JPS6231863Y2 - - Google Patents

Info

Publication number
JPS6231863Y2
JPS6231863Y2 JP16885982U JP16885982U JPS6231863Y2 JP S6231863 Y2 JPS6231863 Y2 JP S6231863Y2 JP 16885982 U JP16885982 U JP 16885982U JP 16885982 U JP16885982 U JP 16885982U JP S6231863 Y2 JPS6231863 Y2 JP S6231863Y2
Authority
JP
Japan
Prior art keywords
tuning fork
vibration
frequency
fork vibrator
vibrating pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16885982U
Other languages
Japanese (ja)
Other versions
JPS5972526U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16885982U priority Critical patent/JPS5972526U/en
Publication of JPS5972526U publication Critical patent/JPS5972526U/en
Application granted granted Critical
Publication of JPS6231863Y2 publication Critical patent/JPS6231863Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 本考案は、工業的に製作が容易な上に精度と信
頼性の優れた荷重測定用音叉振動子に関するもの
である。
[Detailed Description of the Invention] The present invention relates to a tuning fork vibrator for load measurement that is easy to manufacture industrially and has excellent accuracy and reliability.

音叉振動子はその固有振動数が正確で安定して
いるため、極めて広い用途に使用されており、一
部では荷重測定にも実用されている。
Tuning fork vibrators have accurate and stable natural frequencies, so they are used in an extremely wide range of applications, and in some cases, they are also used to measure loads.

第1図は音叉振動子の従来例を示し、中心軸に
対称にかつ軸に平行した2枚の振動片1a,1
b、これらの両端部同志をそれぞれ結ぶ第1、第
2のコ字形結合部2a,2b、これらの振動部を
両端部で支持する支持部3a,3b、全体を固定
部や力伝達部に接続する取付部4a,4bにより
構成されている。第2の結合部2bの両側面には
第1、第2の圧電素子5a,5bがそれぞれ取付
けられ、別に設けられた増幅器6に接続すること
により、第1の圧電素子5aがピツクアツプ用、
第2の圧電素子5bが励振用として使用される。
Figure 1 shows a conventional example of a tuning fork vibrator, in which two vibrating pieces 1a, 1 are symmetrical about the central axis and parallel to the axis.
b. First and second U-shaped coupling parts 2a and 2b that connect these ends together, support parts 3a and 3b that support these vibrating parts at both ends, and the whole connected to a fixed part or a force transmission part. It is composed of mounting parts 4a and 4b. First and second piezoelectric elements 5a and 5b are attached to both sides of the second coupling part 2b, respectively, and by connecting to a separately provided amplifier 6, the first piezoelectric element 5a can be used for pickup,
The second piezoelectric element 5b is used for excitation.

このような従来の音叉振動子の構成において、
増幅器6の利得や周波数特性を適切に選択するこ
とにより、振動片1a,1bは第2図に示すよう
に対称モードの基本振動数で発振し、軸方向に荷
重Fが加えられるとその振動数が変化することか
ら、この振動数を検出して荷重Fを知ることがで
きる。
In the configuration of such a conventional tuning fork vibrator,
By appropriately selecting the gain and frequency characteristics of the amplifier 6, the vibrating pieces 1a and 1b oscillate at the fundamental frequency of the symmetric mode as shown in Fig. 2, and when a load F is applied in the axial direction, the frequency changes. Since this changes, the load F can be determined by detecting this frequency.

荷重Fを正確に測定するためには、振動子のQ
値が高く振動数の安定性に富み、振動エネルギの
外部への漏洩が少なく、更には外部から望ましく
ない振動が振動片1a,1bの発振振動数に影響
を及ぼさないことが必要である。そのためには、
振動片1a,1bとが正しく対称に作られてお
り、発生する振動モードが位相差のない対称なも
のでなければならない。
In order to accurately measure the load F, the Q of the vibrator must be
It is necessary that the vibration frequency is high and the vibration frequency is stable, that there is little leakage of vibration energy to the outside, and that undesirable external vibrations do not affect the oscillation frequency of the vibrating pieces 1a and 1b. for that purpose,
The vibrating pieces 1a and 1b must be made correctly and symmetrically, and the generated vibration modes must be symmetrical with no phase difference.

