JP3743687B2 - Method for producing tetrakis (pentafluorophenyl) borate derivative using alkyl halide - Google Patents
Method for producing tetrakis (pentafluorophenyl) borate derivative using alkyl halide Download PDFInfo
- Publication number
- JP3743687B2 JP3743687B2 JP13447896A JP13447896A JP3743687B2 JP 3743687 B2 JP3743687 B2 JP 3743687B2 JP 13447896 A JP13447896 A JP 13447896A JP 13447896 A JP13447896 A JP 13447896A JP 3743687 B2 JP3743687 B2 JP 3743687B2
- Authority
- JP
- Japan
- Prior art keywords
- formula
- represented
- ether
- iodine
- bromine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【0001】
【産業上の利用分野】
本発明は、ペンタフルオロフェニルマグネシウム誘導体を用いたテトラキス(ペンタフルオロフェニル)ボレート誘導体(以下ホウ素誘導体と略す。)の製造法に関する。
本発明で得られるホウ素誘導体は、ポリエチレン、ポリプロピレン、ポリスチレン等のポリオレフィン製造時の触媒成分として有用な物質である。
【0002】
【従来の技術】
近年、遷移金属のシクロペンタジエニル錯体を用いたカミンスキー触媒によるポリオレフィン重合手法が開発されている。本重合系においてホウ素誘導体が触媒成分として有用であることが多数の文献、特許等により開示されている。
【0003】
ホウ素誘導体の製造法は、例えばジャーナル・オブ・オルガノメタリック・ケミストリー、第2巻、245頁、1964年(Journal of Oraganometallic Chemistry, 1964,2,245)、旭硝子工業技術奨励会研究報告、1983年、42巻、137頁等にペンタフルオロフェニルリチウムとトリス(ペンタフルオロフェニル)ボランとの反応により製造する方法が報告されている。また、例えば特許公開公報平6−247980等にペンタフルオロベンゼンから製造したグリニャール試薬を用いる方法等が開示されている。
【0004】
【発明が解決しようとする課題】
ペンタフルオロフェニルリチウムを用いる方法は、反応試剤としてのトリス(ペンタフルオロフェニル)ボランを別途調製した後、ペンタフルオロフェニルリチウムを反応する方法であり、且つ、用いるペンタフルオロフェニルリチウムは−20℃以上で容易に分解することが知られており必ずしも工業的製造法としては好ましくない。
【0005】
また、ペンタフルオロベンゼンから調製したグリニャール試薬を用いる方法は、出発物質のペンタフルオロベンゼンの反応性が劣るため、グリニャール試薬の調製時反応溶媒としてテトラハイドロフラン等の溶媒を用いなければならない。テトラハイドロフランは例えばボラン等のルイス酸に対する配位能が高く、目的とするボラン誘導体を経済的に製造する方法として必ずしも好ましくない。
【0006】
ハロゲン化ペンタフルオロベンゼンを出発物質とするグリニャール法による方法は上記のような欠点が少なく優れた方法であるが、時として該グリニャール試薬調製時該グリニャール試薬の着色が認められる。この着色は最終生成物であるボレート誘導体の色調を損ねることがしばしば認められる。例えばジメチルアニリニウム テトラキス(ペンタフルオロフェニル)ボレートは本来白色であるが、グリニャール試薬調製時に該溶液の着色が認められた場合には、灰色〜淡黒色を呈することが認められている。本発明はこの問題を解決する新規な製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
以下本発明を詳細に説明する。本発明者らは、グリニャール法により調製したホウ素誘導体が時として好ましくない色調を呈することを認めており、その対応策を種々検討していた。その際、偶然にもグリニャール試薬調製時にハロゲン化アルキルを触媒として調製したグリニャール試薬がペンタフルオロブロモベンゼン単独で調製したものと比較し、その反応溶液の着色が著しく改善されることを見いだした。本法により調製したボレート誘導体は、ペンタフルオロブロモベンゼン単独で調製したグリニャール試薬を出発としたもので認められた黒ずみ等の色調が認められないことを見出し本発明に至った。
【0008】
即ち、本発明は第1段階としてエーテル系溶媒中、一般式[1]
C6 F5 X [1]
(式中、Xは塩素、臭素或いはヨウ素を示す。)
で表されるハロゲン化ペンタフルオロベンゼンとマグネシウムから、一般式[2]
