縁被覆の全面炭化が防
止され、それにより短絡を防止することができ
る。本考案の好適態様において、ガラス糸横巻層
の厚さ:芳香族ポリアミド繊維横巻層の厚さの比
を約1:1ないし約3:1とする。 第二に、バイメタル巻線時に大きな変形を受け
る外側層には柔軟性および耐屈曲性にすぐれた芳
香族ポリアミド繊維を用いているため、繊維の伸
長により該巻線時に受ける変形応力を緩和すると
共に、この芳香族ポリアミド繊維のもつ小さな摩
擦係数によりバイメタルエツジ部における絶縁被
覆破壊の防止をはかることができる。 第三に、焼付絶縁塗料にポリアミドイミド塗料
またはポリイミド塗料を用いているので、外側層
である芳香族ポリアミド繊維との相溶性が良く、
そのため含浸が容易となる。ポリアミドイミド塗
料及びポリイミド塗料はこのように芳香族ポリア
ミド繊維から成る層に容易に含浸することから、
この塗料も内側層であるガラス糸から成る層に接
触することになり、そのためガラス糸の内側層と
芳香族ポリアミド繊維の外側層との密着性は一層
強化され、剥離することはなく、したがつて、機
械的強度の向上ばかりでなく熱伝導性の均一化を
も図ることができる。上記塗料はまた250℃とい
う高温の使用温度においても電気接点に有害なガ
スを発生せず、さらに高速巻線時におけるすべり
性の改良にも寄与する。 次に、本考案を実施例によつてさらに説明す
る。 実施例 1 直径0.080mmのニツケルクロム電熱線に、電気
絶縁用ガラス糸(ECD 900)を横巻し、その上
に芳香族ポリアミド繊維(du Pont社商品名“ノ
ーメツクス”)を横巻し、さらにその上にポリア
ミドイミド樹脂塗料を含浸塗布焼付して、従来品
とほぼ同一の0.243mmの仕上外径を有する発熱電
線を得た。被覆厚さは0.082mmであり、ガラス糸
横巻層と芳香族ポリアミド繊維横巻層の厚みの比
は約1:1であつた。この電線の各種試験におけ
る試験結果を下記の第1表に示す。比較のため
に、上記電熱線を従来のガラス糸被覆シリコーン
樹脂塗料焼付して得た発熱電線(従来品)及びガ
ラス糸を使わずに上記電熱線に芳香族ポリアミド
繊維を直接横巻し、ポリアミドイミド樹脂塗料を
含浸塗布焼付して得た発熱電線(参考品)も同様
に試験し、その結果を第1表に併せて示す。
The present invention relates to improvements in heating wires used to heat bimetallic instruments used in automobile instruments, particularly fuel gauges, coolant temperature gauges, oil pressure gauges, voltmeters, etc., as well as bimetallic devices used to adjust the voltage of these instrument circuits. be. Conventional bimetal heating wires have a structure in which a heating wire is coated with two to four layers of electrically insulating glass thread alternately wound horizontally in opposite directions, and a silicone resin paint is impregnated and baked on top of the coating. However, such conventional heating wires are no longer able to fully satisfy the strict quality characteristics and high reliability that have been required as automatic winding machines have been adopted in recent years. On the other hand, defects have also occurred in which the glass insulating layer breaks down during winding of the bimetal and during actual vehicle running, resulting in a short circuit between the heating wire and the bimetal. Furthermore, in order to improve flexibility, 2
Since a silicone resin paint with many functional groups is used as an impregnating and baking paint, when heated to around 200℃, a condensation reaction between Si-OH (silicon-hydroxyl) occurs and hydrocarbon gas is generated. This was also a cause of malfunction of the electrical contacts provided at the tip of the bimetal. Recently, a heating wire has been proposed in which aromatic polyamide fibers are wound horizontally around a heating wire instead of glass threads, the wire is impregnated and coated with a polyamide-imide or polyimide resin coating, and then cured by baking.
However, since such electric wires use organic fibers, there is a risk that, for example, if an abnormal current flows through a heating wire, as sometimes happens, the entire coating layer may carbonize, causing a short circuit. There is. Furthermore, when removing the coating layer with a wire brush or the like, fraying of the fibers, which is not seen in glass threads, is observed, impairing the workability of winding bimetal wires. The present invention is aimed at solving these problems, and as shown in the attached drawing, a first horizontally wound layer 2 in which electrically insulating glass thread is horizontally wound on a heating wire 1 is used.
A second horizontally wound layer 3 made of aromatic polyamide fibers horizontally wound is provided thereon, and an impregnated coated baked layer 4 obtained by impregnating and baking a polyamide-imide resin paint or a polyimide resin paint is further provided thereon. It is an electric wire. Here, the aromatic polyamide fibers include, for example, poly-m-phenylene isophthalamide or poly-p-phenylene terephthalamide. The present invention will be explained in more detail below. Generally, there is a certain limit to the thickness of the coating layer of a heating wire due to its nature, and the coating layer is usually provided with a thickness that is equal to or approximately half the diameter of the heating wire. If it is too thick, shear stress will act between the inner layer and outer layer of the coating during winding, causing layer peeling or surface cracking. On the other hand, if it is too thin, the desired insulation effect cannot be obtained. Therefore, also in the present invention, the thickness of the coating layer is preferably the same as or approximately half the diameter of the heating wire. In the present invention, the covering layer is composed of a horizontally wound layer of glass yarn and a horizontally wound layer of aromatic polyamide fiber,