しかしながら、振動片1a,1bと結合部2
a,2bを一体構造として削り出しなどにより製
作する通常の振動子においては、厳密な対称性を
得るのは極めて困難である。例えば、振動片1
a,1bの寸法が長さ15mm、幅3mm、厚さ0.2mm
の設計されている場合に、特に振動特性に大きな
影響を及ぼす厚さの対称性、或いは一致度を1%
以内に収めようとすれば、±1μm(±0.001mm)
の精度で15mm×3mmの範囲を平坦に仕上げる必要
を生じ、実際の工作精度等を考慮すれば不可能に
近い数値である。面倒な特別の精密可工を何度も
繰返した後においても、振動片1a,1bの特性
を一致させるのは困難であり、第1図に示すよう
な構成で振動させた場合に、振動片1a,1bに
僅かな差異があれば単一振動数で振動するとはい
え振動モードが非対称となるため、振動子の製作
コストが高くなる割には特性の改善は微少に止ま
り実用性に乏しい。
However, the vibration pieces 1a, 1b and the coupling part 2
It is extremely difficult to obtain strict symmetry in a normal vibrator in which a and 2b are made into an integral structure by machining or the like. For example, vibrating piece 1
Dimensions of a and 1b are length 15mm, width 3mm, thickness 0.2mm
When designing, thickness symmetry or consistency, which has a particularly large effect on vibration characteristics, is reduced to 1%.
If you try to keep it within ±1μm (±0.001mm)
It became necessary to flatten an area of 15 mm x 3 mm with an accuracy of , which is nearly impossible when considering actual machining accuracy. Even after repeating troublesome special precision machining many times, it is difficult to match the characteristics of the vibrating pieces 1a and 1b. If there is a slight difference between 1a and 1b, the vibration mode will be asymmetrical even though the vibrator vibrates at a single frequency, and the improvement in characteristics will be minimal even though the manufacturing cost of the vibrator is high, making it impractical.

本考案の目的は、上述の欠点を解消し、長板状
振動片に若干の工作誤差を許容しつつ、両者の振
動特性を一致させるための調整を極めて容易にす
ると共に、気圧や気温の影響をもつ軽減でる荷重
測定用音叉振動子を提供することにあり、その要
旨は、中心軸に対称にかつ平行して設けられた2
枚の長板状振動片と、これらの両端部同志をそれ
ぞれ結合する2個の結合部とから成り、軸方向に
加えられた荷重に応じて固有振動数が変化するよ
うに構成した音叉振動子において、前記両長板状
振動片のほぼ中央部に質量の調整が可能なバラン
スウエイトをそれぞれ形設したことを特徴とする
ものである。
The purpose of this invention is to eliminate the above-mentioned drawbacks, to allow slight machining errors in the long plate-shaped vibrating piece, to make it extremely easy to make adjustments to match the vibration characteristics of the two, and to prevent the effects of atmospheric pressure and temperature. The object of the present invention is to provide a tuning fork vibrator for measuring load which can reduce
A tuning fork vibrator consisting of a long plate-shaped vibrating piece and two connecting parts that connect both ends of the vibrating piece, and configured so that the natural frequency changes according to the load applied in the axial direction. The vibrator is characterized in that a balance weight whose mass can be adjusted is formed approximately at the center of each of the elongated plate-shaped vibrating pieces.

本考案を第3図の実施例に基づいて詳細に説明
する。なお、第1図と同一の符号は同一の部材を
示すものとする。
The present invention will be explained in detail based on the embodiment shown in FIG. Note that the same reference numerals as in FIG. 1 indicate the same members.