C6 F5 MgX [2]
(式中、Xは前記に同じ。)
で表されるペンタフルオロフェニルマグネシウム誘導体を調製し、次に第二段階として
一般式[3]
BX3 [3]
(式中、Xはフッ素、塩素、臭素或いはヨウ素を示す。)
で表されるホウ素化合物の60℃以上の沸点の溶媒溶液と該ペンタフルオロフェニルマグネシウム誘導体のエーテル系溶媒の溶液を混合した後、50℃〜溶媒沸点で加熱或いは還流した後、一般式[4]
A−Cl [4]
(式中、AはR1 R2 R3 NH或いはAr3 Cを表し、R1 、R2 、R3 は同一或いは互いに相異なってC1 〜C6 のアルキル基あるいは無置換或いは任意に置換して良いフェニル基を示し、Arは無置換或いは任意に置換して良いフェニル基を表す。)
で表されるアミンの塩酸塩或いは塩素化トリアリルメタンを添加し、一般式[5]
A[B(C6 F5 )4 ] [5]
(式中、Aは前記に同じ。)
で表されるボレート誘導体を効率よく製造できるする方法において、式[2]で表されるグリニャール試薬調製時に式[6]
R5 X [6]
(式中、R5 はC1 〜C6 の低級アルキル基を表し、Xは塩素、臭素或いはヨウ素を表す。)
で表されるハロゲン化アルキルを添加することを特徴とする白度が持続する式[5]で表されるボレートの製造方法に関する。
【0009】
式[2]で表されるグリニャール試薬と式[3]で表されるホウ素化合物の各溶液の混合法として、グリニャール試薬のエーテル溶液をホウ素化合物の溶液に添加する方法及びホウ素化合物の溶液をグリニャール試薬のエーテル溶液に添加する方法があるが、本発明においてはいづれの方法も用いることができる。
【0010】
第1段階に用いるエーテル系溶媒としてジエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、イソアミルエーテル等の鎖状エーテルを挙げることができる。好ましくは、ジエチルエーテル、イソプロピルエーテル、n−ブチルエーテルである。テトラヒドロフラン、ジオキサン等の環状エーテルも一般式[3]で表されるいわゆるグリニャール試薬調製に有用であることが知られているが、本発明の最終生成物であるボレート誘導体生成過程で生成するボラン誘導体との錯形成能力が高く必ずしも好ましい溶媒ではない。
【0011】
一般式[1]で表されるハロゲン化ペンタフルオロベンゼンとしては、塩化ペンタフルオロベンゼン、臭化ペンタフルオロベンゼン、ヨウ化ペンタフルオロベンゼンを挙げることができる。反応性の観点から臭化ペンタフルオロベンゼンが好ましい。反応は通常−10℃〜溶媒沸点下、好ましくは0〜10℃で行われ、必要であれば窒素、アルゴン等の不活性気体雰囲気下で実施することも可能である。第1段階の反応を行う際必要に応じてヨウ素等のグリニャール試薬調製のための活性化剤を用いることができる。
【0012】
第二段階は一般式[3]で表されるハロゲン化ホウ素化合物の60℃以上の沸点をもつ溶媒の溶液と第1段階で調製した一般式[2]で表されるペンタフルオロフェニルマグネシウム誘導体を−20〜50℃、好ましくは、0〜30℃で混合後、該溶液を50℃以上第二段階で用いる溶媒の沸点までの範囲で加熱し、その後、一般式[4]で表される塩化トリアリルメタン或いはアミン塩酸塩を添加し、目的とする一般式[5]のボレート誘導体を製造する。
【0013】
一般式[3]で表されるハロゲン化ホウ素化合物としては、三塩化ホウ素、三臭化ホウ素、三フッ化ホウ素・エーテル錯体等を挙げることができ、取り扱い安さ等の理由から三フッ化ホウ素・エーテル錯体を用いることが好ましい。
【0014】
一般式[3]で表されるハロゲン化ホウ素化合物を溶解させて用いる60℃以上の沸点をもつ溶媒としては、n−ヘキサン、ヘプタン、イソヘプタン、n−オクタン、イソオクタン等のC6 以上の直鎖或いは分岐の脂肪族炭化水素あるいはそれらの混合物、トルエン、キシレン等の適宜にC1 〜C6 のアルキル基が置換してよい芳香族炭化水素を挙げることができる。R4 OR4 (式中R4 はC3 〜C6 の直鎖或いは分岐したアルキル基を表す。)で表される鎖状エーテルのR4 としては、イソプロピル基、n−ブチル基、イソブチル基、n−ペンチル基、イソペンチル基、t−アミル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基等を挙げることができる。その具体例としては、ジイソプロピルエーテル、ジn−ブチルエーテル、ジイソブチルエーテル等を挙げることができる。
【0015】
ペンタフルオロフェニルマグネシウム誘導体はハロゲン化ホウ素の4倍モル当量であれば特に制限はないが、好ましくはハロゲン化ホウ素1モル当量に対し4.0〜5.0モル当量のペンタフルオロフェニルマグネシウム誘導体を用いるのが好ましい。60℃以上の沸点をもつ溶媒量は反応が行える量であれば特に制限はないが、ハロゲン化ホウ素化合物1重量部に対し1〜200部用いることができる。ペンタフルオロフェニルマグネシウム誘導体添加終了後の加熱処理時間に特に制限はないが1〜5時間が適当である。また、この際、ハロゲン化ホウ素として三フッ化ホウ素エーテル錯体を用いた場合或いは第1段階の反応溶媒としてジエチルエーテルを用いた場合には本加熱処理工程で反応系中に存在するジエチルエーテルを溜去させることが好ましい。