The former constitutes the inner covering layer, and the latter constitutes the outer layer. The horizontally wound layer of glass yarn is directly coated on the heating wire, while the horizontally wound layer of aromatic polyamide fiber is wound around the heating wire via the horizontally wound layer of glass yarn. Furthermore, since the paint applied to the outer layer is impregnated into this outer layer, it is integrated with this outer layer to form an outer shell layer after baking. The coated and baked layers are shown as one separate layer. According to the present invention having such a configuration, first of all, by using the inner layer, which undergoes relatively little deformation during bimetal winding, as the first horizontally wound layer made of glass thread, the glass thread during bimetal winding is In addition, since the glass thread is in close contact with the heating wire, the excellent thermal conductivity of the glass thread is ensured and it can be used effectively. moreover,
Because the glass thread horizontally wound layer is interposed as an inner layer,
Even at temperatures exceeding 450°C during abnormal current flow, which is sometimes experienced, the entire surface of the insulation coating is prevented from becoming carbonized, thereby preventing short circuits. In a preferred embodiment of the present invention, the ratio of the thickness of the horizontally wound glass yarn layer to the thickness of the horizontally wound aromatic polyamide fiber layer is about 1:1 to about 3:1. Second, since aromatic polyamide fibers with excellent flexibility and bending resistance are used for the outer layer, which undergoes large deformation during bimetal winding, the elongation of the fibers alleviates the deformation stress experienced during bimetal winding. Due to the small friction coefficient of this aromatic polyamide fiber, breakdown of the insulation coating at the bimetal edge portion can be prevented. Thirdly, since polyamide-imide paint or polyimide paint is used as the baked insulation paint, it has good compatibility with the aromatic polyamide fiber that is the outer layer.
Therefore, impregnation becomes easy. Since polyamide-imide paints and polyimide paints are easily impregnated into layers made of aromatic polyamide fibers,
This paint also comes into contact with the inner layer of glass threads, which further strengthens the adhesion between the inner layer of glass threads and the outer layer of aromatic polyamide fibers, preventing them from peeling off. As a result, not only mechanical strength can be improved, but also thermal conductivity can be made uniform. The above paint also does not generate harmful gases to electrical contacts even at high operating temperatures of 250°C, and also contributes to improved slipperiness during high-speed winding. Next, the present invention will be further explained with reference to examples. Example 1 Electrical insulating glass thread (ECD 900) was wound horizontally around a nickel chrome heating wire with a diameter of 0.080 mm, and aromatic polyamide fiber (trade name "Nomex" by du Pont) was wound horizontally on top of it, and then A polyamide-imide resin paint was impregnated and baked on top of the wire to obtain a heating wire with a finished outer diameter of 0.243 mm, which is almost the same as the conventional product. The coating thickness was 0.082 mm, and the ratio of the thicknesses of the horizontally wound glass yarn layer and the horizontally wound aromatic polyamide fiber layer was approximately 1:1. The test results of various tests on this electric wire are shown in Table 1 below. For comparison, a heating wire (conventional product) obtained by baking the above heating wire with a conventional glass thread coated silicone resin paint, and a heating wire obtained by directly horizontally wrapping aromatic polyamide fibers on the above heating wire without using glass thread, and a polyamide A heating wire (reference product) obtained by impregnating and baking imide resin paint was also tested in the same manner, and the results are also shown in Table 1.