この本考案の係る振動子の構造は基本的には第
1図の従来例と概略同じであるが、振動片1a,
1bのほぼ中央部に振動片1a,1bと一体の膨
らみから成るバランスウエイト7a,7bがそれ
ぞれ設けられている点が異なつている。このバラ
ンスウエイト7a,7bの形状は荷重軸方向の長
さがなるべく短いことだけが条件であり、図示し
た円柱状以外に、角柱状、球状その他の任意の形
状でよく、振動片1a,1bの外側又は内側の何
れかの側だけに張り出しても、或いは別の部材を
接着して構成してもよい。バランスウエイト7
a,7bを振動片1a,1bの中央に形成した場
合に、固有振動数は低下するものの、第2図の基
本振動モード図で明らかなように、振動片1a,
1bの中央部は振動の腹に相当するため、振動の
安定性などについては何ら悪影響を及ぼすことは
ない。
The structure of the vibrator according to the present invention is basically the same as the conventional example shown in FIG.
The difference is that balance weights 7a and 7b, each of which is a bulge integral with the vibrating pieces 1a and 1b, are provided approximately at the center of 1b. The only condition for the shape of the balance weights 7a and 7b is that the length in the load axis direction is as short as possible, and in addition to the cylindrical shape shown in the figure, any other shape such as a prismatic shape or a spherical shape may be used. It may be constructed by projecting only on either the outside or inside side, or by bonding another member. balance weight 7
a, 7b at the center of the vibrating pieces 1a, 1b, although the natural frequency decreases, as is clear from the fundamental vibration mode diagram in FIG.
Since the central portion of 1b corresponds to the antinode of vibration, it does not have any adverse effect on the stability of vibration.

このような第3図に示す音叉振動子において、
振動片1a,1bの単独の固有振動数を個々に測
定し、振動数の低い側のバランスウエイト7a又
は7bを必要量削つて高い方の振動数に一致させ
るとか、振動モードを観測して所望の対称性が得
られるように何れかのバランスウエイト7a,7
bを削るなどして調整できる。かくすることによ
り、振動片1a,1bの振動特性を揃えて位相差
のない正確な対称モードの振動を可能とし、振動
子としてQ値を高め、振動エネルギの外部への漏
洩を殆ど無くすることができる。また、外部振動
の影響を受けることなく、荷重Fのみを振動部に
忠実に伝達してその振動数を変化させることによ
り、極めて精度のよい荷重測定を行うことができ
る。
In such a tuning fork vibrator shown in FIG.
Measure the individual natural frequencies of the vibrating pieces 1a and 1b individually, and reduce the required amount of the balance weight 7a or 7b on the lower frequency side to match the higher frequency, or observe the vibration mode and find the desired one. Either of the balance weights 7a, 7 is adjusted so that the symmetry of
It can be adjusted by removing b. By doing this, the vibration characteristics of the vibrating pieces 1a and 1b are made uniform, enabling accurate symmetrical mode vibration with no phase difference, increasing the Q value of the vibrator, and almost eliminating leakage of vibration energy to the outside. Can be done. In addition, by faithfully transmitting only the load F to the vibrating section and changing its frequency without being affected by external vibrations, extremely accurate load measurement can be performed.

また、振動片1a,1bが振動すると、それに
近接した空気も同時に振動を強制されるために、
見掛け上振動片1a,1bの質量が増加したこと
と同様の結果となり、気圧や気温の変化に伴なう
空気の密度変化が振動数に影響を与える。この近
接空気の影響を考慮した音叉振動子の振動数は次
の(1)式で与えられる。
Furthermore, when the vibrating pieces 1a and 1b vibrate, the air in their vicinity is forced to vibrate at the same time.
The result is similar to the apparent increase in the mass of the vibrating pieces 1a and 1b, and changes in air density due to changes in atmospheric pressure and temperature affect the vibration frequency. The frequency of the tuning fork vibrator taking into account the influence of this nearby air is given by the following equation (1).

