JPS6231964B2 - - Google Patents

Info

Publication number
JPS6231964B2
JPS6231964B2 JP54042887A JP4288779A JPS6231964B2 JP S6231964 B2 JPS6231964 B2 JP S6231964B2 JP 54042887 A JP54042887 A JP 54042887A JP 4288779 A JP4288779 A JP 4288779A JP S6231964 B2 JPS6231964 B2 JP S6231964B2
Authority
JP
Japan
Prior art keywords
slurry
dehydration
dewatering
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54042887A
Other languages
Japanese (ja)
Other versions
JPS55134619A (en
Inventor
Hiroaki Sato
Masanori Eto
Sho Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP4288779A priority Critical patent/JPS55134619A/en
Publication of JPS55134619A publication Critical patent/JPS55134619A/en
Publication of JPS6231964B2 publication Critical patent/JPS6231964B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material
    • B30B9/04Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams

Description

【発明の詳細な説明】 本発明は、各種の汚泥、その他難過性の泥状
物などのスラリーを加圧脱水する方法、特に難脱
水性のスラリーを効果的に脱水する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for pressurized dewatering of slurries such as various sludges and other difficult-to-dewater slurries, and particularly to a method for effectively dewatering difficult-to-dewater slurries.

この種のスラリーの脱水方法に関しては、従来
から真空過、加圧過、遠心分離など、数多く
の工夫・改良がなされているが、原理的には圧力
差(加圧および減圧)や遠心力を利用した方法で
脱水処理が行われている。しかし、スラリーはそ
の性状によつて異なるが、脱水が困難なものが多
い。
Regarding the dewatering method of this type of slurry, many devises and improvements have been made in the past, such as vacuum filtration, pressurization filtration, and centrifugation, but in principle, pressure differences (pressurization and depressurization) and centrifugal force are Dehydration treatment is performed using the method used. However, although slurry differs depending on its properties, many slurries are difficult to dehydrate.

そのため、スラリーの脱水を簡単な方法で効率
よく行うことは難しく、機械的に複雑化した脱水
装置を用いた、いろいろな方法で脱水が行われて
いる。
Therefore, it is difficult to efficiently dewater the slurry using a simple method, and dewatering is performed by various methods using mechanically complicated dewatering equipment.

しかしながら、従来の方法では、たとえば水酸
化アルミニウムの如きスラリー中の粒子が極めて
小さいような場合、スラリーの過または脱水を
効率よく行うことは難しい。すなわち、スラリー
の脱水は原理的に圧力差や遠心力を利用したもの
であるから、装置的(機械的)にいかに工夫して
も、スラリー中の粒子の細孔内の水または粒子が
極めて小さいために粒子と粒子との間が細孔と同
じような作用をしているときの粒子間に存在する
水を、スラリーから脱水するには限界があつて、
十分な脱水効果を得ることかできない。
However, with conventional methods, it is difficult to efficiently filtrate or dewater a slurry when the particles in the slurry, such as aluminum hydroxide, are extremely small. In other words, since slurry dehydration basically uses pressure differences and centrifugal force, no matter how much equipment (mechanical) devising is done, the water or particles in the pores of the particles in the slurry are extremely small. Therefore, there is a limit to how water existing between particles can be dehydrated from slurry when the particles act like pores.
It is not possible to obtain sufficient dehydration effect.

たとえば、フイルタープレスに圧搾機構を備
え、ダイヤフラムによつてスラリーを圧搾して脱
水する方法がある。この方法は圧搾により粒子間
の間隙を小さくして、スラリーの含水率を低下さ
せようとするものであるが、粒子間液を十分に取
り除くことは困難である。また、遠心力を利用し
て脱水する方法は、スラリー中の水を遠心力によ
つて粒子から引き離すものであるが、粒子が微細
な場合には、動力を多量に必要とする割には水を
効果的に脱水することはできない。
For example, there is a method in which a filter press is equipped with a squeezing mechanism and a diaphragm is used to squeeze the slurry to dehydrate it. This method attempts to reduce the water content of the slurry by reducing the gaps between particles by squeezing, but it is difficult to sufficiently remove the interparticle liquid. In addition, the method of dewatering using centrifugal force uses centrifugal force to separate the water in the slurry from the particles. cannot be effectively dehydrated.