【表】 第1表の結果から明らかな如く、本考案に係る
発熱電線は耐熱性、機械的強度に優れ、巻線性も
良好であり、実用的な価値はきわめて大きい。特
に、参考品と比較した場合、下地層としてガラス
糸を電熱線に横巻きしているので、そのすぐれた
絶縁性及び熱伝導性が有効に発揮されることに加
えて、被覆の剥離が容易で、ほつれも少ない。ま
た、ガラス糸層が内側層にあり、厚さも従来品に
比べて比較的薄いので、バイメタル巻線時にバイ
メタルエツジ部の苛酷な屈曲にも耐え、バイメタ
ル作動時のバイメタル自体の変形にもよく耐え
る。さらに、参考品に比べて高価な芳香族ポリア
ミド繊維の使用量が少ないため安価に製造できる
という経済的効果も有している。 実施例 2 本例では実施例1を繰り返えしたが、電熱線は
直径0.10mmのものを使用し、その他、比較のた
め、ガラス糸だけを単層あるいは多層巻きしたも
の、表面処理塗料としてシリコーン樹脂を使つた
もの、そして芳香族ポリアミド繊維を多層巻きし
たもの等を得、それぞれ特性を評価した。結果は
第2表にまとめて示す。同表に示す結果から、本
考案に係る発熱電線が絶縁破壊電圧及び耐摩耗性
の両方にともにすぐれていることが分かる。な
お、耐摩耗性は実用上は5〜10回程度で十分であ
る。
[Table] As is clear from the results in Table 1, the heating wire according to the present invention has excellent heat resistance, mechanical strength, and good winding properties, and has extremely high practical value. In particular, when compared to the reference product, glass thread is wound horizontally around the heating wire as a base layer, so in addition to effectively exhibiting its excellent insulation and thermal conductivity, the coating is easy to peel off. And there is less fraying. In addition, since the glass thread layer is on the inner layer and is relatively thin compared to conventional products, it can withstand severe bending of the bimetal edge during bimetal winding, and also resists deformation of the bimetal itself when bimetal is activated. . Furthermore, since the amount of expensive aromatic polyamide fiber used is smaller than that of the reference product, it also has the economical effect of being able to be manufactured at low cost. Example 2 In this example, Example 1 was repeated, but a heating wire with a diameter of 0.10 mm was used, and for comparison, glass thread wound in a single layer or in multiple layers, and a surface treatment paint were used. We obtained products using silicone resin and products wrapped in multiple layers of aromatic polyamide fiber, and evaluated their characteristics. The results are summarized in Table 2. From the results shown in the same table, it can be seen that the heating wire according to the present invention is excellent in both dielectric breakdown voltage and wear resistance. Note that for practical purposes, wear resistance is sufficient for about 5 to 10 times.