【0016】
一般式[4]で表されるアミン塩酸塩或いは塩化トリアリルメタンとしては例えば、塩化トリフェニルメタン、塩化トリ−p−トリルメタン等の塩化トリアリルメタン、トリエチルアミン、トリブチルアミン、ベンジルジメチルアミン、N,N−ジメチルアニリン、N,N−ジエチルアニリン等の塩酸塩を挙げることができる。好ましくは、塩化トリフェニルメタン、トリブチルアミン・塩酸塩、N,N−ジメチルアニリン・塩酸塩である。
【0017】
一般式[4]で表される化合物は、用いたハロゲン化ホウ素に対し1モル当量以上使用するのであれば特に制限はないが、経済的理由により好ましくは1.0〜1.2モル当量用いることが好ましい。また、式[4]で表される化合物は、そのまま用いることもできるが通常は、第二段階で用いた溶媒或いは水等に溶解させ添加する。特にアミンの塩酸塩を添加する場合は、水溶液で添加するのが好ましい。
【0018】
式[6]で表されるハロゲン化アルキルとして、ヨウ化メチル、臭化エチル、ヨウ化エチル、ヨウ化プロピル、臭化プロピル、ヨウ化ブチル、臭化ブチル、塩化ブチル等を挙げることができるが、好ましくはヨウ化メチル、臭化エチル、ヨウ化エチルである。ハロゲン化アルキル量はグリニャール試薬の原料ハロゲン化ペンタフルオロベンゼンの1〜20モル%、好ましくは、2〜15モル%である。
【0019】
上記方法により製造される一般式[5]で表されるボレート誘導体の具体的例として、
N,N−ジメチルアニリニウム テトラキス(ペンタフルオロフェニル)ボレート
N,N−ジエチルアニリニウム テトラキス(ペンタフルオロフェニル)ボレート
トリメチルアンモニウム テトラキス(ペンタフルオロフェニル)ボレート
トリエチルアンモニウム テトラキス(ペンタフルオロフェニル)ボレート
トリブチルアンモニウム テトラキス(ペンタフルオロフェニル)ボレート
トリチル テトラキス(ペンタフルオロフェニル)ボレート
等を挙げることができる。
【0020】
【実施例】
以下実施例により本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0021】
(実施例1)
200ml三口丸底フラスコにメカニカルスターラー、温度計及び滴下ロートを装着した装置を用いた。マグネシウム1.21g(48.8mmol)を入れた後、十分にフラスコ内を窒素置換した。ジエチルエーテル64mlを加え5℃に冷却し、臭化エチル300mg(2.7mmol、ペンタフルオロブロモベンゼンに対して5.4mol%)を加えた。室温下で1時間攪拌後、ペンタフルオロブロモベンゼン12.3g(50mmol)を室温下で滴下した。滴下終了後更に室温下で1時間攪拌を行った後、三フッ化ホウ素のエーテル錯体1.67g(11.7mmol)の58mlトルエン溶液を室温下で添加した。その後、滴下ロートを蒸留装置に組み替え加熱を行いエーテルを溜去した。加熱温度は反応液が85℃に達するまで行い、同温度に達した後更に2時間加熱攪拌を行った。その後、反応液を放冷し、反応液温度を室温とした後、同反応液にN,N−ジメチルアニリンの塩酸塩水溶液13ml(1.0M、13mmol)を加え、30分室温下で攪拌した。有機層を分離後、有機層を3度水洗した。有機層を無水硫酸マグネシウムで乾燥後、乾燥剤を濾別した有機層にヘキサン50mlを加え固体を析出させた。得られた懸濁溶液を0℃で2時間攪拌し、析出した固体を濾別した。濾別固体をヘキサンで洗浄後、減圧下150℃で15時間乾燥し、目的の白色固体N,N−ジメチルアニリニウム テトラキス(ペンタフルオロフェニル)ボレート8.15g(10.2mmol)を得た。収率は85%であった。
【0022】
(実施例2〜4)
臭化エチル量、加熱温度及び時間を変えた以外は実施例1とほぼ同様な方法により表1に示す結果を得た。
【0023】
【表1】
【0024】
(比較例)
臭化エチルを用いない以外は実施例1とほぼ同様な操作により5サンプルを調製した。収率は80〜90%であったが、3サンプルは灰色固体であった。
【0025】
【発明の効果】
本発明により、メタロセン触媒系で重要な助触媒であるボレート誘導体の着色を抑える方法を提供することができた。本発明によりポリオレフィン製造でしばしば問題となるポリマーの着色を回避できることが期待される。[0001]
[Industrial application fields]
The present invention relates to a method for producing a tetrakis (pentafluorophenyl) borate derivative (hereinafter abbreviated as a boron derivative) using a pentafluorophenylmagnesium derivative.
