JPS6231640B2 - - Google Patents

Info

Publication number
JPS6231640B2
JPS6231640B2 JP1524279A JP1524279A JPS6231640B2 JP S6231640 B2 JPS6231640 B2 JP S6231640B2 JP 1524279 A JP1524279 A JP 1524279A JP 1524279 A JP1524279 A JP 1524279A JP S6231640 B2 JPS6231640 B2 JP S6231640B2
Authority
JP
Japan
Prior art keywords
section
nitrification
denitrification
pump
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1524279A
Other languages
Japanese (ja)
Other versions
JPS55106598A (en
Inventor
Katsuyuki Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP1524279A priority Critical patent/JPS55106598A/en
Publication of JPS55106598A publication Critical patent/JPS55106598A/en
Publication of JPS6231640B2 publication Critical patent/JPS6231640B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、し尿、下水などの有機性廃水を脱窒
素工程と硝化工程を経た生物学的脱窒素処理によ
つて浄化する装置に関し、特に循環式生物学的脱
窒素装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for purifying organic wastewater such as human waste and sewage through biological denitrification treatment through a denitrification process and a nitrification process. This relates to improvements in equipment.

従来の硝化液循環式生物学的脱窒素プロセスの
主要部である脱窒素工程と硝化工程では第1図に
示したように、脱窒素槽1′から硝化槽2′へ脱窒
素液を連通配管3′で自然流過で流入させ、硝化
液を脱窒素槽1′へ循環ポンプ4で強制的に循環
させている。そして前記硝化槽2′内のエアレー
シヨンは、循環ポンプ4とは別個のブロワー4′
などによつて空気を液中に散気させることによつ
て行われる。
In the denitrification and nitrification processes, which are the main parts of the conventional biological denitrification process using nitrification fluid circulation, as shown in Figure 1, denitrification fluid is communicated through piping from denitrification tank 1' to nitrification tank 2'. 3', the nitrified liquid is forced to flow into the denitrification tank 1' by a circulation pump 4. The aeration inside the nitrification tank 2' is controlled by a blower 4' separate from the circulation pump 4.
This is done by diffusing air into the liquid using a method such as a method.

したがつて、従来プロセスでは、硝化液の循環
とエアレーシヨンを全く別個の機能として把握し
ており、循環ポンプをエアレーシヨンの目的にも
利用して省エネルギー化をはかろうとする概念は
存在していなかつた問題点がある。
Therefore, in the conventional process, circulation of nitrifying liquid and aeration were considered to be completely separate functions, and there was no concept of using the circulation pump for the purpose of aeration to save energy. There is a problem.

また、従来プロセスでは循環ポンプによる硝化
液の脱窒素槽への循環量を増大した場合、脱窒素
槽内を所望の嫌気性状態に維持できなくなり、脱
窒素処理効率が著しく低下してしまう問題点であ
つた。
In addition, in the conventional process, when the amount of nitrification solution circulated to the denitrification tank by the circulation pump is increased, the inside of the denitrification tank cannot be maintained in the desired anaerobic state, resulting in a significant drop in denitrification treatment efficiency. It was hot.

さらに、従来より脱窒素槽への硝化液循環量は
多ければ多いほど脱窒素率が向上することが、理
論的、実験的に確認されていたが、現実には、硝
化液循環ポンプの動力費および設備費からみて、
原水流量に対し、およそ6倍以上の循環比にする
ことは得策でないと認められ現実にそのように実
施されているので処理作業性を大幅に高めること
は不可能である。
Furthermore, it has been theoretically and experimentally confirmed that the greater the amount of nitrification fluid circulated into the denitrification tank, the higher the denitrification rate. In terms of and equipment costs,
It is recognized that it is not a good idea to set the circulation ratio to more than 6 times the raw water flow rate, and this is actually practiced, so it is impossible to significantly improve treatment efficiency.

本発明は、これら従来プロセスの問題点を適確
に除去し、省エネルギー化対策に有効な生物学的
脱窒素装置を提供することを目的としている。
The present invention aims to provide a biological denitrification device that appropriately eliminates the problems of these conventional processes and is effective as an energy saving measure.

