JPS6231729B2 - - Google Patents

Info

Publication number
JPS6231729B2
JPS6231729B2 JP58193689A JP19368983A JPS6231729B2 JP S6231729 B2 JPS6231729 B2 JP S6231729B2 JP 58193689 A JP58193689 A JP 58193689A JP 19368983 A JP19368983 A JP 19368983A JP S6231729 B2 JPS6231729 B2 JP S6231729B2
Authority
JP
Japan
Prior art keywords
epoxy resin
weight
silicone
parts
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58193689A
Other languages
Japanese (ja)
Other versions
JPS6086119A (en
Inventor
Katsuji Shibata
Masami Yusa
Kohei Yasuzawa
Yukio Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP19368983A priority Critical patent/JPS6086119A/en
Publication of JPS6086119A publication Critical patent/JPS6086119A/en
Publication of JPS6231729B2 publication Critical patent/JPS6231729B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は主に配線板製造に適用される難燃性シ
リコーン変性エポキシ樹脂の製造方法に関するも
のである。 多層配線板のスルーホール信頼性を向上させる
ためには、ドリル加工時のスミアの発生を少なく
することが必要である。ドリル条件は多層配線板
メーカーによつて最良の条件が設定されている
が、それでもエポキシ多層配線板の場合にはスミ
アの発生は避けられないと言われている。そのた
め、多層配線板メーカーではスミア除去処理が行
なわれているが、処理液に濃硫酸、フツ化水素酸
などを用いるため危険な上に、処理液が水洗不足
のために残余しスルーホール信頼性を低化させる
ことがある。またスミアの発生を減少させるため
にはTgの高い樹脂を用いればよいことは以前か
ら明らかにされているがTgの高い樹脂は一般に
硬くドリル刃の摩耗や小径穴あけ(0.8φ以下)
の際のドリル刃破損などの問題が生じる。 スミアの発生原因はドリル加工時の摩擦熱によ
る樹脂の軟化だと言われる。Tgの高い樹脂によ
つて軟化するのを防止することはできるが硬さも
増し様々な問題が生じる。スミアの発生を減少さ
せるもうひとつの方法としてドリル加工時の発生
摩擦熱を減らすことが考えられる。すなわち樹脂
の低摩擦化をはかることによつて摩擦熱を減ら
し、樹脂の軟化を防ぐ方法であり本発明の意図し
たものである。 本発明はドリル加工時のスミアの発生を低減す
るために低摩擦化した難燃性シリコーン変性エポ
キシ樹脂の製造方法に関するものである。 すなわち(a)ヒドロキシル価0〜0.08のエポキシ
樹脂100重量部、(b)テトラブロモビスフエノール
A40〜80重量部、(c)アルコキシ当量が150〜300の
シリコーン中間体0.1〜20重量部及び(d)触媒0.001
〜0.05重量部からなる混合物を120〜200℃に加熱
して一段で反応させることを特徴とする。 以下本発明を詳細に説明する。 (a)のエポキシ樹脂としては水酸基の少ないもの
がよく、ヒドロキシル価が0〜0.08のものであり
ヒドロキシル価は小さいほどよい。それより大き
いと得られたシリコーン変性エポキシ樹脂が高分
子量化して不均一な硬化物が得られる。ヒドロキ
シル価は水酸基当量の逆数に100をかけたもので
水酸基当量は塩化アセチル法によつて測定した。
エポキシ樹脂の種類としてはビスフエノールA型
エポキシ樹脂、フエノールノボラツク型エポキシ
樹脂、クレゾールノボラツク型エポキシ樹脂、ヒ
ダントイン型エポキシ樹脂、テトラグリシジルイ
ソシアヌレートおよびそれらのハロゲン化物等が
用いられる。 (b)のテトラブロモビスフエノールAはエポキシ
樹脂に自己消火性を付与するためと、この化合物
の水酸基はエポキシ樹脂のエポキシ基とは反応す
るがシリコーン中間体のアルコキシ基とはほとん
ど反応しないという選択性を持つことから用いら
れ従来二段で行なわれていたエポキシ樹脂の高分
子量化の反応とエポキシ樹脂のシリコーン変性の
反応を一段で行なうことができる。 エポキシ樹脂100重量部に対して、テトラブロ
モビスフエノールAは40〜80重量部用いるが、こ
れはビスフエノールA型エポキシ樹脂の場合、水
酸基/エポキシ基の比が1/4〜1/2にあた
る。テトラブロモビスフエノールAが40重量部よ
り少ないと十分な難燃性が得られず80重量部より
多いと得られたシリコーン変性エポキシ樹脂が高
分子量化してしまい硬化物が不均一硬化する。 (c)のシリコーン中間体は
The present invention relates to a method for producing a flame-retardant silicone-modified epoxy resin, which is mainly applied to the production of wiring boards. In order to improve the reliability of through holes in multilayer wiring boards, it is necessary to reduce the occurrence of smear during drilling. Although the best drilling conditions are set by manufacturers of multilayer wiring boards, it is said that the occurrence of smear is still unavoidable in the case of epoxy multilayer wiring boards. For this reason, multilayer wiring board manufacturers carry out smear removal processing, but it is dangerous because it uses concentrated sulfuric acid, hydrofluoric acid, etc., and the processing solution remains due to insufficient water washing, resulting in poor through-hole reliability. may lower the Furthermore, it has been known for some time that resins with a high Tg can be used to reduce the occurrence of smear, but resins with a high Tg are generally hard and can cause wear and tear on drill bits (for drilling small diameter holes (0.8φ or less)).
Problems such as damage to the drill bit occur during the process. The cause of smear is said to be the softening of the resin due to frictional heat during drilling. Although it is possible to prevent softening by using a resin with a high Tg, it also increases hardness and causes various problems. Another way to reduce the occurrence of smear is to reduce the frictional heat generated during drilling. That is, this is a method of reducing frictional heat and preventing softening of the resin by reducing the friction of the resin, which is the intention of the present invention. The present invention relates to a method for producing a flame-retardant silicone-modified epoxy resin that has low friction in order to reduce the occurrence of smear during drilling. Namely, (a) 100 parts by weight of an epoxy resin with a hydroxyl value of 0 to 0.08, (b) tetrabromobisphenol
A40-80 parts by weight, (c) 0.1-20 parts by weight of a silicone intermediate with an alkoxy equivalent of 150-300, and (d) 0.001 parts by weight of catalyst.
It is characterized in that a mixture consisting of ~0.05 parts by weight is heated to 120-200°C and reacted in one step. The present invention will be explained in detail below. The epoxy resin (a) preferably has a small number of hydroxyl groups, and has a hydroxyl value of 0 to 0.08, and the smaller the hydroxyl value, the better. If it is larger than that, the obtained silicone-modified epoxy resin will have a high molecular weight and a non-uniform cured product will be obtained. The hydroxyl value is the reciprocal of the hydroxyl equivalent multiplied by 100, and the hydroxyl equivalent was measured by the acetyl chloride method.
Examples of the epoxy resins used include bisphenol A type epoxy resins, phenol novolak type epoxy resins, cresol novolak type epoxy resins, hydantoin type epoxy resins, tetraglycidyl isocyanurate and their halides. Tetrabromobisphenol A in (b) was selected because it imparts self-extinguishing properties to the epoxy resin, and the hydroxyl group of this compound reacts with the epoxy group of the epoxy resin, but hardly reacts with the alkoxy group of the silicone intermediate. Because of its properties, the reaction of increasing the molecular weight of the epoxy resin and the reaction of modifying the epoxy resin with silicone, which were conventionally carried out in two stages, can be carried out in one step. For 100 parts by weight of epoxy resin, 40 to 80 parts by weight of tetrabromobisphenol A is used, which corresponds to a hydroxyl group/epoxy group ratio of 1/4 to 1/2 in the case of bisphenol A type epoxy resin. If tetrabromobisphenol A is less than 40 parts by weight, sufficient flame retardancy cannot be obtained, and if it is more than 80 parts by weight, the obtained silicone-modified epoxy resin will have a high molecular weight and the cured product will harden unevenly. The silicone intermediate in (c) is