ω={k/(m+2M+Cρ)}1/2 …(1) なお、ωは振動角周波数、kは振動片の実効ば
ね係数、mは振動片の質量、Mはバランスウエイ
トの質量、Cρは近接空気による等価付加質量、
Cは振動片の形状による定数、ρは空気密度であ
る。
ω={k/(m+2M+Cρ)} 1/2 …(1) In addition, ω is the vibration angular frequency, k is the effective spring coefficient of the vibrating piece, m is the mass of the vibrating piece, M is the mass of the balance weight, and Cρ is the proximity Equivalent added mass due to air,
C is a constant depending on the shape of the vibrating element, and ρ is the air density.

近接空気による等価付加質量Cρの大きさは、
荷重測定用音叉振動子の場合には振動片質量mの
0.3%以下である。空気密度ρが変化したときに
振動数ωがどのように変化するかは、(1)式をρに
ついて微分して整理することにより次の(2)式で与
えられる。
The size of the equivalent additional mass Cρ due to the nearby air is:
In the case of a tuning fork vibrator for load measurement, the mass of the vibrating piece m is
It is 0.3% or less. How the frequency ω changes when the air density ρ changes is given by the following equation (2) by differentiating equation (1) with respect to ρ and rearranging it.

dω/ω=−(1/2) ・{Cρ/(m+2M+Cρ)}・(dρ/ρ)
…(2) ここで、質量Mのバランスウエイト7a,7b
を質量mの振動片1a,1bに付加した場合の影
響や効用を(1),(2)式について検討してみる。質量
Mとmが等しい場合を例にとると、(1)式により振
動数ωはバランスウエイト7a,7bの追加前の
1/31/2、即ち58%に低下するものの、この程度
の振動数ωの減少は荷重測定上何らの不利益を生
じることはない。一方、空気密度ρの変化に基づ
く振動数ωの変化率は、(2)式により追加前の1/3
にと著しく改善され、荷重測定精度を大きく向上
させることが判る。
dω/ω=-(1/2) ・{Cρ/(m+2M+Cρ)}・(dρ/ρ)
...(2) Here, balance weights 7a and 7b of mass M
Let's consider the influence and effectiveness of adding this to the vibrating pieces 1a and 1b of mass m using equations (1) and (2). For example, if the masses M and m are equal, the frequency ω is calculated from equation (1) before adding the balance weights 7a and 7b.
Although it decreases to 1/3 1/2 , that is, 58%, this degree of decrease in the frequency ω does not cause any disadvantage in load measurement. On the other hand, the rate of change of the frequency ω based on the change in the air density ρ is 1/3 of the value before the addition using equation (2).
It can be seen that the load measurement accuracy is greatly improved.

以上説明したように本考案に係る荷重測定用音
叉振動子によれば、振動子のQ値が高く、対称モ
ードの振動を行うためのバランスウエイトによる
製作時の調整が極めて容易な上に、気圧や気温の
変化に伴なう空気密度変化の影響を受けることの
少ない高精度の荷重測定が可能となる。
As explained above, according to the tuning fork vibrator for load measurement according to the present invention, the Q value of the vibrator is high, and adjustment at the time of manufacture using a balance weight for vibration in a symmetric mode is extremely easy. This enables highly accurate load measurements that are less affected by changes in air density due to changes in air temperature and air temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の音叉振動子の斜視図、第2図は
その動作状態の説明図、第3図は本考案に係る荷
重測定用音叉振動子の一実施例の斜視図である。 符号1a,1bは振動片、2a,2bは結合
部、5a,5bは圧電素子、6は増幅器、7a,
7bはバランスウエイトである。
FIG. 1 is a perspective view of a conventional tuning fork vibrator, FIG. 2 is an explanatory view of its operating state, and FIG. 3 is a perspective view of an embodiment of the tuning fork vibrator for measuring load according to the present invention. Symbols 1a and 1b are vibrating pieces, 2a and 2b are coupling parts, 5a and 5b are piezoelectric elements, 6 is an amplifier, 7a,
7b is a balance weight.

Claims (1)

【実用新案登録請求の範囲】 1 中心軸に対称にかつ平行して設けられた2枚
の長板状振動片と、これらの両端部同志をそれ
ぞれ結合する2個の結合部とから成り、軸方向
に加えられた荷重に応じて固有振動数が変化す
るように構成した音叉振動子において、前記両
長板状振動片のほぼ中央部に質量の調整が可能
なバランスウエイトをそれぞれ形設したことを
特徴とする荷重測定用音叉振動子。 2 前記バランスウエイトを必要に応じて削り取
り、振動の対称性を調整するようにした実用新
案登録請求の範囲第1項に記載の荷重測定用音
叉振動子。
[Claims for Utility Model Registration] 1. Consisting of two long plate-shaped vibrating pieces installed symmetrically and parallel to the central axis, and two connecting parts that connect their respective ends to each other, In the tuning fork vibrator configured so that the natural frequency changes according to the load applied in the direction, a balance weight whose mass can be adjusted is formed approximately at the center of each of the long plate-shaped vibrating pieces. A tuning fork vibrator for load measurement featuring: 2. The tuning fork vibrator for load measurement according to claim 1, wherein the balance weight is shaved off as necessary to adjust the symmetry of vibration.
JP16885982U 1982-11-08 1982-11-08 Tuning fork vibrator for load measurement Granted JPS5972526U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16885982U JPS5972526U (en) 1982-11-08 1982-11-08 Tuning fork vibrator for load measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16885982U JPS5972526U (en) 1982-11-08 1982-11-08 Tuning fork vibrator for load measurement

Publications (2)

Publication Number Publication Date
JPS5972526U JPS5972526U (en) 1984-05-17
JPS6231863Y2 true JPS6231863Y2 (en) 1987-08-15

Family

ID=30369047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16885982U Granted JPS5972526U (en) 1982-11-08 1982-11-08 Tuning fork vibrator for load measurement

Country Status (1)

Country Link
JP (1) JPS5972526U (en)

Also Published As

Publication number Publication date
JPS5972526U (en) 1984-05-17

Similar Documents

Publication Publication Date Title
US4299122A (en) Force transducer
US3238789A (en) Vibrating bar transducer
US4656383A (en) Vibrating beam force transducer with single isolator spring
US3470400A (en) Single beam force transducer with integral mounting isolation
US5962786A (en) Monolithic accelerometric transducer
US4321500A (en) Longitudinal isolation system for flexurally vibrating force transducers
US5113698A (en) Vibrating beam transducer drive system
JP2009042240A (en) Acceleration sensor
US4658175A (en) Vibrating beam force transducer with A-frame beam root and frequency adjusting means
JPH01302166A (en) Pendulum type accelerometer
JPH041862B2 (en)
WO1988000334A1 (en) Vibration type weight measuring apparatus
JP3982564B2 (en) Monolithic acceleration metering transducer
JPH0384467A (en) Accelerometer sensor with curved vibration beam
US5095763A (en) Load-sensitive resonator beam transducer
JP3072354B2 (en) Transducer accelerometer
JPS5910855A (en) Elastic surface wave accelerometer
JPS6231863Y2 (en)
JP6400608B2 (en) Planar structure of mechanical resonator separated by bending vibration and extension / compression vibration
JPH0763625A (en) String for power measurement
JPS5923258A (en) Elastic surface wave accelerometer
JPS596369B2 (en) force conversion mechanism
JPS596370B2 (en) force conversion mechanism
JPS5856422B2 (en) force conversion mechanism
JPS5856406B2 (en) crystal transducer