このように、従来の脱水方法は、いずれの方法
も多量の動力を必要とし、かつ安全上から堅牢な
機械を備えたものであるにもかかわらず、スラリ
ーの含水率の低減はわずかであり満足すべき脱水
効果を得るには至らなかつたし、処理能力もあま
り高められず設備費や運転費が多大となるなど実
用上問題となることが多い。
In this way, although all conventional dewatering methods require a large amount of power and are equipped with robust machinery for safety reasons, the reduction in water content of the slurry is small and satisfactory. However, it is not possible to obtain the desired dehydration effect, and the processing capacity cannot be improved much, resulting in large equipment costs and operating costs, which often poses practical problems.

本発明は、これら従来の欠点を適確に排除しよ
うとするもので、脱水が困難なスラリーを効果的
に脱水し、脱水速度を大幅に増大させ、著しく低
含水率の脱水ケーキを得る有効な処理方法を提供
することを目的とするものである。
The present invention seeks to precisely eliminate these conventional drawbacks, and provides an effective method for effectively dewatering difficult-to-dewater slurries, significantly increasing the dewatering rate, and obtaining a dehydrated cake with significantly lower water content. The purpose is to provide a processing method.

また本発明の他の目的は、安定した能率的処理
を保証し、且つ経済的な運転維持費で大量処理に
適した脱水方法とすることにある。
Another object of the present invention is to provide a dewatering method that guarantees stable and efficient processing and is suitable for large-scale processing with economical operation and maintenance costs.

本発明は、超音波の汚泥(スラリー)脱水促進
作用、換言すれば加圧によつてスラリーを圧密状
態にし、この状態においてスラリーを超音波によ
つて振動させて、スラリー中の粒子間に存在する
水を加圧力と超音波振動によつて効率的に脱水す
るものであつて、本発明者は、このようにして汚
泥粒子間の空隙率を小さくし、汚泥粒子を密な充
填状態に保持しながら圧搾すると水分が移動して
抜け易くなることを見い出したものである。
The present invention utilizes the sludge dehydration promoting action of ultrasonic waves, in other words, the slurry is brought into a consolidated state by pressurization, and in this state, the slurry is vibrated by ultrasonic waves. The present inventor dehydrates water efficiently using pressurized force and ultrasonic vibration, and the present inventor has developed a method to reduce the porosity between sludge particles and maintain the sludge particles in a densely packed state. It was discovered that when squeezed, the water moves and comes out easily.

すなわち、本発明によるスラリーの脱水方法
は、難過性のスラリーを加圧脱水する際に、ス
ラリーを振幅が0.1μm〜10μmの超音波によつ
て振動させながら、脱水圧力を0.5Kgf/cm2〜100
Kgf/cm2に設定して加圧脱水することで粒子間に
存在する水を効果的に流出させ、容易に含水率の
低い脱水ケーキを生成させることを特徴とするも
のである。
That is, in the slurry dewatering method according to the present invention, when pressurizing and dewatering a difficult-to-permeate slurry, the slurry is vibrated by ultrasonic waves having an amplitude of 0.1 μm to 10 μm, and the dewatering pressure is increased to 0.5 Kgf/cm 2 to 10 μm. 100
It is characterized in that by pressurized dehydration at a setting of Kgf/cm 2 , water existing between particles is effectively drained, and a dehydrated cake with a low water content can be easily produced.

本発明において脱水圧力を0.5Kgf/cm2〜100Kg
f/cm2に、超音波の振幅を0.1μm/10μmにそ
れぞれ限定した根拠は、以下のとおりである。
In the present invention, the dewatering pressure is set to 0.5Kgf/cm 2 to 100Kg.
The basis for limiting the amplitude of ultrasonic waves to f/cm 2 and 0.1 μm/10 μm is as follows.

まず、汚泥の加圧脱水においては、実験結果か
ら脱水圧力が0.5Kgf/cm2未満であると超音波振
動の効果が殆ど無く、脱水後のケーキ含水率が高
いし、また、脱水圧力を100Kgf/cm2より高圧に
しても、このような高圧条件下では超音波振動の
効果も殆どなく、このような高圧条件下で脱水す
ること自体、実用上不可能であることが明らかと
なつたからである。
First, in pressurized dehydration of sludge, experimental results show that if the dehydration pressure is less than 0.5Kgf/ cm2 , there is almost no effect of ultrasonic vibration and the moisture content of the cake after dewatering is high. Even if the pressure is higher than / cm2 , there is almost no effect of ultrasonic vibration under such high pressure conditions, and it has become clear that dehydration itself is practically impossible under such high pressure conditions. be.