本発明は、原水流入を受ける脱窒素部と処理水
流出部を有する硝化部とを連通状態に設けた生物
学的処理槽において、槽10内を水面上に配設し
た水平区画壁13と、上端が水面上に突出し下端
が槽底部と離隔した垂直区画壁12にて、該両区
画壁で形成され水面上が密閉状態となる脱窒素部
1と、水面上が開放状態となる硝化部2とに区画
形成すると共に、前記垂直区画壁12とほぼ平行
に、前記脱窒素部1側に上端が水面下で下端が槽
底部と接する隔壁11を配設して硝化部2と脱窒
素部1とを連通する連通流路3を形成し、脱窒素
部1および硝化部2を1台のポンプ4の吸込管か
ら分岐される分岐吸込管5,5′にそれぞれ接続
し、かつポンプ4の吐出管6を硝化部2に連通せ
しめ分岐吸込管5,5′、ポンプ4及び吐出管6
により循環流路を形成し、さらに該循環流路に酸
素含有ガス導入によるエアレーシヨン機構を備え
たことを特徴とする廃水の生物学的脱窒素装置で
ある。
The present invention provides a biological treatment tank in which a denitrification section receiving raw water inflow and a nitrification section having a treated water outflow section are provided in communication with each other, and a horizontal partition wall 13 in which the inside of the tank 10 is disposed above the water surface; A vertical partition wall 12 whose upper end protrudes above the water surface and whose lower end is separated from the bottom of the tank is used to form a denitrification section 1 which is formed by both partition walls and is in a sealed state above the water surface, and a nitrification section 2 which is open above the water surface. At the same time, a partition wall 11 is provided on the denitrification section 1 side, almost parallel to the vertical partition wall 12, and whose upper end is below the water surface and whose lower end is in contact with the bottom of the tank. The denitrification section 1 and the nitrification section 2 are connected to branch suction pipes 5 and 5' branched from the suction pipe of one pump 4, respectively, and the The pipe 6 is connected to the nitrification section 2, and branch suction pipes 5, 5', pump 4 and discharge pipe 6 are connected.
A biological denitrification device for wastewater is characterized in that a circulation channel is formed by the above, and the circulation channel is further equipped with an aeration mechanism by introducing an oxygen-containing gas.

本発明を実施例につき、第2図を参照しながら
説明すると、原水流入部8と処理水流出部9とを
備えた生物学的脱窒素処理装置において、槽10
内に垂直区画壁12及び水平区画壁13を設けて
脱窒素部1と硝化部2を区画形成すると共に垂直
区画壁12と隔壁11により連通流路3を形成
し、前記脱窒素部1内の脱窒素液および硝化部2
内の硝化液、即ち硝化部内液もしくは硝化部流出
液をポンプ4によつて吸引する分岐吸込管5,
5′を脱窒素部1と硝化部2とにそれぞれ連結
し、該ポンプ4の吐出管6を立ち上げ硝化部2の
液面上又は液面下に開口端を終わらせた循環流路
として備え、これらの吐出管6、吸込管5,
5′、あるいはポンプ4内のいずれか若しくはい
ずれにも、空気などの酸素含有ガス導入管7を連
結してある。
The present invention will be described with reference to FIG. 2 with reference to FIG.
A vertical partition wall 12 and a horizontal partition wall 13 are provided inside the denitrification section 1 to partition the denitrification section 1 and the nitrification section 2, and a communication flow path 3 is formed by the vertical partition wall 12 and the partition wall 11. Denitrification solution and nitrification section 2
a branch suction pipe 5 for sucking the nitrifying liquid inside, that is, the internal liquid of the nitrifying unit or the nitrifying unit effluent by the pump 4;
5' are respectively connected to the denitrification section 1 and the nitrification section 2, and the discharge pipe 6 of the pump 4 is provided as a circulating flow path with an opening end above or below the liquid surface of the nitrification section 2. , these discharge pipes 6, suction pipes 5,
An oxygen-containing gas introduction pipe 7 such as air is connected to either or both of the pump 5' and the inside of the pump 4.

また、吐出管6の吐出端は硝化部液面下に連設
してもよいが図のように、水面より高い位置から
ポンプ吐出水流の落下によるエアレーシヨンを併
用させるエアレーシヨン構成とするのが合理的で
ある。
Although the discharge end of the discharge pipe 6 may be connected below the liquid level of the nitrification unit, it is reasonable to use an aeration structure in which aeration is also performed by the drop of the pump discharge water flow from a position higher than the water surface, as shown in the figure. It is.