【式】やこの縮合体等 のアルコキシ基をもつオルガノシロキサンである
がアルコキシ基としてはメトキシ基エトキシ基な
どがありZeiselの定量法でアルコキシ当量が150
〜300のものを用いる。それより大きいとシリコ
ーン中間体が高分子量化している場合であり得ら
れたシリコーン変性エポキシ樹脂も高分子量化し
てしまい不均一な硬化物を与える。またそれより
小さいと立体障害のためシリコーン中間体のアル
コキシ基と、エポキシ樹脂がテトラブロモビスフ
エノールAと反応して生成した水酸基との反応が
十分に行なわれず未反応アルコキシ基によつて硬
化物の耐湿性、耐熱性が低下する。シリコーン中
間体は0.1〜20重量部用いるがそれより少ないと
ドリル加工性に対する効果がなく、それより多い
と未反応のアルコキシ基が残存してしまう。 (d)の触媒としては第3級アミン、第4級アンモ
ニウム塩、イミダゾール、アルカリ金属水酸化
物、ハロゲン化ホスホニウム、スルホニウム塩、
第3級ホスフインなどが用いられる。第3級アミ
ンとしてはベンジルジメチルアミン、トリエタノ
ールアミン、ピリジンなどがある。第4級アンモ
ニウム塩としてはベンジルトリメチルアンモニウ
ムヒドロキシド、ベンジルトリメチルアンモニウ
ムクロライド、テトラメチルアンモニウムブロマ
イド、テトラメチルアンモニウムクロライド、テ
トラエチルアンモニウムブロマイド、テトラエチ
ルアンモニウムクロライド、N―セチルピリジニ
ウムクロライドなどがある。イミダゾールとして
は2―メチルイミダゾール、2―エチル―4―メ
チルイミダゾール、2―フエニルイミダゾール、
1―シアノエチル―2―フエニルイミダゾールな
どがある。アルカリ金属水酸化物としては、水酸
化ナトリウム水酸化カリリウム、水酸化リチウム
などがある。ハロゲン化ホスホニウム塩として
は、エチルトリフエニルホスホニウムブロマイ
ド、テトラフエニルホスホニウムクロライド、テ
トラブチルホスホニウムクロライド、メチルトリ
フエニルホスホニウムアイオダイド、などがあ
る。スルホニウム塩としてはトリフエニルスルホ
ニウムクロライド、ベンジルジメチルスルホニウ
ムクロライド、ジメチルプロピルスルホニウムプ
ロマイドなどがある。第3級ホスフインとしては
トリフエニルホスフイン、トリブチルホスフイン
などがある。 これらの触媒は0.001〜0.05重量部用いるがそ
れより少ないと反応時間が10時間以上になつてし
まいそれより多いと樹脂中の不純物として硬化物
の電気特性などに影響を与える。 合成反応温度は120〜200℃で好ましくは150〜
170℃である。120℃より低いと反応が遅く、反応
時間が10時間以上かかる。200℃より高いと触媒
効果がなくなりまたテトラブロモビスフエノール
Aが分解しはじめる。 合成反応時間は何時間でもよいが好ましくは2
〜5時間である。反応の終点はセチルトリメチル
アンモニウムブロマイド―過塩素酸法によるエポ
キシ当量の測定によつて確認される。測定したエ
ポキシ当量が理論計算の90〜110%にあれば終点
とする。 不活性ガス置換はしてもしなくてもよい。 反応副生成物であるアルコールは蒸留によつて
糸外に除去し必要があれば減圧蒸留によつて除去
する。 (a)、(b)、(c)を混合して加熱することは低分子量
エポキシ樹脂を高分子量化並びに難燃性を付与す
るために用いられる一般的な手法であるがその際
に(c)のようなシリコーン中間体を混合して加熱し
た例はない。本発明はTBAのOHに選択性がある
ことを利用して従来二段で行なわれていた難燃性
シリコーン変性エポキシ樹脂の合成を一段で行な
うことにある。その効果として工程の短縮化がは
かれること、品質の均一化が容易になり、品質の
一定した難燃性シリコーン変性エポキシ樹脂が短
時間で得られ、それは配線板のドリル加工性の向
上をはかるために利用される。 以下本発明を実施例にもとづいて説明する。 実施例 1 エポキシ当量175のビスフエノールA型エポキ
シ樹脂4300g、テトラブロモビスフエノール
A2650g、KR218(商品名:信越化学工業(株)製メ
トキシ当量210のシリコーン中間体)420g、テト
ラメチルアンモニウムクロライド0.25gを混合撹
拌し、温度160℃に2時間保つた。その間系中の
揮発分を減圧除去した。エポキシ当量584の固型
樹脂を得た。 実施例 2 エポキシ当量175のビスフエノールA型エポキ
シ樹脂4300g、テトラブロモビスフエノール
A2650g、KR213(商品名:信越化学工業(株)製、
メトキシ当量157のシリコーン中間体)315g、テ
トラメチルアンモニウムクロライド0.25gを混合
撹拌し、温度160℃に2時間保つた。その間、系
中の揮発分を減圧除去した。エポキシ当量568の
固型樹脂を得た。 比較例 エポキシ当量175のビスフエノールA型エポキ
シ樹脂4300g、テトラブロモビスフエノール
A2650g、テトラメチルアンモニウムクロライド
0.25gを混合撹拌し温度160℃に2時間保つた。
その間系中の揮発分を減圧除去したエポキシ当量
550の固型樹脂を得た。 上記実施例1、実施例2、比較例で得られたシ
リコーン変性エポキシ樹脂を用いてプリプレグ用
ワニスを作成した。その配合を表1に示す。
It is an organosiloxane with an alkoxy group such as [Formula] or its condensation product, but the alkoxy group includes methoxy group, ethoxy group, etc., and the alkoxy equivalent is 150 by Zeisel's quantitative method.
~300 are used. If it is larger than that, the silicone intermediate has a high molecular weight, and the obtained silicone-modified epoxy resin also has a high molecular weight, giving a non-uniform cured product. If it is smaller than that, the reaction between the alkoxy group of the silicone intermediate and the hydroxyl group generated by the reaction of the epoxy resin with tetrabromobisphenol A will not take place sufficiently due to steric hindrance, and the unreacted alkoxy group will cause the cured product to Moisture resistance and heat resistance decrease. The silicone intermediate is used in an amount of 0.1 to 20 parts by weight, but if it is less than that, it will have no effect on drillability, and if it is more than that, unreacted alkoxy groups will remain. Examples of the catalyst (d) include tertiary amines, quaternary ammonium salts, imidazole, alkali metal hydroxides, phosphonium halides, sulfonium salts,
Tertiary phosphine and the like are used. Examples of tertiary amines include benzyldimethylamine, triethanolamine, and pyridine. Examples of quaternary ammonium salts include benzyltrimethylammonium hydroxide, benzyltrimethylammonium chloride, tetramethylammonium bromide, tetramethylammonium chloride, tetraethylammonium bromide, tetraethylammonium chloride, and N-cetylpyridinium chloride. Imidazole includes 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole,