一方、超音波の振幅が0.1μm未満であると、
超音波振動が弱く脱水圧力のみの効果しか得られ
ず、スラリーに含まれる粒子を超音波振動によつ
て密に充填させて脱水後のケーキを低含水率にす
ることが困難であり、超音波の振幅が10μmより
大であると、超音波振動が強過ぎてケーキがろ過
面からもれて脱水が不可能になるし、電気エネル
ギーの消費量も非常に多くなり実用的でなくなる
からである。
On the other hand, if the amplitude of the ultrasonic wave is less than 0.1 μm,
Ultrasonic vibrations are weak and can only produce the effect of dewatering pressure, and it is difficult to make the particles contained in the slurry densely packed by ultrasonic vibrations and reduce the moisture content of the dehydrated cake. If the amplitude is greater than 10 μm, the ultrasonic vibration will be too strong and the cake will leak from the filtration surface, making dehydration impossible, and the amount of electrical energy consumed will be extremely high, making it impractical. .

すなわち、脱水圧力と超音波振動との相乗効果
は、一定の条件を満足して初めて得られるもので
あり、汚泥粒子間の空隙率を小さくし、汚泥粒子
を密な充填状態に保持しながら圧搾すると、水分
が移動して抜け易くなり低含水率に脱水すること
が可能となるのである。
In other words, the synergistic effect of dewatering pressure and ultrasonic vibration can only be obtained when certain conditions are met. This makes it easier for water to move and escape, making it possible to dehydrate to a low water content.

本発明の実施態様を図面を参照して、脱水工程
に用いる好適な装置にもとづいて説明すると、第
1図において透水性部材例えば多孔板3のあるピ
ストン2を滑動自在に嵌合したシリンダ1内下部
にスラリーAと接触して超音波発振器6、振動子
5に連結した機械振動増幅器即ちホーン4が配備
され、スラリーAはピストン2により加圧される
とともに前記ホーン4から超音波振動を受け、ス
ラリーAから分離した水は多孔板3を通りピスト
ン2の中空室を経て系外に移行するようになつて
いる。前記超音波振動は、発振器6で発生した高
周波電気振動が振動子5で超音波振動に変換され
た後、ホーン4を媒体としてスラリーAに与えら
れる。
Embodiments of the present invention will be described with reference to the drawings based on a suitable apparatus used in the dewatering process. In FIG. A mechanical vibration amplifier, ie, a horn 4, which is in contact with the slurry A and is connected to an ultrasonic oscillator 6 and a vibrator 5, is provided at the bottom, and the slurry A is pressurized by the piston 2 and receives ultrasonic vibration from the horn 4. The water separated from the slurry A passes through the perforated plate 3, the hollow chamber of the piston 2, and moves out of the system. The ultrasonic vibrations are applied to the slurry A using the horn 4 as a medium after high-frequency electric vibrations generated by the oscillator 6 are converted into ultrasonic vibrations by the vibrator 5.

第2図に示す具体例では第1図に示す装置を連
続化した一例で、圧搾板8に開口部を設けて、そ
の開口部にスラリーAと接触するようにホーン4
が配備され、スラリーAは無端状に走行する布
7の上に供給され、重力過を受けたのちスラリ
ーAは圧搾板8上で停止し、圧搾板8によつて上
下から圧搾されるとともにホーン4によつて超音
波振動を受ける。この際、スラリーA中の水は、
超音波による振動と圧搾によつて効果的に脱水さ
れて液受槽9に集まる。圧搾終了後、圧搾板8
は上下に離れ、脱水されたケーキは左側へ移動し
て左端より排出され、必要に応じケーキ剥離機構
10で剥離され、さらに洗浄機構11で布7を
洗浄したのち脱水作業に供されるようになつてい
る。
The specific example shown in FIG. 2 is a continuous version of the apparatus shown in FIG.
is provided, slurry A is supplied onto cloth 7 that runs endlessly, and after being subjected to gravity, slurry A stops on pressing plate 8 and is compressed from above and below by pressing plate 8. 4 receives ultrasonic vibration. At this time, the water in slurry A is
The water is effectively dehydrated by ultrasonic vibration and squeezing and collects in the liquid receiving tank 9. After pressing, press plate 8
are separated vertically, and the dehydrated cake moves to the left side and is discharged from the left end, is peeled off by a cake peeling mechanism 10 if necessary, and is further cleaned by a cleaning mechanism 11 before being subjected to dewatering work. It's summery.