第3図の具体例ではポンプ4を硝化部2内に内
装したもので水中浸漬形態とし、吸込管5′およ
び/又は吐出管6の省略化乃至短縮化をはかるこ
とができるし、騒音防止タイプとなる利点があ
る。
In the specific example shown in FIG. 3, the pump 4 is installed inside the nitrification unit 2 and is immersed in water, so that the suction pipe 5' and/or the discharge pipe 6 can be omitted or shortened, and the pump 4 is of a noise-prevention type. There is an advantage that

なお、酸素含有ガスの供給には、エゼクターの
水流による吸引、ブロワーによる供給など任意の
手段を使用し得ることは言うまでもないが、いず
れにしてもポンプ4を液循環とエアレーシヨンの
両機能を遂行できるように構成した形態で用いら
れるようにしてある。
It goes without saying that the oxygen-containing gas can be supplied by any means such as suction by water flow from an ejector or supply by a blower, but in any case, the pump 4 can perform both liquid circulation and aeration functions. It is designed to be used in a form configured as follows.

しかして、原水流入部8から、し尿などのアン
モニア性−Nを含む有機性廃水が脱窒素部1内に
流入し、硝化部2で生成したNOx−Nが原水中
のBODを有機炭素源として、脱窒素菌によつて
N2ガスに還元されたのち、ポンプ4によつて強
制的に硝化部2に移送される。この硝化部2から
連通流路3を通つて脱窒素部1にリサイクルされ
てくる硝化液流量は、ポンプ4によつて強制的に
硝化部2に移送された脱窒素液の流量に等しい。
Organic wastewater containing ammonia-N such as human waste flows into the denitrification section 1 from the raw water inlet section 8, and NOx-N generated in the nitrification section 2 uses BOD in the raw water as an organic carbon source. , by denitrifying bacteria
After being reduced to N 2 gas, it is forcibly transferred to the nitrification section 2 by the pump 4 . The flow rate of the nitrification liquid recycled from the nitrification unit 2 to the denitrification unit 1 through the communication channel 3 is equal to the flow rate of the denitrification liquid forcibly transferred to the nitrification unit 2 by the pump 4.

次に前記硝化部2に強制的に移送された脱窒素
液中のNH4−Nは硝化菌および酸素によつてNO2
−N又はNO3−NなどのNOx−Nに酸化されたの
ち、前記の如く連通流路3を自然流過で脱窒素部
1にリサイクルされてゆく。
Next, NH 4 -N in the denitrifying solution forcibly transferred to the nitrification section 2 is converted into NO 2 by nitrifying bacteria and oxygen.
After being oxidized to NOx-N such as -N or NO3 -N, it is recycled to the denitrification section 1 by natural flow through the communication channel 3 as described above.

ここで前記ポンプ4は脱窒素液とともに硝化液
をも吸引する点が肝要である。もし、脱窒素液の
みを吸引するだけであると、硝化部から脱窒素部
への硝化液のリサイクル流量が過大になり脱窒素
部への溶存酸素持込量が過大になる結果、脱窒素
部が嫌気的雰囲気に維持できない場合が起る。
Here, it is important that the pump 4 sucks in the nitrifying solution as well as the denitrifying solution. If only the denitrification solution is sucked in, the flow rate of the nitrification solution from the nitrification section to the denitrification section will be excessive, resulting in an excessive amount of dissolved oxygen brought into the denitrification section. However, there are cases where it is not possible to maintain an anaerobic atmosphere.

従つて本発明は、この好ましくない現象を防止
するために硝化部2からもポンプ4によつて液を
吸引し、硝化部2内で液を自己循環させるととも
に脱窒素部1内の液もポンプ4によつて吸引させ
ているのである。
Therefore, in the present invention, in order to prevent this undesirable phenomenon, the liquid is sucked from the nitrification part 2 by the pump 4, and the liquid is self-circulated in the nitrification part 2, and the liquid in the denitrification part 1 is also pumped. 4 causes suction.

かくして前記硝化部内の充分なエアレーシヨン
作用と脱窒素部への硝化液の過大なリサイクルの
防止という両者の目的を効果的に達成できるので
ある。
In this way, it is possible to effectively achieve both the objectives of sufficient aeration within the nitrification section and prevention of excessive recycling of nitrification liquid to the denitrification section.