Examples include 1-cyanoethyl-2-phenylimidazole. Examples of alkali metal hydroxides include sodium hydroxide, potassium hydroxide, and lithium hydroxide. Examples of the halogenated phosphonium salts include ethyltriphenylphosphonium bromide, tetraphenylphosphonium chloride, tetrabutylphosphonium chloride, and methyltriphenylphosphonium iodide. Examples of sulfonium salts include triphenylsulfonium chloride, benzyldimethylsulfonium chloride, and dimethylpropylsulfonium bromide. Examples of tertiary phosphine include triphenylphosphine and tributylphosphine. These catalysts are used in an amount of 0.001 to 0.05 parts by weight, but if the amount is less than that, the reaction time will be over 10 hours, and if the amount is more than that, they will act as impurities in the resin and affect the electrical properties of the cured product. The synthesis reaction temperature is 120~200℃, preferably 150~
The temperature is 170℃. If the temperature is lower than 120°C, the reaction is slow and takes more than 10 hours. If the temperature is higher than 200°C, the catalytic effect is lost and tetrabromobisphenol A begins to decompose. The synthesis reaction time may be any number of hours, but preferably 2
~5 hours. The end point of the reaction is confirmed by measuring the epoxy equivalent by the cetyltrimethylammonium bromide-perchloric acid method. If the measured epoxy equivalent is between 90 and 110% of the theoretical calculation, it is considered as the end point. Inert gas replacement may or may not be performed. Alcohol, which is a reaction by-product, is removed from the thread by distillation and, if necessary, by vacuum distillation. Mixing and heating (a), (b), and (c) is a common method used to increase the molecular weight and impart flame retardancy to low molecular weight epoxy resins. ) There are no examples of mixing and heating silicone intermediates. The purpose of the present invention is to utilize the selectivity of TBA for OH to perform the synthesis of a flame-retardant silicone-modified epoxy resin in one step, which was conventionally carried out in two steps. As a result, the process can be shortened, the quality can be easily made uniform, and a flame-retardant silicone-modified epoxy resin of constant quality can be obtained in a short time, which improves the drilling workability of wiring boards. used for. The present invention will be explained below based on examples. Example 1 4300 g of bisphenol type A epoxy resin with an epoxy equivalent weight of 175, tetrabromobisphenol
420 g of A2650 g, KR218 (trade name: silicone intermediate with methoxy equivalent weight 210, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.25 g of tetramethylammonium chloride were mixed and stirred, and the mixture was kept at a temperature of 160° C. for 2 hours. During that time, volatile components in the system were removed under reduced pressure. A solid resin with an epoxy equivalent of 584 was obtained. Example 2 4300 g of bisphenol type A epoxy resin with an epoxy equivalent weight of 175, tetrabromobisphenol
A2650g, KR213 (product name: Shin-Etsu Chemical Co., Ltd.)
315 g of a silicone intermediate having a methoxy equivalent of 157 and 0.25 g of tetramethylammonium chloride were mixed and stirred, and the mixture was kept at a temperature of 160° C. for 2 hours. During that time, volatile components in the system were removed under reduced pressure. A solid resin with an epoxy equivalent of 568 was obtained. Comparative example: 4300g of bisphenol A type epoxy resin with epoxy equivalent of 175, tetrabromobisphenol
A2650g, tetramethylammonium chloride
0.25g was mixed and stirred and kept at a temperature of 160°C for 2 hours.
Epoxy equivalent after removing volatile components from the system under reduced pressure
550 solid resin was obtained. Prepreg varnishes were created using the silicone-modified epoxy resins obtained in Example 1, Example 2, and Comparative Example. The formulation is shown in Table 1.