また、第3図例は、フイルタープレスに応用す
るもので、布7を張装しうるフイルタープレス
の板12に形成した室内に振動子5を配備し
たものであり、汚泥導入孔13から供給されたス
ラリーAは超音波振動をうけながら室内に圧入
されて過され、さらに高圧気体又は圧力水を高
圧流体導入孔14から導入してダイヤフラム15
を膨張させて圧搾脱水する。スラリーA中の水
は、超音波による振動と過、圧搾によつて効果
的に脱水されて液口16から排出されるように
なつている。
The example shown in FIG. 3 is applied to a filter press, in which a vibrator 5 is provided in a chamber formed in a plate 12 of the filter press to which a cloth 7 can be stretched. The slurry A is pressurized into the chamber while being subjected to ultrasonic vibrations, and then high-pressure gas or water is introduced through the high-pressure fluid introduction hole 14 to pass through the diaphragm 15.
Expand and dehydrate by pressing. The water in the slurry A is effectively dehydrated by ultrasonic vibration, straining, and squeezing, and is discharged from the liquid port 16.

なお振動工程で使用する超音波の周波数はスラ
リーの性状によつて適宜選べるが、通常1kHz〜
1MHzの範囲内で使用するのがよい。また出力は
スラリー性状により適宜設定するとよく、大きい
出力が効果的である。さらに前記振動子5として
は、磁歪振動子、圧電振動子、電歪振動子などが
あるが、通常は磁歪振動子または電歪振動子を使
用する。ホーン4の形状として、エキスポネンシ
ヤル・ホーン、コニカルホーン、段付ストレー
ト・ホーンがあるが、いずれの形状のホーンでも
よい。
The frequency of the ultrasonic waves used in the vibration process can be selected depending on the properties of the slurry, but it is usually 1 kHz or more.
It is best to use it within the 1MHz range. Further, the output may be appropriately set depending on the properties of the slurry, and a large output is effective. Further, the vibrator 5 may be a magnetostrictive vibrator, a piezoelectric vibrator, an electrostrictive vibrator, etc., but usually a magnetostrictive vibrator or an electrostrictive vibrator is used. The shape of the horn 4 includes an exponential horn, a conical horn, and a stepped straight horn, but any shape of the horn may be used.

本発明によれば、従来脱水が困難で低水分の脱
水ケーキまでにすることができないスラリーを、
超音波振動と加圧の相乗作用によつて効果的に脱
水して低水分の脱水ケーキにすることができると
共に、高速かつ安定した脱水処理が可能であり、
運転管理も簡易でその作業性も著しく良好とな
り、しかも処理設備も複雑且つ堅牢なものを用い
ることなく省エネルギー対策上にも有効な設備で
処理でき、さらに処理能力も大幅に高めることが
容易で、低コストで脱水処理作業ができる利益が
ある。
According to the present invention, slurry that is conventionally difficult to dehydrate and cannot be reduced to a low-moisture dehydrated cake,
Due to the synergistic effect of ultrasonic vibration and pressurization, it is possible to effectively dehydrate the cake into a low-moisture dehydrated cake, and it also enables high-speed and stable dehydration processing.
The operation management is simple and the workability is extremely good.Moreover, the processing can be done with equipment that is effective in terms of energy saving measures without using complicated and robust processing equipment, and it is easy to greatly increase the processing capacity. It has the advantage of being able to perform dewatering treatment at low cost.

次に本発明方法の実施例を示す。 Next, examples of the method of the present invention will be shown.

実施例 1 下水の活性汚泥処理プロセスより生成した混合
生汚泥(濃度4.1%、PH6.8)に、カチオン性の高
分子凝集剤サンフロツク450(三洋化成工業)を
加えて水切りした。この汚泥を第1図に示す装置
で超音波振動を与えないで15分間、15Kgf/cm2
圧力をかけて脱水操作を行つたところ、含水率
76.0%の脱水ケーキを得た。
Example 1 A cationic polymer flocculant Sunfroc 450 (Sanyo Chemical Industries, Ltd.) was added to mixed raw sludge (concentration 4.1%, pH 6.8) produced from a sewage activated sludge treatment process and drained. When this sludge was dehydrated using the apparatus shown in Figure 1 by applying a pressure of 15 kgf/ cm2 for 15 minutes without applying ultrasonic vibration, the water content was
A 76.0% dehydrated cake was obtained.