本発明は、従来プロセスのように硝化液の循環
とエアレーシヨンを全く別々な機能として把握し
ないで、循環用のポンプにエアレーシヨン機能を
付与せしめたので、循環ポンプの所要動力をエア
レーシヨン動力にも利用でき、この結果従来プロ
セスに必要な動力を半減することができると共に
従来法で必要とした空気ブロワーなどの循環ポン
プとは別個の曝気設備が不要となり、コンパクト
な設備で効率よく脱窒素硝化処理が可能となり、
しかも、エアレーシヨンに必要な動力のみで自
ら、硝化液の脱窒素部へのリサイクル量を従来プ
ロセスと同等以上にできるので、省エネルギー化
が適確に達成できることとなり、さらにポンプを
利用して硝化部のエアレーシヨンを行うので硝化
部へ必要な酸素を供給する動力のみで必然的に充
分な硝化液循環流量が得られ、従来プロセスと同
等のエネルギーを使用してもよい場合は、硝化液
のリサイクル量を従来プロセスの数10倍以上にす
ることが容易であるので、脱窒素効率が向上する
し、運転経費の増加を招かないし、循環比を圧倒
的に高く設定できるため脱窒素率が従来法に比べ
て大幅に向上でき、運転管理も容易で安定した処
理と作業性向上に寄与するところ大である。
In the present invention, the circulation of nitrifying liquid and aeration are not treated as separate functions as in conventional processes, but the aeration function is given to the circulation pump, so the power required for the circulation pump can also be used as the power for aeration. As a result, the power required for the conventional process can be halved, and separate aeration equipment such as an air blower or circulation pump required in the conventional method is no longer required, allowing efficient denitrification and nitrification processing with compact equipment. Then,
Furthermore, the amount of nitrification liquid recycled to the denitrification section can be increased by itself using only the power required for aeration, which is equal to or greater than the conventional process, making it possible to accurately achieve energy savings. Since aeration is performed, sufficient nitrification liquid circulation flow rate can be obtained only by the power supplying the necessary oxygen to the nitrification section, and if it is acceptable to use the same energy as the conventional process, the amount of nitrification liquid recycled can be reduced. Since it is easy to increase the denitrification efficiency to more than ten times that of the conventional process, the denitrification efficiency improves, there is no increase in operating costs, and the circulation ratio can be set to an overwhelmingly high level, so the denitrification rate is lower than that of the conventional method. It can be greatly improved compared to other systems, and operation management is easy, which greatly contributes to stable processing and improved workability.

また、本発明では単一槽に区画壁を設けて硝化
部と脱窒素部とを区画形成したものであるから構
造簡単であり、装置製作費の低減が可能である。
Further, in the present invention, a single tank is provided with a partition wall to partition a nitrification section and a denitrification section, so the structure is simple and the manufacturing cost of the device can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例のフローシート、第2図及び第
3図は本発明の各実施例のフローシートである。 1…脱窒素部、2…硝化部、3…連通流路、4
…ポンプ、5,5′…吸込管、6…吐出管、7…
酸素含有ガス導入管、8…原水流入部、9…処理
水流出部、10…槽、11…隔壁、12…垂直区
画壁、13…水平区画壁。
FIG. 1 is a flow sheet of a conventional example, and FIGS. 2 and 3 are flow sheets of each embodiment of the present invention. 1... Denitrification section, 2... Nitrification section, 3... Communication channel, 4
...pump, 5,5'...suction pipe, 6...discharge pipe, 7...
Oxygen-containing gas introduction pipe, 8...raw water inflow section, 9...treated water outflow section, 10...tank, 11...partition wall, 12...vertical partition wall, 13...horizontal partition wall.

Claims (1)

