JPS623165B2 - - Google Patents

Info

Publication number
JPS623165B2
JPS623165B2 JP10648579A JP10648579A JPS623165B2 JP S623165 B2 JPS623165 B2 JP S623165B2 JP 10648579 A JP10648579 A JP 10648579A JP 10648579 A JP10648579 A JP 10648579A JP S623165 B2 JPS623165 B2 JP S623165B2
Authority
JP
Japan
Prior art keywords
styrene
maleic acid
alkyl
maleic
substituted styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10648579A
Other languages
Japanese (ja)
Other versions
JPS5630416A (en
Inventor
Yasuhisa Saito
Kunimasa Kamio
Hiroshi Horiuchi
Makoto Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10648579A priority Critical patent/JPS5630416A/en
Publication of JPS5630416A publication Critical patent/JPS5630416A/en
Publication of JPS623165B2 publication Critical patent/JPS623165B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はα−アルキル置換スチレンの単独低重
合体の含有量が少ないスチレン・マレイン酸系低
重合体の製造方法に関する。 従来、スチレン類と無水マレイン酸とをラジカ
ル重合触媒存在下に重合させて交互共重合体を得
ることはよく知られているが、得られた重合体は
通常軟化点が200℃以上と極めて高く、他の樹脂
たとえばエポキシ樹脂、アルキツド樹脂等との相
溶性が劣つているため、その用途が制限されてい
る。 一方、α−アルキル置換スチレンと無水マレイ
ン酸とをラジカル重合触媒の非存在下に反応させ
てスチレン・マレイン酸系低重合体を得ることも
知られており、その例としては特開昭47−8538号
公報に示される方法がある。 これは、160〜200℃に加熱されたマレイン酸に
α−アルキル置換スチレンをゆつくり加える方法
であるが、この方法によると主成分としてのスチ
レン・マレイン酸系低重合体と共にマレイン酸が
関与しないα−アルキル置換スチレンの単独低重
合体も相当量副生し、反応終了後の生成物を冷却
すると析出した固体(スチレン・マレイン酸系低
重合体)表面にα−アルキル置換スチレンの単独
低重合体がオイル状に滲みだしたり、場合によつ
てはオイル層が分離したりする現象が認められ
る。 このα−アルキル置換スチレンの単独低重合体
は分子中に酸無水基が存在しないため、該単独低
重合体を多く含有するスチレン・マレイン酸系低
重合体をたとえばエポキシ樹脂の架橋剤(硬化
剤)として使用した場合には、架橋密度が低くな
つて硬化速度が遅くなり、また硬化不足が原因し
て硬化物の性能を著じるしく低下させるという問
題があつた。 かかる問題の解決法としては、α−アルキル置
換スチレンと無水マレイン酸との反応終了後に減
圧蒸留などによつて上記単独低重合体を除去する
方法が考えられる。 しかし、この方法ではα−アルキル置換スチレ
ンの単独低重合体の蒸気圧が極めて低いため、少
なくとも温度200℃前後で、減圧度数mmHgでの蒸
留が必要となるが、このような条件では目的とす
るスチレン・マレイン酸系低重合体が昇華性を有
しているために、該低重合体が同時に昇華してそ
の収率が低下するばかりでなく、昇華物がコンデ
ンサー等に付着、固化して製造管理が非常に困難
になるという問題がある。 このようなことから、本発明者らはスチレン・
マレイン酸系低重合体の製造における上記諸問題
を解決すべく種々検討の結果、α−アルキル置換
スチレンとスチレンとの一定の割合からなる混合
物とマレイン酸類を特定条件下で反応させること
により、上記諸問題もなく、スチレン・マレイン
酸系低重合体が効率よく製造できることを見出
し、本発明に至つた。 すなわち、本発明はモル比が9:1〜4:6で
あるα−アルキル置換スチレンとスチレンとの混
合物(以下スチレン類と称する。)とマレイン酸
類を、該混合物とマレイン酸類のモル比1:1〜
1:5、反応温度130℃以上で、かつラジカル重
合触媒非存在下に反応させることを特徴とするス
チレン・マレイン酸系低重合体の製造方法であ
る。 本発明に使用するα−アルキル置換スチレンと
は、一般式 で示されるスチレン系化合物であつて、式中Rは
炭素数1〜4の低級アルキル基(特にメチル基)
であり、X1およびX2は特に限定されず、各各独
立に水素、ハロゲン(たとえば塩素、臭素)、ア
リール基(たとえばフエニル、トリル、キシリ
ル)、アラルキル基(たとえばベンジル、フエネ
チル)、アルキル基(たとえばメチル、エチル、
プロピル、ブチル)、シクロアルキル基(たとえ
ばシクロヘキシル)などである。具体的な化合物
としては、たとえばα−メチルスチレン、α・2
−ジメチルスチレン、α・3−ジメチルスチレ
ン、α・4−ジメチルスチレン、α・2・4−ト
リメチルスチレン、α−メチル−4−クロルスチ
レン、α−メチル−4−第3級ブチルスチレン等
あるいはこれらの混合物が挙げられる。 また、本発明で使用するマレイン酸類とは、一
般式 で示されるマレイン酸系化合物である。ここで、
XおよびYはそれぞれ独立に水酸基あるいは塩