【表】 こられのワニスにエポキシシラン処理したガラ
ス布(厚み0.1tmm)を浸漬し165℃、3分間加熱
乾燥してプリプレグを得た。プリプレグ15枚と35
μ銅箔6枚を用いて170℃、1h加熱成形して6層
配線板試作品を作成しドリル加工した。ドリル条
件は、回転数60000rpm、送り速度3000mm/
min、穴径1.0φmm、重ね枚数2枚で12000穴まで
穴あけした。 表2に6層配線板試作品試験結果を示す。
[Table] An epoxy silane-treated glass cloth (thickness: 0.1 tmm) was immersed in this varnish and dried by heating at 165°C for 3 minutes to obtain a prepreg. 15 prepregs and 35
A 6-layer wiring board prototype was created by heating and forming 6 sheets of μ copper foil at 170°C for 1 hour, and drilling was performed. Drill conditions are rotation speed 60000rpm, feed rate 3000mm/
Up to 12,000 holes were drilled with a hole diameter of 1.0φmm and two stacked sheets. Table 2 shows the 6-layer wiring board prototype test results.

【表】 表2に示されるようにシリコーン変性エポキシ
樹脂を用いた#1、#2は通常のエポキシ樹脂を
用いた#3と比べてドリル加工性がかなり向上し
ている。またTgは若干上昇しているがバーコー
ル硬度はほとんど変わらない。従つて小径穴あけ
の際のドリル折損、ドリル摩耗等は少ない。 また多層配線板の難燃性はすべてUL94V―O
を達成した。
[Table] As shown in Table 2, drill workability of #1 and #2 using silicone-modified epoxy resin is considerably improved compared to #3 using normal epoxy resin. Also, although Tg has increased slightly, barcol hardness has hardly changed. Therefore, there is little chance of drill breakage or drill wear when drilling small diameter holes. In addition, the flame retardance of all multilayer wiring boards is UL94V-O.
achieved.