The boron derivative obtained in the present invention is a substance useful as a catalyst component in the production of polyolefins such as polyethylene, polypropylene, and polystyrene.
[0002]
[Prior art]
In recent years, a polyolefin polymerization method using a Kaminsky catalyst using a cyclopentadienyl complex of a transition metal has been developed. Numerous documents, patents, etc. disclose that boron derivatives are useful as catalyst components in this polymerization system.
[0003]
For example, Journal of Organometallic Chemistry, Vol. 2, page 245, 1964 (Journal of Oraganometallic Chemistry, 1964, 2,245), Asahi Glass Industrial Technology Encouragement Research Report, 1983, Volume 42. 137, etc., report a method for producing by reacting pentafluorophenyllithium with tris (pentafluorophenyl) borane. Further, for example, Patent Publication No. 6-247980 discloses a method using a Grignard reagent produced from pentafluorobenzene.
[0004]
[Problems to be solved by the invention]
The method using pentafluorophenyllithium is a method in which tris (pentafluorophenyl) borane as a reaction reagent is separately prepared and then reacted with pentafluorophenyllithium, and the pentafluorophenyllithium used is at −20 ° C. or higher. It is known to decompose easily and is not necessarily preferred as an industrial production method.
[0005]
Further, the method using a Grignard reagent prepared from pentafluorobenzene has poor reactivity of the starting material pentafluorobenzene, and therefore a solvent such as tetrahydrofuran must be used as a reaction solvent when preparing the Grignard reagent. Tetrahydrofuran has a high coordination ability with respect to a Lewis acid such as borane, for example, and is not necessarily preferable as a method for economically producing a desired borane derivative.
[0006]
The Grignard method using halogenated pentafluorobenzene as a starting material is an excellent method with few drawbacks as described above, but sometimes the Grignard reagent is colored during preparation of the Grignard reagent. It is often observed that this coloring impairs the color tone of the end product borate derivative. For example, dimethylanilinium tetrakis (pentafluorophenyl) borate is inherently white, but when the solution is colored during preparation of the Grignard reagent, it is recognized to be gray to light black. An object of the present invention is to provide a novel manufacturing method that solves this problem.
[0007]
[Means for Solving the Problems]
The present invention will be described in detail below. The present inventors have recognized that boron derivatives prepared by the Grignard method sometimes exhibit an undesirable color tone, and have studied various countermeasures. At that time, it was found that the color of the reaction solution was remarkably improved as compared with the case where the Grignard reagent prepared by using an alkyl halide as a catalyst at the time of preparation of the Grignard reagent was compared with that prepared with pentafluorobromobenzene alone. The borate derivative prepared by this method has found that the color tone such as darkening observed from a Grignard reagent prepared with pentafluorobromobenzene alone is not observed, and has led to the present invention.
[0008]
That is, in the present invention, the general formula [1]
C 6 F 5 X [1]
(In the formula, X represents chlorine, bromine or iodine.)
From the halogenated pentafluorobenzene and magnesium represented by the general formula [2]
C 6 F 5 MgX [2]
(Wherein X is the same as above)
Next, as a second step, a pentafluorophenylmagnesium derivative represented by the general formula [3] is prepared.
BX 3 [3]
(In the formula, X represents fluorine, chlorine, bromine or iodine.)
A solvent solution having a boiling point of 60 ° C. or higher and a solution of an ether solvent of the pentafluorophenyl magnesium derivative represented by general formula [4]
A-Cl [4]
(In the formula, A represents R 1 R 2 R 3 NH or Ar 3 C, and R 1 , R 2 and R 3 are the same or different from each other, and are C 1 to C 6 alkyl groups, or unsubstituted or optionally substituted. And Ar represents a phenyl group which may be unsubstituted or optionally substituted.)