素、臭素等のハロゲンまたは−ORであり、Rと
してはメチル、エチル、プロピル、ブチル等のア
ルキル基、シクロヘキシル等のシクロアルキル
基、フエニル、トリル、キシリル等のアリール
基、ベンジル、フエネチル等のアラルキル基など
が示される。もちろん上記式においてXおよびY
が同一である必要はなく、同一であつても異なつ
ていても何ら差し支えない。またXおよびYが一
つになつて酸素(O)結合したいわゆる酸無水物
であつてもよい。 置換基R1、R2については特別な限定はなく、
たとえば水素、塩素、臭素等のハロゲン、メチ
ル、エチル、プロピル、ブチル等のアルキル基、
シクロヘキシル等のシクロアルキル基、フエニ
ル、トリル、キシリル等のアリール基、ベンジ
ル、フエネチル等のアラルキル基などであり、
R1およびR2は同一であつても異なつていてもよ
い。 かかるマレイン酸類として具体的に例示すれ
ば、たとえば無水マレイン酸、マレイン酸、マレ
イン酸モノクロライド、マレイン酸ジクロライ
ド、無水プロピルマレイン酸、無水1・2−ジエ
チルマレイン酸、無水ベンジルマレイン酸、無水
シクロヘキシルマレイン酸、マレイン酸モノエチ
ルエステル、マレイン酸モノブチルエステル、マ
レイン酸モノオクチルエステル、マレイン酸モノ
ベンジルエステル、マレイン酸モノフエニルエス
テル、マレイン酸モノシクロヘキシルエステル、
マレイン酸ジエチルエステル、マレイン酸ジブチ
ルエステル等あるいはこれらの混合物をあげるこ
とができるが、もちろんこれらに限定されるもの
ではない。その他これら化合物の同効物質とし
て、反応中に上記に例示したような化合物に分解
転位するような化合物も使用し得る。 本発明に使用されるスチレン類は、α−アルキ
ル置換スチレンとスチレンとの混合モル比が9:
1〜4:6の範囲にあることが必要である。α−
アルキル置換スチレンがこれより多くなるとα−
アルキル置換スチレンの単独低重合体が多く生成
する傾向にあり、一方α−アルキル置換スチレン
がこれより少なくなるとα−アルキル置換スチレ
ンの単独低重合体は生成しにくくなるが、スチレ
ン・マレイン酸系低重合体の生成と同時にこの低
重合体に匹敵する量の高分子量体が生成する。 前者の場合には生成物中にα−アルキル置換ス
チレンの単独重合体の含量が多いために、架橋剤
として使用した場合に硬化物の性能が低下し、ま
た後者の場合には、生成した高分子量体中には分
子量10000以上のものも含まれ、生成樹脂の軟化
点が高くなつて無溶媒系での反応が難しく、溶媒
の選択、回収等製造工程が複雑になると共に、分
子量が高くなることによつて溶剤に対する溶解性
や他の樹脂に対する相溶性が低下し、作業性が極
めて悪くなる。 しかるに、本発明に規定する範囲の上記混合モ
ル比である場合にはα−アルキル置換スチレンの
単独低重合体の生成量が少なく、前記高分子量体
の生成も少量で、しかもその分子量もほぼ5000以
下であるので作業性にも非常にすぐれている。 本発明において、かかるスチレン類とマレイン
酸類の反応モル比は、α−アルキル置換スチレン
とスチレンの合計モルに対してマレイン酸類が1
〜5モル倍より好ましくは1.2〜3モル倍の範囲
である。 マレイン酸類の量がこの範囲より少ない場合に
はα−アルキル置換スチレンの単独低重合体が多
く生成し、またこの範囲より多い場合には未反応
マレイン酸類が多く残存することになつて好まし
くない。 反応温度については温度が低くなるとスチレ
ン・マレイン酸系低重合体の生成速度が遅く、相
対的に高分子量体の生成量が多くなり、しかも反
応温度が低い程高分子量体の分子量が高くなるた
め、反応温度はできるだけ高温が好ましく、最低
130℃は必要である。 反応方法としては、この反応がスチレン・マレ
イン酸系低重合体の生成とα−アルキル置換スチ
レンの単独低重合体の生成が競争する反応である
ため、加熱されたマレイン酸類中にスチレン類を
ゆつくり添加しながら反応させ、できるだけ反応
系中のα−アルキル置換スチレンの濃度を低くし
てα−アルキル置換スチレンの単独低重合体の生
成を少なくさせることが好ましい。 この場合の添加方法は連続的であつても断続的
(間欠的)であつてもよく、また添加時間は前記
目的からすれば長い程好ましいが、それぞれの反
応条件、経済性等を考慮して適宜決定される。 かくして、本発明の方法により製造されたスチ
レン・マレイン酸系低重合体は分子量1000以下の
成分が圧倒的に多く、通常のスチレン・マレイン
酸系共重合体に比べて軟化点がきわめて低くほぼ
80〜140℃の範囲にある。このため溶剤に対する
溶解性や他の樹脂に対する相溶性が良好で作業性
に優れている。 このような特徴を有するスチレン・マレイン酸
系低重合体はエポキシ基あるいは水酸基を有する
樹脂の硬化剤として有用である。 このような樹脂としてはエポキシ樹脂、アクリ
ル樹脂、ポリエステル樹脂、アルキツド樹脂、ポ
リビニルアルコール、エチレン・酢酸ビニル共重
合体のけん化物等を例示できるがこれらに限られ
るものではない。 以下、実施例により本発明を説明する。尚、例
中部および%とあるのは重量表示である。 実施例 1 撹拌器及温度計のついた4つ口フラスコに無水
マレイン酸706部を仕込み内温を180℃まで昇温し
た。続いてこの温度を維持しながらジメチルスチ
レ〓423部とスチレン83部の混合物を8時間かけ
て滴下した。滴下終了後内温180℃において1時
間保温した。ここにおいて軟化点95℃の生成物が
得られた。生成物のGPCによる成分の分析結果
を表1に示す。 *ここでジメチルスチレンと呼ぶものはα・4−
ジメチルスチレンとα・2−ジメチルスチレン
の混合物でその組成比はほぼ6:4のものであ
る。 実施例2〜7及び比較例1〜5も実施例1と同
様の方法で行つた。結果は表1、2、3に示す。