【表】 実施例 3 実施例1と同様にして第3表に示す3種の発熱
電線を得、これらを使つて下記要領の昇温特性試
験及び過電流特性試験を行なつた。
[Table] Example 3 Three types of heating electric wires shown in Table 3 were obtained in the same manner as in Example 1, and using these, a temperature rise characteristic test and an overcurrent characteristic test were conducted in the following manner.

【表】 試験条件 イ 昇温特性試験 巻線抵抗値 86Ω 電圧値 D.C.8V 電流値 94mA 通電時間 2分 ロ 過電流特性試験 巻線抵抗値 86Ω 電圧電流値 D.C.18V、210mA 通電時間 2分 昇温特性試験は通電時の試料の温度変化を測定
するもので、その結果は第2図にグラフで示す。
図中、曲線Aは従来品、曲線Bは本考案品、曲線
Cは参考品の試験結果を示す。グラフからわかる
ように、本考案品の昇温特性はガラス繊維のみで
被覆された従来品よりは劣るが、参考品よりはす
ぐれている。 一方、過電流特性試験は2分通電後の電熱線と
バイメタル間の絶縁抵抗を測定するもので、その
結果は次の第4表に示す。
[Table] Test conditions A Temperature rise characteristic test Winding resistance 86Ω Voltage value DC8V Current value 94mA Current conduction time 2 minutes B Overcurrent characteristic test Winding resistance value 86Ω Voltage and current value DC18V, 210mA Current conduction time 2 minutes Temperature rise characteristic test It measures the temperature change of the sample when electricity is applied, and the results are shown graphically in Figure 2.
In the figure, curve A shows the test results of the conventional product, curve B shows the test results of the invented product, and curve C shows the test results of the reference product. As can be seen from the graph, the temperature rise characteristics of the product of the present invention are inferior to the conventional product coated only with glass fiber, but are superior to the reference product. On the other hand, the overcurrent characteristic test measures the insulation resistance between the heating wire and the bimetal after 2 minutes of energization, and the results are shown in Table 4 below.

【表】 第4表の結果からわかるように、芳香族ポリア
ミド繊維を二重に横巻した参考品の発熱電線は4
試料中2試料が20〜30秒で発火断線し、残りの2
試料も2分通電後に被覆層が黒色に炭化し、絶縁
抵抗もほぼゼロとなるなど、耐熱性が非常に低か
つた。二重ガラス繊維横巻発熱電線である従来品
の試料は炭化はしなかつたが、黄色に変色した。
この従来品の絶縁抵抗値がいずれの試料でも低い
のは、シリコーン樹脂塗料を含浸焼付しているた
め、この塗料が熱によりガス化し、さらにバイメ
タルの熱変形にガラス被覆層が追従できなかつた
ためと考えられる。本考案品で絶縁抵抗が高いの
は、芳香族ポリアミド繊維被覆層が炭化しても、
残るガラス繊維被覆層が絶縁性を維持できるから
だと考えられる。このように、本考案品は参考品
に比べて格段に耐熱性にすぐれており、たとえ異
常電流が流れてもなお絶縁性を保持することがで
きる。
[Table] As can be seen from the results in Table 4, the heating wire of the reference product made of double horizontally wound aromatic polyamide fibers was 4.
Two of the samples caught fire in 20 to 30 seconds, and the remaining two
The heat resistance of the sample was also very low, with the coating layer turning black and carbonized after 2 minutes of energization, and the insulation resistance becoming almost zero. The conventional sample, which was a double glass fiber horizontally wound heating wire, did not carbonize, but did turn yellow.
The reason why the insulation resistance values of these conventional products are low in all samples is because the silicone resin paint is impregnated and baked, which gasifies due to heat, and the glass coating layer is unable to follow the thermal deformation of the bimetal. Conceivable. The reason why this product has high insulation resistance is that even if the aromatic polyamide fiber coating layer is carbonized,
This is thought to be because the remaining glass fiber coating layer can maintain insulation. As described above, the product of the present invention has much better heat resistance than the reference product, and can maintain its insulation properties even when abnormal current flows.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本考案に係る発熱電線を一部破壊し
て示す拡大斜視図、第2図は、本考案品の通電時
の昇温特性を従来品及び参考品のそれと共に示す
グラフである。 第1図において、1:電熱線、3:第2横巻
層、2:第1横巻層、4:含浸塗布焼付層。
Fig. 1 is an enlarged perspective view showing a partially destroyed heating wire according to the present invention, and Fig. 2 is a graph showing the temperature rise characteristics of the product of the present invention when energized, along with those of conventional products and reference products. . In FIG. 1, 1: heating wire, 3: second horizontally wound layer, 2: first horizontally wound layer, 4: impregnated coating baking layer.