【特許請求の範囲】 1 槽内を水面上に配設した水平区画壁と、上端
が水面上に突出し下端が槽底部と離隔した垂直区
画壁にて、該両区画壁で形成され水面上が密閉状
態となる脱窒素部と、水面上が開放状態となる硝
化部とに区画形成すると共に、前記垂直区画壁と
ほぼ平行に、前記脱窒素部側に上端が水面下で下
端が槽底部と接する隔壁を配設して前記硝化部と
脱窒素部とを連通する連通流路を形成し、前記脱
窒素部および硝化部を1台のポンプの吸込管から
分岐される分岐吸込管にそれぞれ接続し、かつ該
ポンプ吐出管を前記硝化部に連通せしめ前記分岐
吸込管、ポンプ及び吐出管により循環流路を形成
し、さらに該循環流路に酸素含有ガス導入による
エアレーシヨン機構を備えたことを特徴とする廃
水の生物学的脱窒素装置。 2 前記ポンプが、硝化部内に開口連通状態下で
内装されているものである特許請求の範囲第1項
記載の生物学的脱窒素装置。
[Scope of Claims] 1. A horizontal partition wall disposed inside the tank above the water surface, and a vertical partition wall whose upper end projects above the water surface and whose lower end is separated from the bottom of the tank. A denitrification section is formed in a sealed state and a nitrification section is opened above the water surface, and a section is formed on the denitrification section side, almost parallel to the vertical partition wall, with an upper end below the water surface and a lower end at the bottom of the tank. A communication flow path is formed to communicate the nitrification section and the denitrification section by disposing a partition wall in contact with the nitrification section, and the denitrification section and the nitrification section are respectively connected to a branch suction pipe branched from a suction pipe of one pump. and the pump discharge pipe is connected to the nitrification section to form a circulation flow path by the branch suction pipe, the pump, and the discharge pipe, and the circulation flow path is further equipped with an aeration mechanism by introducing oxygen-containing gas. Biological denitrification equipment for wastewater. 2. The biological denitrification device according to claim 1, wherein the pump is installed inside the nitrification unit in an open communication state.
JP1524279A 1979-02-13 1979-02-13 Device for biologically denitrifying waste water Granted JPS55106598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1524279A JPS55106598A (en) 1979-02-13 1979-02-13 Device for biologically denitrifying waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1524279A JPS55106598A (en) 1979-02-13 1979-02-13 Device for biologically denitrifying waste water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13310085A Division JPS6118499A (en) 1985-06-20 1985-06-20 Biological denitrification apparatus of waste water

Publications (2)

Publication Number Publication Date
JPS55106598A JPS55106598A (en) 1980-08-15
JPS6231640B2 true JPS6231640B2 (en) 1987-07-09

Family

ID=11883384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1524279A Granted JPS55106598A (en) 1979-02-13 1979-02-13 Device for biologically denitrifying waste water

Country Status (1)

Country Link
JP (1) JPS55106598A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164699A (en) * 1985-01-14 1986-07-25 Ataka Kogyo Kk Apparatus for treating nitrogen-containing undiluted sewage
CN102701453A (en) * 2012-06-13 2012-10-03 上海交通大学 Flow making device for improving denitrification efficiency of treatment system for ecological pond with agricultural non-point source
JP2014128784A (en) * 2012-11-27 2014-07-10 Sekisui Chem Co Ltd Membrane separation activated sludge treatment apparatus
KR101414519B1 (en) * 2013-01-04 2014-07-16 한국원자력연구원 Apparatus for treatment of wastewater including pre-adjustment zone

Also Published As

Publication number Publication date
JPS55106598A (en) 1980-08-15

Similar Documents

Publication Publication Date Title
JPS5933439B2 (en) Microbiological wastewater treatment equipment for nitrogenous wastewater
CN106186313A (en) For improveing integrated sewage disposal pond and the sewage water treatment method of AO
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
CN108585199A (en) One kind is by introducing AMX(Anammox)Bacterium strengthens the integrated apparatus and method of A/O technique deep denitrifications
CN205328793U (en) Formula sewage treatment plant is used to MABR and MBR antithetical couplet
JPS6231640B2 (en)
JPH0813359B2 (en) Wastewater treatment equipment containing nitrogen
JPS631920B2 (en)
CN108862580B (en) Ecological treatment device and process for plugboard type domestic sewage purification tank
CN208038125U (en) The device of total nitrogen in a kind of removal sewage
JPS6231999B2 (en)
JP2504248B2 (en) Sewage treatment equipment
KR100348500B1 (en) Biological Nutrient Removal Technology for sewage and wastewater by deep pure oxygen Aeration
CN204803079U (en) Mixed type integration villages and small towns domestic sewage treatment equipment
JPS6125439B2 (en)
JPS6223498A (en) Method for biological treatment of organic waste water utilizing froth
CN214167476U (en) Wastewater treatment device integrating adjustment and A/O (anaerobic/anoxic/oxic) integration
CN212450836U (en) Backflow type contact oxidation sewage treatment equipment
JPS5833840Y2 (en) Wastewater denitrification tank
JP2006035094A (en) Method and apparatus for treating high concentration waste water
JPS6152759B2 (en)
JPS5916159Y2 (en) Biological nitrification and denitrification treatment equipment
JPH0118239Y2 (en)
JPS6150699A (en) Biological denitrification apparatus of waste water
JPH0415360Y2 (en)