ついで、上記のスクリーンで水切りした同一の
汚泥を、本発明に基づき第1図の装置で周波数
14.5kHz、振幅3.0μmの超音波で振動させなが
ら同じ脱水条件で脱水操作を行つたところ、含水
率68.5%の脱水ケーキを得た。
Next, the same sludge drained through the screen described above is subjected to frequency treatment using the apparatus shown in FIG. 1 based on the present invention.
When the dehydration operation was performed under the same dehydration conditions while vibrating with ultrasonic waves of 14.5 kHz and amplitude of 3.0 μm, a dehydrated cake with a water content of 68.5% was obtained.

また、周波数14.5kHz、振幅0.05μmの超音波
で振動させながら同じ脱水条件で脱水操作を行つ
たところ、含水率76.5%の脱水ケーキが生成し、
超音波による振動の効果は無かつた。
In addition, when dehydration was performed under the same dehydration conditions while vibrating with ultrasonic waves with a frequency of 14.5 kHz and an amplitude of 0.05 μm, a dehydrated cake with a water content of 76.5% was produced.
There was no effect of vibration caused by ultrasonic waves.

実施例 2 化学工場より発生した水酸アルミニウムを含む
スラリー(濃度2.0%、PH6.5)に、アニオン性の
高分子凝集剤アコフロツクA110(三井サイアナ
ミツド)を加えて第1図の装置で超音波振動を与
えないで20分間、20Kgf/cm2の圧力をかけて脱水
操作を行つたところ、含水率78.2%の脱水ケーキ
を得た。
Example 2 Anionic polymer flocculant Acofloc A110 (Mitsui Cyanamid) was added to slurry containing aluminum hydroxide (concentration 2.0%, pH 6.5) generated from a chemical factory, and the slurry was subjected to ultrasonic vibration using the device shown in Figure 1. When the dehydration operation was carried out by applying a pressure of 20 Kgf/cm 2 for 20 minutes without applying water, a dehydrated cake with a water content of 78.2% was obtained.

ついで、上記のスラリーに同一条件で同じ高分
子凝集剤を加えて、スラリーを第1図の装置で本
発明に基づき周波数50kHz、振幅1.5μmの超音
波で振動させながら同じ脱水条件で脱水操作を行
つたところ、含水率67.0%の脱水ケーキを得た。
Next, the same polymer flocculant was added to the above slurry under the same conditions, and the slurry was dehydrated under the same dehydration conditions while being vibrated with ultrasonic waves with a frequency of 50 kHz and an amplitude of 1.5 μm based on the present invention using the apparatus shown in Figure 1. As a result, a dehydrated cake with a moisture content of 67.0% was obtained.

また、周波数50kHz、振幅12μmの超音波で振
動させながら同じ脱水条件で脱水操作を行つたと
ころ、ろ布から水酸化アルミニウムが漏れて脱水
不可能であつた。
Further, when dehydration was performed under the same dehydration conditions while vibrating with ultrasonic waves with a frequency of 50 kHz and an amplitude of 12 μm, aluminum hydroxide leaked from the filter cloth and dehydration was impossible.

実施例 3 浄水処理プロセスより生成する浄水場汚泥(濃
度4.6%、PH6.9)に、アニオン性の高分子凝集剤
アコフロツクA110(三井サイアナミツド)を加
えてスクリーンで水切りした。この汚泥を第1図
の装置で超音波振動を与えないで15分間、20Kg
f/cm2の圧力をかけて脱水操作を行つたところ、
含水率62.0%の脱水ケーキを得た。
Example 3 Anionic polymer flocculant Acofloc A110 (Mitsui Cyanamid) was added to water purification plant sludge (concentration 4.6%, pH 6.9) produced in the water purification process, and the water was drained through a screen. This sludge was heated to 20 kg using the device shown in Figure 1 for 15 minutes without applying ultrasonic vibration.
When dehydration was performed by applying a pressure of f/ cm2 ,
A dehydrated cake with a moisture content of 62.0% was obtained.

ついで、上記のスクリーンで水切りした同一の
汚泥を第1図の装置で本発明に基づき周波数
14.5kHz、振幅2.0μmの超音波で振動させなが
ら同じ脱水条件で脱水操作を行つたところ、含水
率47.2%の脱水ケーキを得た。
Next, the same sludge drained through the screen described above is subjected to frequency treatment according to the present invention using the apparatus shown in FIG.
When dehydration was performed under the same dehydration conditions while vibrating with ultrasonic waves of 14.5 kHz and amplitude of 2.0 μm, a dehydrated cake with a water content of 47.2% was obtained.

また、高圧である110Kgf/cm2の圧力をかけて
脱水操作を行つたところ、超音波振動を与えた場
合(脱水ケーキ含水率42.5%)と与えない場合
(脱水ケーキ含水率42.9%)に生成する脱水ケー
キの含水率に、ほとんど差は無かつた。
In addition, when dehydration was performed by applying a high pressure of 110 Kgf/cm 2 , it was found that when ultrasonic vibration was applied (water content of the dehydrated cake was 42.5%) and when it was not (water content of the dehydrated cake was 42.9%). There was almost no difference in the moisture content of the dehydrated cakes.

さらに、低圧である0.06Kgf/cm2の圧力をかけ
て脱水操作を行つた時も、超音波振動をかけた場
合(脱水ケーキ含水率83.5%)とかけない場合
(脱水ケーキ含水率83.9%)に生成する脱水ケー
キの含水率に、ほとんど差は無かつた。
Furthermore, when dehydration was performed by applying a low pressure of 0.06 Kgf/cm 2 , when ultrasonic vibration was applied (dehydrated cake moisture content 83.5%) and when it was not applied (dehydrated cake moisture content 83.9%). There was almost no difference in the moisture content of the dehydrated cakes produced.

実施例 4 上水沈殿汚泥(濃度5%)を無薬注で第3図の
装置で超音波振動を与えないで過脱水(圧力5
Kgf/cm2で30分間)したのち、圧搾脱水(圧力15
Kgf/cm2で5分間)を行つたところ、含水率76.3
%の脱水ケーキを得た。
Example 4 Water precipitated sludge (concentration 5%) was over-dehydrated (pressure 5%) using the apparatus shown in Figure 3 without applying any chemicals and without applying ultrasonic vibration.
Kgf/cm 2 for 30 minutes), followed by compression dehydration (pressure 15
Kgf/ cm2 for 5 minutes), the moisture content was 76.3.
% dehydrated cake was obtained.

ついで、上記同一汚泥を無薬注で第3図の装置
で本発明に基づき周波数800kHz、振幅0.3μmの
超音波で振動させながらろ過脱水(圧力5Kgf/
cm2で10分間)した後、圧搾脱水(圧力15Kgf/cm2
で5分間)行つたところ、含水率58.6%の脱水ケ
ーキを得た。
Next, the same sludge was subjected to filtration and dehydration (pressure 5 kgf/
cm 2 for 10 minutes), then press dehydration (pressure 15Kgf/cm 2
(for 5 minutes), a dehydrated cake with a moisture content of 58.6% was obtained.

また、ろ布からの脱水ケーキの剥離性について
は、従来法はやや悪かつたのに対し、本発明では
容易にろ布より剥離できた。
Furthermore, as for the releasability of the dehydrated cake from the filter cloth, whereas the conventional method was rather poor, the present invention could easily peel it off from the filter cloth.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の実施に用いられる装置の態
様を示し、第1図は縦断面図、第2図は他の例の
系統説明図、第3図はさらに他の例の縦断面図で
ある。 A……スラリー、1……シリンダ、2……ピス
トン、3……多孔板、4……ホーン、5……振動
子、6……超音波発振器、7……布、8……圧
搾板、9……液受槽、12……板、13……
汚泥導入孔、14……高圧流体導入孔、15……
ダイヤフラム、16……液口。
The drawings show aspects of the apparatus used to carry out the method of the present invention, with FIG. 1 being a longitudinal sectional view, FIG. 2 being a system explanatory diagram of another example, and FIG. 3 being a longitudinal sectional view of still another example. . A... Slurry, 1... Cylinder, 2... Piston, 3... Perforated plate, 4... Horn, 5... Vibrator, 6... Ultrasonic oscillator, 7... Cloth, 8... Pressing plate, 9...Liquid receiving tank, 12...Plate, 13...
Sludge introduction hole, 14... High pressure fluid introduction hole, 15...
Diaphragm, 16...liquid port.