Amine hydrochloride or chlorinated triallylmethane represented by the general formula [5]
A [B (C 6 F 5 ) 4 ] [5]
(In the formula, A is the same as above.)
In the method for efficiently producing the borate derivative represented by the formula: [6], the Grignard reagent represented by the formula [2] is prepared.
R 5 X [6]
(In the formula, R 5 represents a C 1 to C 6 lower alkyl group, and X represents chlorine, bromine or iodine.)
The production method of a borate represented by the formula [5], wherein whiteness persists, characterized by adding an alkyl halide represented by the formula:
[0009]
As a method of mixing each solution of the Grignard reagent represented by the formula [2] and the boron compound represented by the formula [3], a method of adding an ether solution of a Grignard reagent to a boron compound solution and a solution of the boron compound as a Grignard Although there is a method of adding to an ether solution of a reagent, any method can be used in the present invention.
[0010]
Examples of ether solvents used in the first stage include chain ethers such as diethyl ether, isopropyl ether, n-butyl ether, and isoamyl ether. Preferred are diethyl ether, isopropyl ether, and n-butyl ether. Cyclic ethers such as tetrahydrofuran and dioxane are also known to be useful for preparing so-called Grignard reagents represented by the general formula [3], but borane derivatives produced in the process of producing borate derivatives that are the final products of the present invention Is not necessarily a preferred solvent.
[0011]
Examples of the halogenated pentafluorobenzene represented by the general formula [1] include pentafluorobenzene chloride, pentafluorobenzene bromide, and pentafluorobenzene iodide. From the viewpoint of reactivity, pentafluorobenzene bromide is preferred. The reaction is usually carried out at −10 ° C. to the boiling point of the solvent, preferably 0 to 10 ° C. If necessary, it can also be carried out in an inert gas atmosphere such as nitrogen or argon. An activator for preparing a Grignard reagent such as iodine can be used as necessary when performing the reaction in the first stage.
[0012]
The second stage is a solution of a boron halide compound represented by the general formula [3] having a boiling point of 60 ° C. or higher and a pentafluorophenyl magnesium derivative represented by the general formula [2] prepared in the first stage. After mixing at −20 to 50 ° C., preferably 0 to 30 ° C., the solution is heated in the range of 50 ° C. to the boiling point of the solvent used in the second stage, and then the chloride represented by the general formula [4] Triallylmethane or amine hydrochloride is added to produce the desired borate derivative of general formula [5].
[0013]
Examples of the boron halide compound represented by the general formula [3] include boron trichloride, boron tribromide, boron trifluoride / ether complex, and the like. It is preferable to use an ether complex.
[0014]
The solvent having a boiling point of 60 ° C. or higher used by dissolving the boron halide compound represented by the general formula [3] is a straight chain of C 6 or higher such as n-hexane, heptane, isoheptane, n-octane and isooctane. or it can be exemplified aliphatic hydrocarbons or mixtures of their branched, toluene, the appropriate C 1 -C alkyl group substituted by may aromatic hydrocarbons 6 xylene. R 4 The OR 4 (wherein R 4 represents. A linear or branched alkyl group of C 3 -C 6) R 4 chain ether represented by, isopropyl group, n- butyl group, an isobutyl group N-pentyl group, isopentyl group, t-amyl group, neopentyl group, n-hexyl group, isohexyl group and the like. Specific examples thereof include diisopropyl ether, di n-butyl ether, diisobutyl ether and the like.
[0015]
The pentafluorophenyl magnesium derivative is not particularly limited as long as it is 4 times the molar equivalent of the boron halide, but preferably 4.0 to 5.0 molar equivalent of the pentafluorophenyl magnesium derivative is used per 1 molar equivalent of the boron halide. Is preferred. The amount of the solvent having a boiling point of 60 ° C. or higher is not particularly limited as long as it can be reacted, but 1 to 200 parts can be used per 1 part by weight of the boron halide compound. There is no particular limitation on the heat treatment time after completion of the addition of the pentafluorophenyl magnesium derivative, but 1 to 5 hours is appropriate. At this time, when boron trifluoride ether complex is used as the boron halide or diethyl ether is used as the reaction solvent in the first stage, diethyl ether present in the reaction system is stored in this heat treatment step. It is preferable to leave.
[0016]
Examples of the amine hydrochloride or triallylmethane represented by the general formula [4] include triallylmethane chloride such as triphenylmethane chloride and tri-p-tolylmethane chloride, triethylamine, tributylamine, benzyldimethylamine, N, Mention may be made of hydrochlorides such as N-dimethylaniline and N, N-diethylaniline. Preferred are triphenylmethane chloride, tributylamine / hydrochloride, and N, N-dimethylaniline / hydrochloride.