The present invention relates to a method for producing a styrene/maleic acid based low polymer having a low content of α-alkyl substituted styrene homolow polymer. It is well known that alternating copolymers are obtained by polymerizing styrenes and maleic anhydride in the presence of radical polymerization catalysts, but the resulting polymers usually have extremely high softening points of 200°C or higher. However, its use is limited due to its poor compatibility with other resins such as epoxy resins and alkyd resins. On the other hand, it is also known that styrene/maleic acid-based low polymers can be obtained by reacting α-alkyl-substituted styrene and maleic anhydride in the absence of a radical polymerization catalyst. There is a method shown in Publication No. 8538. This is a method in which α-alkyl-substituted styrene is slowly added to maleic acid heated to 160-200°C, but according to this method, maleic acid is not involved along with the styrene-maleic acid-based low polymer as the main component. A considerable amount of a homopolymer of α-alkyl-substituted styrene was also produced as a by-product, and when the product was cooled after the reaction, the surface of the precipitated solid (styrene/maleic acid-based low polymer) appeared on the surface of the homopolymer of α-alkyl-substituted styrene. A phenomenon in which the coalescence oozes out in the form of oil, or in some cases, the oil layer separates, is observed. This α-alkyl-substituted styrene homopolymer does not have acid anhydride groups in its molecules, so styrene/maleic acid-based low polymers containing a large amount of this homopolymer can be used as crosslinking agents (curing agents) for epoxy resins. ), there were problems in that the crosslinking density was low, the curing speed was slow, and the performance of the cured product was significantly lowered due to insufficient curing. A possible solution to this problem is to remove the homopolymer by vacuum distillation or the like after the reaction between α-alkyl-substituted styrene and maleic anhydride is completed. However, in this method, since the vapor pressure of the α-alkyl substituted styrene homopolymer is extremely low, it is necessary to distill it at a temperature of at least around 200°C and a vacuum degree of mmHg. Because styrene/maleic acid-based low polymers have sublimation properties, not only do the low polymers sublimate at the same time, reducing the yield, but the sublimate adheres to condensers, etc., and solidifies. The problem is that it becomes very difficult to manage. Based on this, the present inventors