Claims (1)

【実用新案登録請求の範囲】 (1) 電熱線と、該電熱線を直接被覆する電気絶縁
用ガラス糸からなる第1横巻層と、該第1横巻
層を被覆する芳香族ポリアミド繊維からなる第
2横巻層と、該第2横巻層に含浸塗布後焼付し
て得たポリアミドイミド樹脂塗料またはポリイ
ミド樹脂塗料の含浸塗布焼付層とを備えたこと
を特徴とする、自動車計器バイメタル用発熱電
線。 (2) 前記第1横巻層:第2横巻層の厚さの比が
1:1〜3:1である、実用新案登録請求の範
囲第1項記載の自動車計器バイメタル用発熱電
線。
[Claims for Utility Model Registration] (1) A heating wire, a first horizontally wound layer made of electrically insulating glass thread that directly covers the heating wire, and an aromatic polyamide fiber that covers the first horizontally wound layer. and an impregnated and baked layer of polyamide-imide resin paint or polyimide resin paint obtained by impregnating and baking the second horizontally wound layer. heating wire. (2) The heat-generating electric wire for a bimetal automotive instrument as claimed in claim 1, wherein the ratio of the thickness of the first horizontally wound layer to the second horizontally wound layer is 1:1 to 3:1.
JP13897781U 1981-09-21 1981-09-21 Heating wire for bimetal automotive instrumentation Granted JPS5844709U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13897781U JPS5844709U (en) 1981-09-21 1981-09-21 Heating wire for bimetal automotive instrumentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13897781U JPS5844709U (en) 1981-09-21 1981-09-21 Heating wire for bimetal automotive instrumentation

Publications (2)

Publication Number Publication Date
JPS5844709U JPS5844709U (en) 1983-03-25
JPS6231996Y2 true JPS6231996Y2 (en) 1987-08-15

Family

ID=29932183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13897781U Granted JPS5844709U (en) 1981-09-21 1981-09-21 Heating wire for bimetal automotive instrumentation

Country Status (1)

Country Link
JP (1) JPS5844709U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346478Y2 (en) * 1984-12-19 1991-10-01
JP4634636B2 (en) * 2001-04-18 2011-02-16 日本精線株式会社 Electric heating yarn and heater using the electric heating yarn

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917536A (en) * 1972-06-12 1974-02-16
JPS4970240A (en) * 1972-11-12 1974-07-08

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101482U (en) * 1977-12-28 1979-07-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917536A (en) * 1972-06-12 1974-02-16
JPS4970240A (en) * 1972-11-12 1974-07-08

Also Published As

Publication number Publication date
JPS5844709U (en) 1983-03-25

Similar Documents

Publication Publication Date Title
US5521358A (en) Electrical heating conductor
JPS6231996Y2 (en)
US4486506A (en) Solid insulator and electric equipment coil using the same
US6259030B1 (en) Electrical cables adapted for high voltage applications
GB2213980A (en) Electrical cable
US2734934A (en) Fusible base
US2446292A (en) Insulated electrical conductor
RU2180772C2 (en) Heating cable
US2213067A (en) Fixed resistor
JP6800931B2 (en) Test method for double-coated wire
JP2002358836A (en) Self fusion enamel wire
US20170256337A1 (en) Heat-resistant and oil-resistant insulated electric wire
US4859258A (en) Method of manufacturing a flexible electric cable including a conductor comprising a plurality of fine strands of aluminum or aluminum alloy
JP2702710B2 (en) High voltage cable for flyback transformer
JPS62160605A (en) High voltage resistance wire
JP4148751B2 (en) Thermal fuse cable
JPS643195Y2 (en)
JPH0729421A (en) High voltage resistance electric wire
WO2021210668A1 (en) Heat-resistant insulated electric wire
US327469A (en) Electro-magnet
WO2003010779A1 (en) Heat sensitive cable and method of making same
US2043702A (en) Insulated wire
JP2004063428A (en) Thermal fuse cable
US515254A (en) Rheostat
US1840282A (en) Insulated electrical conductor