[0017]
The compound represented by the general formula [4] is not particularly limited as long as it is used in an amount of 1 molar equivalent or more based on the used boron halide, but preferably 1.0 to 1.2 molar equivalent is used for economic reasons. It is preferable. Further, the compound represented by the formula [4] can be used as it is, but it is usually added after being dissolved in the solvent used in the second step or water. In particular, when an amine hydrochloride is added, it is preferably added as an aqueous solution.
[0018]
Examples of the alkyl halide represented by the formula [6] include methyl iodide, ethyl bromide, ethyl iodide, propyl iodide, propyl bromide, butyl iodide, butyl bromide, butyl chloride and the like. Preferably, methyl iodide, ethyl bromide, and ethyl iodide are used. The amount of alkyl halide is 1 to 20 mol%, preferably 2 to 15 mol% of the starting halogenated pentafluorobenzene of the Grignard reagent.
[0019]
As a specific example of the borate derivative represented by the general formula [5] produced by the above method,
N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate N, N-diethylanilinium tetrakis (pentafluorophenyl) borate trimethylammonium tetrakis (pentafluorophenyl) borate triethylammonium tetrakis (pentafluorophenyl) borate tributylammonium tetrakis ( And pentakis (pentafluorophenyl) borate.
[0020]
【Example】
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.
[0021]
Example 1
A 200 ml three-necked round bottom flask equipped with a mechanical stirrer, thermometer and dropping funnel was used. After adding 1.21 g (48.8 mmol) of magnesium, the inside of the flask was sufficiently purged with nitrogen. After adding 64 ml of diethyl ether and cooling to 5 ° C., 300 mg of ethyl bromide (2.7 mmol, 5.4 mol% with respect to pentafluorobromobenzene) was added. After stirring for 1 hour at room temperature, 12.3 g (50 mmol) of pentafluorobromobenzene was added dropwise at room temperature. After completion of the dropwise addition, the mixture was further stirred at room temperature for 1 hour, and then a 58 ml toluene solution of 1.67 g (11.7 mmol) of boron trifluoride ether complex was added at room temperature. Thereafter, the dropping funnel was combined in a distillation apparatus and heated to distill off the ether. The heating was performed until the reaction solution reached 85 ° C., and after reaching the same temperature, the mixture was further heated and stirred for 2 hours. Thereafter, the reaction solution was allowed to cool and the reaction solution temperature was brought to room temperature. Then, 13 ml (1.0 M, 13 mmol) of an aqueous hydrochloride salt of N, N-dimethylaniline was added to the reaction solution, and the mixture was stirred for 30 minutes at room temperature. . After separating the organic layer, the organic layer was washed with water three times. After drying the organic layer over anhydrous magnesium sulfate, 50 ml of hexane was added to the organic layer from which the desiccant was filtered off to precipitate a solid. The obtained suspension solution was stirred at 0 ° C. for 2 hours, and the precipitated solid was separated by filtration. The solid separated by filtration was washed with hexane and then dried under reduced pressure at 150 ° C. for 15 hours to obtain 8.15 g (10.2 mmol) of the desired white solid N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate. The yield was 85%.
[0022]
(Examples 2 to 4)
The results shown in Table 1 were obtained in the same manner as in Example 1 except that the amount of ethyl bromide, the heating temperature and the time were changed.
[0023]
[Table 1]
[0024]
(Comparative example)
Five samples were prepared in substantially the same manner as in Example 1 except that ethyl bromide was not used. The yield was 80-90%, but the three samples were gray solids.
[0025]
【The invention's effect】
According to the present invention, it was possible to provide a method for suppressing the coloration of a borate derivative which is an important promoter in a metallocene catalyst system. The present invention is expected to avoid polymer coloring, which is often a problem in polyolefin production.