As a result of various studies in order to solve the above-mentioned problems in the production of maleic acid-based low polymers, the above-mentioned It was discovered that styrene-maleic acid-based low polymers can be efficiently produced without any problems, leading to the present invention. That is, in the present invention, a mixture of α-alkyl-substituted styrene and styrene (hereinafter referred to as styrenes) having a molar ratio of 9:1 to 4:6 and maleic acids are mixed, and a molar ratio of the mixture to maleic acids is 1:1. 1~
This is a method for producing a styrene-maleic acid based low polymer, which is characterized by carrying out the reaction at a ratio of 1:5 at a reaction temperature of 130° C. or higher and in the absence of a radical polymerization catalyst. The α-alkyl substituted styrene used in the present invention has the general formula A styrene compound represented by the formula, where R is a lower alkyl group having 1 to 4 carbon atoms (particularly a methyl group)
and X 1 and X 2 are not particularly limited, and each independently represents hydrogen, halogen (e.g., chlorine, bromine), aryl group (e.g., phenyl, tolyl, xylyl), aralkyl group (e.g., benzyl, phenethyl), or alkyl group. (e.g. methyl, ethyl,
propyl, butyl), cycloalkyl groups (e.g. cyclohexyl), etc. Specific compounds include α-methylstyrene, α・2
-dimethylstyrene, α・3-dimethylstyrene, α・4-dimethylstyrene, α・2,4-trimethylstyrene, α-methyl-4-chlorostyrene, α-methyl-4-tertiary-butylstyrene, etc. or these A mixture of the following may be mentioned. In addition, the maleic acids used in the present invention have the general formula It is a maleic acid compound represented by here,
X and Y are each independently a hydroxyl group, a halogen such as chlorine, bromine, or -OR, and R is an alkyl group such as methyl, ethyl, propyl, butyl, a cycloalkyl group such as cyclohexyl, or a cycloalkyl group such as phenyl, tolyl, xylyl, etc. Examples include aryl groups and aralkyl groups such as benzyl and phenethyl. Of course, in the above formula, X and Y
They do not need to be the same, and there is no problem even if they are the same or different. It may also be a so-called acid anhydride in which X and Y are combined to form an oxygen (O) bond. There are no special limitations on the substituents R 1 and R 2 ,
For example, hydrogen, halogens such as chlorine, bromine, alkyl groups such as methyl, ethyl, propyl, butyl,
These include cycloalkyl groups such as cyclohexyl, aryl groups such as phenyl, tolyl, and xylyl, and aralkyl groups such as benzyl and phenethyl.
R 1 and R 2 may be the same or different. Specific examples of such maleic acids include maleic anhydride, maleic acid, maleic acid monochloride, maleic acid dichloride, propyl maleic anhydride, 1,2-diethyl maleic anhydride, benzyl maleic anhydride, and cyclohexyl maleic anhydride. acid, maleic acid monoethyl ester, maleic acid monobutyl ester, maleic acid monooctyl ester, maleic acid monobenzyl ester, maleic acid monophenyl ester, maleic acid monocyclohexyl ester,
Examples include diethyl maleate, dibutyl maleate, and mixtures thereof, but are not limited to these. Other compounds that decompose and rearrange to the compounds exemplified above during the reaction may also be used as substances with the same effect as these compounds. The styrenes used in the present invention have a mixing molar ratio of α-alkyl substituted styrene and styrene of 9:
It is necessary that the ratio be in the range of 1 to 4:6. α−
If the amount of alkyl-substituted styrene is more than this, α-
Homopolymer of alkyl-substituted styrene tends to be produced in large quantities, while if α-alkyl-substituted styrene becomes less than this, homo-polymer of α-alkyl-substituted styrene becomes difficult to produce, but styrene/maleic acid-based Simultaneously with the formation of the polymer, a high molecular weight substance is formed in an amount comparable to this low polymer. In the former case, the high content of α-alkyl-substituted styrene homopolymer in the product reduces the performance of the cured product when used as a crosslinking agent, and in the latter case, the resulting polymer The molecular weight substances include those with a molecular weight of 10,000 or more, and the softening point of the resulting resin becomes high, making it difficult to react in a solvent-free system, complicating the manufacturing process such as solvent selection and recovery, and increasing the molecular weight. As a result, solubility in solvents and compatibility with other resins decreases, resulting in extremely poor workability. However, when the mixing molar ratio is within the range specified in the present invention, the amount of homopolymer of α-alkyl substituted styrene produced is small, the amount of the high molecular weight product is also small, and the molecular weight is approximately 5000. It has the following properties, so it has excellent workability. In the present invention, the reaction molar ratio of styrenes and maleic acids is such that 1 maleic acid is added to the total mole of α-alkyl substituted styrene and styrene.
The amount is preferably 1.2 to 3 times by mole, more preferably 1.2 to 3 times by mole. If the amount of maleic acids is less than this range, a large amount of a homopolymer of α-alkyl-substituted styrene will be produced, and if it is more than this range, a large amount of unreacted maleic acids will remain, which is undesirable. As for the reaction temperature, the lower the temperature, the slower the production rate of styrene/maleic acid-based low polymers, and the relatively larger amount of high molecular weight products produced.Moreover, the lower the reaction temperature, the higher the molecular weight of the high molecular weight products. , the reaction temperature is preferably as high as possible, and the minimum
130℃ is necessary. As for the reaction method, since this reaction is a reaction in which the production of styrene/maleic acid-based low polymers and the production of α-alkyl-substituted styrene homopolymer compete with each other, styrenes are mixed into heated maleic acids. It is preferable to carry out the reaction while preparing and adding the styrene, and to lower the concentration of α-alkyl-substituted styrene in the reaction system as much as possible to reduce the formation of a homopolymer of α-alkyl-substituted styrene. The addition method in this case may be continuous or intermittent (intermittent), and the longer the addition time is, the more preferable it is from the above-mentioned purpose, but considering each reaction condition, economic efficiency, etc. To be determined accordingly. Thus, the styrene-maleic acid-based low polymer produced by the method of the present invention has an overwhelmingly large amount of components with a molecular weight of 1000 or less, and has an extremely low softening point compared to ordinary styrene-maleic acid-based copolymers.
In the range of 80-140℃. Therefore, it has good solubility in solvents and compatibility with other resins, and is excellent in workability. Styrene-maleic acid based low polymers having such characteristics are useful as curing agents for resins having epoxy groups or hydroxyl groups. Examples of such resins include, but are not limited to, epoxy resins, acrylic resins, polyester resins, alkyd resins, polyvinyl alcohol, and saponified products of ethylene/vinyl acetate copolymers. The present invention will be explained below with reference to Examples. Note that the numbers in the middle part of the example and % are weights. Example 1 706 parts of maleic anhydride was charged into a four-necked flask equipped with a stirrer and a thermometer, and the internal temperature was raised to 180°C. Subsequently, while maintaining this temperature, a mixture of 423 parts of dimethylstyrene and 83 parts of styrene was added dropwise over 8 hours. After completion of the dropping, the mixture was kept at an internal temperature of 180°C for 1 hour. A product with a softening point of 95° C. was obtained here. Table 1 shows the results of component analysis of the product by GPC. *What we call dimethylstyrene here is α・4-
It is a mixture of dimethylstyrene and α.2-dimethylstyrene in a composition ratio of approximately 6:4. Examples 2 to 7 and Comparative Examples 1 to 5 were also carried out in the same manner as in Example 1. The results are shown in Tables 1, 2 and 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 モル比が9:1〜4:6であるα−アルキル
置換スチレンとスチレンとの混合物とマレイン酸
類を、該混合物とマレイン酸類のモル比1:1〜
1:5、反応温度130℃以上で、かつラジカル重
合触媒非存在下に反応させることを特徴とするス
チレン・マレイン酸系低重合体の製造方法。 2 α−アルキル置換スチレンとスチレンとの混
合物を、マレイン酸類に添加しながら反応させる
特許請求の範囲第1項に記載の方法。
[Claims] 1. A mixture of α-alkyl substituted styrene and styrene in a molar ratio of 9:1 to 4:6 and maleic acids;
1:5, a reaction temperature of 130° C. or higher, and a method for producing a styrene-maleic acid-based low polymer, characterized in that the reaction is carried out in the absence of a radical polymerization catalyst. 2. The method according to claim 1, wherein a mixture of α-alkyl substituted styrene and styrene is reacted while being added to maleic acids.
JP10648579A 1979-08-20 1979-08-20 Preparation of styrene-maleic acid low polymer Granted JPS5630416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10648579A JPS5630416A (en) 1979-08-20 1979-08-20 Preparation of styrene-maleic acid low polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10648579A JPS5630416A (en) 1979-08-20 1979-08-20 Preparation of styrene-maleic acid low polymer

Publications (2)

Publication Number Publication Date
JPS5630416A JPS5630416A (en) 1981-03-27
JPS623165B2 true JPS623165B2 (en) 1987-01-23

Family

ID=14434765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10648579A Granted JPS5630416A (en) 1979-08-20 1979-08-20 Preparation of styrene-maleic acid low polymer

Country Status (1)

Country Link
JP (1) JPS5630416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147970A (en) * 1987-12-04 1989-06-09 Fuji Photo Optical Co Ltd Prompter
JPH01276881A (en) * 1988-04-28 1989-11-07 Asahi Glass Co Ltd Prompter and its driving method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147970A (en) * 1987-12-04 1989-06-09 Fuji Photo Optical Co Ltd Prompter
JPH01276881A (en) * 1988-04-28 1989-11-07 Asahi Glass Co Ltd Prompter and its driving method

Also Published As

Publication number Publication date
JPS5630416A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
WO2004014926A2 (en) Alkoxyamines originating from beta-phosphorylated nitroxides and use thereof in radical polymerisation
JP5709094B2 (en) Alkenyl phosphorus compound, alkenyl phosphorus compound polymer, and alkenyl phosphorus compound copolymer
JP2002537304A (en) Alkoxyamines obtained from β-phosphorous nitroxide
JPS58167606A (en) Preparation of graft copolymer by radical copolymerization
US2684379A (en) Process for producing polysiloxanes
JP2614614B2 (en) Optically active styrene derivatives, their polymers, complex salts with iridium (I) and uses thereof
JPS623165B2 (en)
US9879103B2 (en) Initiation of controlled radical polymerization from lactide monomer
US2695307A (en) Process of manufacturing polymerized organic silicon compounds
JPS63250388A (en) Production of monoalkoxysilane compound
JP2001302685A (en) Method for producing organophosphorus compound
JPH0337206A (en) Bulk addition polymerization of acrylic monomer
TWI352083B (en) Method for producing hexaalkylborzaine
JP3743687B2 (en) Method for producing tetrakis (pentafluorophenyl) borate derivative using alkyl halide
JP5880907B2 (en) Alkenyl phosphorus compound, alkenyl phosphorus compound polymer, and alkenyl phosphorus compound copolymer
JP5786269B2 (en) Method for producing alkenyl phosphorus compound, method for producing alkenyl phosphorus compound polymer, and method for producing alkenyl phosphorus compound copolymer
JPH055009A (en) Method for polymerizing vinyl monomer
BE1001232A3 (en) Branched and radial block copolymers, compositions containing them, their preparation and their use in bituminous compositions.
US4814473A (en) Process for producing 5-vinylbicyclo[2.2.1]heptyltrichlorosilane
JPS61123643A (en) Thermoplastic molding material
JPH06287256A (en) Production of block copolymer
JP4190367B2 (en) Process for producing B, B ', B "-trichloro-N, N', N" -trialkylborazine and hexaalkylborazine
JPH04124191A (en) Organosilicon compound
JP2621706B2 (en) Crosslinked polysilane and method for producing the same
JPS6151599B2 (en)