Claims (1)

【特許請求の範囲】 1 (a) ヒドロキシル価0〜0.08のエポキシ樹脂
100重量部、 (b) テトラブロモビスフエノールA40〜80重量
部、 (c) アルコキシ基当量が150〜300のシリコーン中
間体0.1〜20重量部、および (d) 触媒0.001〜0.05重量部、 からなる混合物を120℃〜200℃に加熱して一段で
反応させることを特徴とする難燃性シリコーン変
性エポキシ樹脂の製造方法。 2 触媒が第4級アンモニウム塩である特許請求
の範囲第1項記載の難燃性シリコーン変性エポキ
シ樹脂の製造方法。
[Claims] 1 (a) Epoxy resin with a hydroxyl value of 0 to 0.08
(b) 40 to 80 parts by weight of tetrabromobisphenol A, (c) 0.1 to 20 parts by weight of a silicone intermediate having an alkoxy group equivalent of 150 to 300, and (d) 0.001 to 0.05 parts by weight of a catalyst. A method for producing a flame-retardant silicone-modified epoxy resin, which comprises heating the mixture to 120°C to 200°C and reacting in one step. 2. The method for producing a flame-retardant silicone-modified epoxy resin according to claim 1, wherein the catalyst is a quaternary ammonium salt.
JP19368983A 1983-10-17 1983-10-17 Preparation of flame-retardant silicone modified epoxy resin Granted JPS6086119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19368983A JPS6086119A (en) 1983-10-17 1983-10-17 Preparation of flame-retardant silicone modified epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19368983A JPS6086119A (en) 1983-10-17 1983-10-17 Preparation of flame-retardant silicone modified epoxy resin

Publications (2)

Publication Number Publication Date
JPS6086119A JPS6086119A (en) 1985-05-15
JPS6231729B2 true JPS6231729B2 (en) 1987-07-10

Family

ID=16312139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19368983A Granted JPS6086119A (en) 1983-10-17 1983-10-17 Preparation of flame-retardant silicone modified epoxy resin

Country Status (1)

Country Link
JP (1) JPS6086119A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722591B2 (en) * 2005-07-01 2011-07-13 株式会社 ワールドリング Method for manufacturing a garment having a hollow portion comprising an outer ring body and an inner ring body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118728A (en) * 1975-04-11 1976-10-18 Dow Corning Process for manufacturing silicone resin
JPS5431021A (en) * 1977-08-12 1979-03-07 Japan Steel Works Ltd Method of producing dendrite microostructure of chromiummmolybdenum steel by adding titanium and zirconium
JPS55152716A (en) * 1979-05-18 1980-11-28 Matsushita Electric Works Ltd Preparation of epoxy resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51118728A (en) * 1975-04-11 1976-10-18 Dow Corning Process for manufacturing silicone resin
JPS5431021A (en) * 1977-08-12 1979-03-07 Japan Steel Works Ltd Method of producing dendrite microostructure of chromiummmolybdenum steel by adding titanium and zirconium
JPS55152716A (en) * 1979-05-18 1980-11-28 Matsushita Electric Works Ltd Preparation of epoxy resin composition

Also Published As

Publication number Publication date
JPS6086119A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
JP3137202B2 (en) Epoxy resin, method for producing the same, and epoxy resin composition
JP4259536B2 (en) Method for producing phenol resin and method for producing epoxy resin
JP5245199B2 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, production method thereof, and novel phenol resin
WO2006101008A1 (en) Epoxy resin composition, cured product thereof, novel epoxy resin, process for production thereof, and novel phenol resin
JP2007231083A (en) Epoxy resin composition, cured product thereof, new epoxy resin, new phenol resin, and semiconductor sealing material
WO2007099670A1 (en) Process for producing phenolic resin and process for producing epoxy resin
JP6846540B2 (en) Thermosetting resin composition, prepreg produced thereby, metal foil-clad laminate and high-frequency circuit board
JP5760794B2 (en) Polyhydroxy compound, epoxy resin, thermosetting resin composition, cured product thereof and semiconductor sealing material
JPH06247989A (en) Cyclic phosphazene compound, resin composition and its cured material
JP3668463B2 (en) High molecular weight epoxy resin and method for producing the same, resin composition for electric laminates using the epoxy resin, and electric laminate
JP2020517792A (en) Thermosetting resin composition, prepreg produced thereby, metal foil-clad laminate, and high-frequency wiring board
EP0133600B1 (en) Epoxy resin and composition
JP6851926B2 (en) (Meta) Allyl ether resin, epoxy resin, curable resin composition and cured products thereof
JP4144732B2 (en) High molecular weight epoxy resin, resin composition for electric laminate and electric laminate
JPS61168617A (en) Production of high-purity brominated epoxy resin
JPS6231729B2 (en)
CN108026228B (en) Substituted allyl ether resin, methallyl ether resin, epoxy resin composition and cured product thereof
JPS6231730B2 (en)
EP1930326A1 (en) Synthesis of new dihydrobenzoxazine
WO2018110532A1 (en) Substituted allyl ether resin, methallyl ether resin, epoxy resin, curable resin composition, and cured products of these
JPS61272243A (en) Production of prepreg for printed circuit board
JPH04359919A (en) Epoxy resin, and its production and composition
JP6851927B2 (en) (Meta) Allyl ether resin, epoxy resin, curable resin composition and its cured product
JP3331222B2 (en) Epoxy resin and epoxy resin composition
JPS6253526B2 (en)