Claims (10)
C6F5X [1]
(式中、Xは塩素、臭素或いはヨウ素を示す。)
で表されるハロゲン化ペンタフルオロベンゼンとマグネシウムから、一般式[2]
C6F5MgX [2]
(式中、Xは塩素、臭素或いはヨウ素を示す。)
で表されるペンタフルオロフェニルマグネウム誘導体を調製し、次に一般式[3]
BX3 [3]
(式中、Xはフッ素、塩素、臭素或いはヨウ素を示す。)
で表されるホウ素化合物の60℃以上の沸点の溶媒溶液と該ペンタフルオロフェニルマグネシウム誘導体のエーテル系溶媒の溶液と混合した後、50℃〜溶媒沸点で加熱或いは還流した後、一般式[4]
A−Cl [4]
(式中、AはR1R2R3NH或いはAr3Cを表し、R1、R2、R3は同一或いは互いに相異なってC1〜C6のアルキル基或いは無置換或いは任意に置換して良いフェニル基を示し、Arは無置換或いは任意に置換して良いフェニル基を表す。)
で表されるアミンの塩酸塩或いは塩素化トリアリルメタンを添加し、一般式[5]
A[B(C6F5)4] [5]
(式中、AはR1R2R3NH或いはAr3Cを表し、R1、R2、R3は同一或いは互いに相異なってC1〜C6のアルキル基或いは無置換或いは任意に置換して良いフェニル基を示し、Arは無置換或いは任意に置換して良いフェニル基を表す。)
で表されるボレートの製造方法において式[2]で表されるグリニャール試薬調製時に式[6]
R5X [6]
(式中、R5はC1〜C6の低級アルキル基を表し、Xは塩素、臭素或いはヨウ素を表す。)で表されるハロゲン化アルキルを添加することを特徴とする前記式[5]で表される色調の良いボレートの製造方法。In the ether solvent, the general formula [1]
C 6 F 5 X [1]
(In the formula, X represents chlorine, bromine or iodine.)
From the halogenated pentafluorobenzene and magnesium represented by the general formula [2]
C 6 F 5 MgX [2]
(In the formula, X represents chlorine, bromine or iodine.)
Next, a pentafluorophenylmagnesium derivative represented by the general formula [3] is prepared.
BX 3 [3]
(In the formula, X represents fluorine, chlorine, bromine or iodine.)
After mixing with a solvent solution having a boiling point of 60 ° C. or higher and a solution of an ether solvent of the pentafluorophenyl magnesium derivative represented by general formula [4]
A-Cl [4]
(In the formula, A R 1 R 2 R 3 represents NH or Ar 3 C, R 1, R 2, R 3 are the same or different and each an alkyl group some have a C 1 -C 6 together unsubstituted or optionally Represents a phenyl group that may be substituted, and Ar represents an unsubstituted or optionally substituted phenyl group.)
Amine hydrochloride or chlorinated triallylmethane represented by the general formula [5]
A [B (C 6 F 5 ) 4 ] [5]
(In the formula, A R 1 R 2 R 3 represents NH or Ar 3 C, R 1, R 2, R 3 are the same or different and each an alkyl group some have a C 1 -C 6 together unsubstituted or optionally Represents a phenyl group that may be substituted, and Ar represents an unsubstituted or optionally substituted phenyl group.)
In the preparation of the Grignard reagent represented by the formula [2] in the method for producing a borate represented by the formula [6]
R 5 X [6]
(Wherein R 5 represents a lower alkyl group of C 1 to C 6 and X represents chlorine, bromine or iodine), and an alkyl halide represented by the above formula [5] is added. The manufacturing method of the borate with the good color tone represented by this.
BX3 [3]
(式中、Xはフッ素、塩素、臭素或いはヨウ素を示す。)
で表されるホウ素化合物が三塩化ホウ素、三臭化ホウ素、三フッ化ホウ素或いは三フッ化ホウ素エーテル錯体である請求項1〜3のいずれか1項記載の方法。General formula [3]
BX 3 [3]
(In the formula, X represents fluorine, chlorine, bromine or iodine.)
The method according to claim 1, wherein the boron compound represented by the formula is boron trichloride, boron tribromide, boron trifluoride or boron trifluoride ether complex.
BX3 [3]
(式中、Xはフッ素、塩素、臭素或いはヨウ素を示す。)
で表されるハロゲン化ホウ素1当量に対し、一般式[1]
C6F5X [1]
(式中、Xは塩素、臭素或いはヨウ素を示す。)
で表されるハロゲン化ペンタフルオロベンゼンを4当量以上用いる請求項1〜7のいずれか1項記載の方法。General formula [3]
BX 3 [3]
(In the formula, X represents fluorine, chlorine, bromine or iodine.)
Is represented by the general formula [1]
C 6 F 5 X [1]
(In the formula, X represents chlorine, bromine or iodine.)
The method according to any one of claims 1 to 7, wherein 4 equivalents or more of the halogenated pentafluorobenzene represented by formula (1) is used.
R5X [6]
(式中、R5はC1〜C6の低級アルキル基を表し、Xは塩素、臭素或いはヨウ素を示す。)
で表されるハロゲン化アルキルがヨウ化メチル、臭化エチル、ヨウ化エチルのいずれか1種または2種以上である請求項1〜8のいずれか1項記載の方法。Formula [6]
R 5 X [6]
(In the formula, R 5 represents a C 1 to C 6 lower alkyl group, and X represents chlorine, bromine or iodine.)