Claims (1)

【特許請求の範囲】 1 スラリーを加圧脱水する際に、スラリーを振
幅が0.1μm〜10μmの超音波によつて振動させ
ながら、脱水圧力を0.5Kgf/cm2〜100Kgf/cm2
設定して加圧脱水することを特徴とするスラリー
の脱水方法。 2 前記振動工程が、超音波の周波数を1kHz〜
1MHzに設定して処理されるものである特許請求
の範囲第1項記載の脱水方法。
[Claims] 1 When pressurizing and dewatering the slurry, the dewatering pressure is set to 0.5Kgf/cm 2 to 100Kgf/cm 2 while the slurry is vibrated by ultrasonic waves with an amplitude of 0.1μm to 10μm. A slurry dewatering method characterized by pressurized dehydration. 2 The vibration step increases the frequency of the ultrasonic waves from 1kHz to
The dehydration method according to claim 1, wherein the dehydration method is performed by setting the frequency to 1MHz.
JP4288779A 1979-04-09 1979-04-09 Dehydrating method for slurry Granted JPS55134619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4288779A JPS55134619A (en) 1979-04-09 1979-04-09 Dehydrating method for slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4288779A JPS55134619A (en) 1979-04-09 1979-04-09 Dehydrating method for slurry

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6149780A Division JPS55149800A (en) 1980-05-09 1980-05-09 Dehydrating method of slurry

Publications (2)

Publication Number Publication Date
JPS55134619A JPS55134619A (en) 1980-10-20
JPS6231964B2 true JPS6231964B2 (en) 1987-07-11

Family

ID=12648539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4288779A Granted JPS55134619A (en) 1979-04-09 1979-04-09 Dehydrating method for slurry

Country Status (1)

Country Link
JP (1) JPS55134619A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235979A (en) * 1988-07-22 1990-02-06 Isamu Mitsunaka Cleaning apparatus
JPH0463166A (en) * 1990-06-28 1992-02-28 Trinity Ind Corp System for reutilizing waste coating solution
JPH0426057U (en) * 1990-06-28 1992-03-02

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1285508B1 (en) * 1996-01-31 1998-06-08 Saitec Srl PROCEDURE AND EQUIPMENT FOR PRESSING MATERIALS
JP2002301309A (en) * 2001-04-05 2002-10-15 Ohbayashi Corp Filter plate for filter press
CN102861472A (en) * 2012-08-29 2013-01-09 温州大学 Mud filter pressing experimental device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126059U (en) * 1975-04-07 1976-10-12
JPS5380880U (en) * 1976-12-07 1978-07-05

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235979A (en) * 1988-07-22 1990-02-06 Isamu Mitsunaka Cleaning apparatus
JPH0463166A (en) * 1990-06-28 1992-02-28 Trinity Ind Corp System for reutilizing waste coating solution
JPH0426057U (en) * 1990-06-28 1992-03-02

Also Published As

Publication number Publication date
JPS55134619A (en) 1980-10-20

Similar Documents

Publication Publication Date Title
US5049248A (en) Liquid separation process for suspensions by a pulsating electrical current
CN101708941B (en) Secondary pressurizing and dehydrating method for sludge
US4802964A (en) Liquid separation process for suspensions by a pulsating electrical current
Ensminger et al. Acoustic and electroacoustic methods of dewatering and drying
JPS6231964B2 (en)
JPS6253208B2 (en)
JP6635270B2 (en) Sludge dewatering method
JPS6155407B2 (en)
JPS6369518A (en) Pressurized electric permeation dehydrator
CN203790645U (en) Efficient double-diaphragm plate frame filter press
JPH0819897A (en) Solid-liquid separation device and squeeze dehydration device
Muralidhara et al. Electro-acoustic dewatering (EAD) a novel approach for food processing, and recovery
JPS6140324Y2 (en)
JPS58122085A (en) Dehydrating method
KR20130018279A (en) Solid-liquid separation method
JPS6041351Y2 (en) Sludge dewatering equipment
JP7255073B2 (en) How to wash the dehydrated cake
JPS6032943Y2 (en) Sludge dewatering equipment
Elvira-Segura et al. Ultrasonic assisted deliquoring of fine particle slurries
JP2002282613A (en) Method for filtration with filter press and filter therefor
JP2002253911A (en) Dehydration method and dehydrator
EP1147824B1 (en) Ultrasound device for improving the solid-liquid separation process in suspensions
JPS6140325Y2 (en)
JPS5921852Y2 (en) filter press
JPH0211281B2 (en)