The method according to any one of claims 1 to 8, wherein the alkyl halide represented by the formula is any one or more of methyl iodide, ethyl bromide, and ethyl iodide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13447896A JP3743687B2 (en) | 1996-05-01 | 1996-05-01 | Method for producing tetrakis (pentafluorophenyl) borate derivative using alkyl halide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13447896A JP3743687B2 (en) | 1996-05-01 | 1996-05-01 | Method for producing tetrakis (pentafluorophenyl) borate derivative using alkyl halide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09295985A JPH09295985A (en) | 1997-11-18 |
JP3743687B2 true JP3743687B2 (en) | 2006-02-08 |
Family
ID=15129271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13447896A Expired - Fee Related JP3743687B2 (en) | 1996-05-01 | 1996-05-01 | Method for producing tetrakis (pentafluorophenyl) borate derivative using alkyl halide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3743687B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000001492A (en) * | 1998-06-12 | 2000-01-07 | Asahi Glass Co Ltd | Production of tris(pintafluorophenyl)borane |
IL132490A (en) | 1998-10-23 | 2004-09-27 | Nippon Catalytic Chem Ind | Method for manufacturing fluoroaryl magnesium halide |
US6169208B1 (en) | 1999-12-03 | 2001-01-02 | Albemarle Corporation | Process for producing a magnesium di[tetrakis(Faryl)borate] and products therefrom |
US6162950A (en) * | 1999-12-03 | 2000-12-19 | Albemarle Corporation | Preparation of alkali metal tetrakis(F aryl)borates |
DE19962910A1 (en) * | 1999-12-23 | 2001-07-05 | Targor Gmbh | Chemical compound, process for its preparation and its use in catalyst systems for the production of polyolefins |
JP5437671B2 (en) * | 2009-03-17 | 2014-03-12 | 株式会社日本触媒 | Method for producing Grignard reagent |
CN114621449B (en) * | 2022-04-19 | 2023-02-17 | 长春市兆兴新材料技术有限责任公司 | Fluorine-containing phenyl aluminum phosphonate polymer and preparation method thereof |
-
1996
- 1996-05-01 JP JP13447896A patent/JP3743687B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09295985A (en) | 1997-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3768735B1 (en) | Catalysts for olefin polymerization | |
KR100293042B1 (en) | Process for preparing crosslinked chiral metallocene catalysts of bisindenyl type | |
JP6420911B2 (en) | Hybrid supported catalyst and method for producing olefin polymer using the same | |
US6316562B1 (en) | Catalyst systems for (co-)polymerization reactions, metallocene amide halogenides, the production and use thereof | |
EP0763044B1 (en) | Novel synthesis of ansa-metallocene catalysts | |
US5312881A (en) | Method for catalytic polymerization of substituted acrylates | |
NO178891B (en) | metallocene | |
JP2000212194A (en) | Metallocene compound, catalyst for olefin polymerization and polymerization of olefin | |
US5495035A (en) | Synthesis of ANSA-metallocene catalysts | |
JP3743687B2 (en) | Method for producing tetrakis (pentafluorophenyl) borate derivative using alkyl halide | |
JPH09110886A (en) | Alkoxysilacycloalkane, its production, and its use in olefinpolymerization | |
FI112369B (en) | Catalyst and process for the polymerization of alpha-olefins | |
JP3320619B2 (en) | Novel metallocene compound and method of polymerizing olefin or diene using the same | |
US6774253B1 (en) | Process for the preparation of titanium complexes | |
JP4390770B2 (en) | Racemo-selective synthesis of rac-diorganosilylbis (2-methylbenzo [e] indenyl) zirconium compounds | |
US5817837A (en) | Tetrathiafulvalene derivative precursors, tetrathiafulvalene derivatives, and processes for producing them | |
CN1950384A (en) | Process for the racemoselective preparation of ansa-metallocenes | |
US6730801B2 (en) | Method for producing dinuclear transition metal complexes as olefin polymerization catalyst | |
JP4579155B2 (en) | Process for the preparation of partially hydrogenated racemic ansa-metallocene complexes | |
JP3856905B2 (en) | Method for producing trityltetrakis (pentafluorophenyl) borate | |
KR100449473B1 (en) | Process for preparing aromatic derivatives of titanocene | |
JPH07206871A (en) | Deprotonation of cyclopentadienyl derivative | |
JPH0764562B2 (en) | Method for removing contaminants from liquid phase of TiCl4, method for producing solid catalyst component for 1-alkene polymerization, and method for polymerizing 1-alkene | |
US6927262B2 (en) | Bridged biphospholes and metallocenes prepared therefrom | |
JPH04185642A (en) | Production of polysilane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050720 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051111 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091125 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101125 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101125 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111125 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131125 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |