JPS6231614B2 - - Google Patents

Info

Publication number
JPS6231614B2
JPS6231614B2 JP153383A JP153383A JPS6231614B2 JP S6231614 B2 JPS6231614 B2 JP S6231614B2 JP 153383 A JP153383 A JP 153383A JP 153383 A JP153383 A JP 153383A JP S6231614 B2 JPS6231614 B2 JP S6231614B2
Authority
JP
Japan
Prior art keywords
dust
soot
electrostatic precipitator
dust collection
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP153383A
Other languages
Japanese (ja)
Other versions
JPS59127658A (en
Inventor
Makoto Shimoda
Tsugita Yukitake
Kazuichi Saito
Shoichi Sawahata
Keizo Ootsuka
Juji Tsuda
Tadashi Oora
Hiroshi Yamada
Akio Akasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP153383A priority Critical patent/JPS59127658A/en
Publication of JPS59127658A publication Critical patent/JPS59127658A/en
Publication of JPS6231614B2 publication Critical patent/JPS6231614B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 本発明は電気集じん装置(以下、EPと称する
ことがある。)に係り、特にボイラ負荷の変動に
拘らず電気集じん装置の集じん性能を一定に維持
できる電気集じん装置の運転方法に関する。
Detailed Description of the Invention The present invention relates to an electrostatic precipitator (hereinafter sometimes referred to as EP), and in particular to an electrostatic precipitator that can maintain a constant dust collection performance regardless of fluctuations in boiler load. This article relates to a method of operating a dust collector.

従来の電気集じん装置の運転制御方法は「化学
装置」1980年8月号に述べられているように、火
花放電の発生回数を検出して、この発生回数を一
定に制御する方法がとられている。この方法では
火花放電が発生すると、荷電電圧は0近くまで低
下するが、その後火花放電の再点弧やアーク放電
等への移行を防ぐため1/2〜1サイクル荷電を休
止、再荷電時にも数10m secの間に荷電電圧を
上昇する。このため、火花放電の発生から次に荷
電電圧が発生しコロナ放電を開始して集じん作用
が行なわれるまでには約0.1sec程度の時間がかか
る。この時間は高い集じん性能を要求される電気
集じん装置にとつては大きい損失である。例え
ば、石炭火力発電所などに設置されている電気集
じん装置の規模を示す指数として用いられている
荷電時間は十数秒とられているが、火花放電がこ
の荷電時間のうちに5回生じたとすると、約
0.5sec程度の無荷電時間が生じ、この間は集じん
作用が行なわれないことになる。その結果、99%
以上の高い集じん性能を要求される電気集じん装
置では、必要な最小限の装置の大きさよりも約
2.5%大きな装置を必要とすることになる。
The conventional method of controlling the operation of electrostatic precipitators is to detect the number of spark discharges and control the number of occurrences to a constant level, as described in the August 1980 issue of Kagaku Equipment. ing. In this method, when a spark discharge occurs, the charging voltage drops to nearly 0, but after that, charging is stopped for 1/2 to 1 cycle to prevent the spark discharge from re-igniting or transitioning to arc discharge, etc., and even when recharging. The charging voltage is increased over several tens of msec. Therefore, it takes about 0.1 sec from the generation of spark discharge to the time when a charging voltage is generated, corona discharge is started, and dust collection is performed. This time is a large loss for electrostatic precipitators that require high dust collection performance. For example, the charging time used as an index to indicate the scale of electrostatic precipitators installed at coal-fired power plants is set at more than 10 seconds, but spark discharges occur five times during this charging time. Then, about
There is a non-charging time of about 0.5 seconds, during which time no dust collection is performed. As a result, 99%
For electrostatic precipitators that require high dust collection performance, the size of the
This would require 2.5% larger equipment.

また、最近の公開特許公報によると、電気集じ
ん装置の入口煙道内や出口煙道内のばいじん濃度
を検出して、電気集じん装置の運転制御、すなわ
ち、印加電圧や放電電流を制御しようとする傾向
がある。この方法の欠点は現在のところ、ON―
Lineで煙道中のばいじん濃度を検出する装置の
存在にかかつていることである。すなわち、現
在、ON―Lineで使用できるばいじん濃度検出装
置としては、光の透過度でばいじん濃度を検出す
る装置やばいじんに光をあて、その散乱光からば
いじんの粒子径、粒子濃度を検出して、ばいじん
濃度を算出する装置が有力であるが、前者の場合
にはばいじん濃度の微小な変化を検出することは
難しく、特に、電気集じん装置出口ばいじん濃度
のように数十mg/m3N程度のばいじん濃度の変化
を検出することは困難である。後者は集じん装置
入口煙道のようにばいじん濃度が十数g/m3N程
度と大きい場合には、検出上限である十mg/m3
程度まで約1000倍の希釈装置が必要となり、出口
煙道でも10倍程度の希釈装置が必要となるが、こ
の希釈装置の精度やセンサーの汚れなどのために
信頼性が低いという問題点がある。この他の測定
器はばいじん濃度の測定が間欠的であるため、電
気集じん装置の制御をON―Lineで行うには適さ
ない。
In addition, according to a recent patent publication, the dust concentration in the inlet flue and outlet flue of the electrostatic precipitator is detected to control the operation of the electrostatic precipitator, that is, to control the applied voltage and discharge current. Tend. The drawback of this method is that currently ON-
This depends on the existence of a device that detects the concentration of soot and dust in the flue. In other words, the current soot and dust concentration detection devices that can be used with ON-Line include devices that detect the concentration of soot and dust based on the transmittance of light, and devices that shine light on the soot and dust and detect the particle size and concentration of the soot and dust from the scattered light. However, in the former case, it is difficult to detect minute changes in the dust concentration, especially when the dust concentration at the outlet of an electrostatic precipitator is several tens of mg/m 3 N. It is difficult to detect changes in soot and dust concentration. The latter is the upper limit of detection in cases where the dust concentration is as high as 10 mg/m 3 N, such as in the flue at the entrance of a dust collector .
A dilution device of about 1000 times is required to reach the desired temperature, and a dilution device of about 10 times is required for the exit flue, but there are problems with the accuracy of this dilution device and low reliability due to dirt on the sensor. . Other measuring instruments measure dust concentration intermittently, so they are not suitable for ON-Line control of electrostatic precipitators.

本発明の目的はボイラ負荷の変動に伴うばいじ
ん性状の変化に対応して、電気集じん装置の制御
を行うための運転方法を提供することにある。
An object of the present invention is to provide an operating method for controlling an electrostatic precipitator in response to changes in soot and dust properties accompanying fluctuations in boiler load.

本発明は石炭ボイラから排出される排ガス中の
ばいじんを電気集じんする際に、前記排ガス中の
酸素濃度又は一酸化炭素濃度を検出し、この検出
結果によつて、電気集じん装置の印加電圧及び又
は放電電流を制御することを特徴とする。本発明
を想到するに至つた技術的背景の大略は次のとお
りである。
The present invention detects the oxygen concentration or carbon monoxide concentration in the exhaust gas when electrostatically precipitating the soot and dust in the exhaust gas discharged from a coal boiler, and uses the detection result to determine the voltage applied to the electrostatic precipitator. and/or controlling the discharge current. The technical background that led to the invention of the present invention is outlined below.

一酸化窒素対策として、燃料である石炭に対す
る酸素量を低く抑える傾向にあり、その結果、発
生するばいじんの性状が変化することが考えられ
た。そこで、排ガス中の酸素濃度及び一酸化炭素
濃度とばいじん濃度、ばいじん性状、特に粒径及
び未燃分との関係を測定した。その結果、第1図
のような関係を得た。(図中横軸は排ガス中の酸
素濃度及び一酸化炭素濃度を示し縦軸は、ばいじ
ん濃度を示している。)すなわち、ばいじん濃度
は酸素濃度の低下に伴い、また、一酸化炭素の増
加に伴い増加することは明らかである。このとき
のばいじんの性状を分析した結果を第2図に示
す。(図中横軸は粒子径、縦軸は未燃分を示して
いる。)第2図から酸素濃度が低くなるにつれ
て、発生するばいじんの粒子径が小さくなり、こ
の小さな粒子径ほど未燃分が多くなつていること
がわかる。このような微粒子が増加した場合の電
気集じん装置の影響には、次の3つのことが考え
られる。1つは微粒子が増加することにより、集
じん性能が低下すること、他の1つは微粒子が増
加することにより、単位処理量当りの放電電流が
減少し、その結果、ばいじんを帯電させる電荷量
が不足して、集じん性能が低下すること、最後の
1つは未燃分を多く含む微粒子ではばいじんの電
気抵抗率が低下し、集じん極に捕集されたばいじ
んが、電気抵抗率が低いために持つていた電荷を
すぐに放出するために再飛散して、集じん極から
再び排ガスに同伴され、集じん率が低下すること
である。
As a countermeasure against nitrogen monoxide, there is a tendency to keep the amount of oxygen in coal as a fuel low, and as a result, it was thought that the properties of the generated soot and dust would change. Therefore, we measured the relationship between the oxygen concentration and carbon monoxide concentration in the exhaust gas, the soot and dust concentration, and the soot and dust properties, especially particle size and unburned matter. As a result, the relationship shown in Figure 1 was obtained. (In the figure, the horizontal axis shows the oxygen concentration and carbon monoxide concentration in the exhaust gas, and the vertical axis shows the soot and dust concentration.) In other words, the soot and dust concentration increases as the oxygen concentration decreases, and as the carbon monoxide increases. It is clear that this will increase as a result. Figure 2 shows the results of analyzing the properties of the soot and dust at this time. (In the figure, the horizontal axis shows the particle size, and the vertical axis shows the unburned particles.) From Figure 2, as the oxygen concentration decreases, the particle size of the generated soot and dust becomes smaller, and the smaller the particle size, the more unburned particles. It can be seen that there are more and more The following three effects can be considered on the electrostatic precipitator when such fine particles increase. One is that the dust collection performance decreases due to an increase in the number of fine particles, and the other is that the discharge current per unit throughput decreases due to the increase in the number of fine particles, resulting in an increase in the amount of charge that charges the dust. The last reason is that the electrical resistivity of soot and dust decreases with fine particles containing a large amount of unburned matter, and the electrical resistivity of soot and dust collected on the dust collection electrode decreases. Because the dust is low, it immediately releases the electric charge it had and is re-splattered, being entrained in the exhaust gas from the dust collection electrode again, reducing the dust collection rate.

最初の項目は、電気集じん装置では1μm以下
のサブミクロン粒子の捕集性能が低いことは、現
在までの研究や経験によつて明らかである。次の
項目は一般に次式で示されることより明らかであ
る。
Regarding the first item, it is clear from research and experience to date that electrostatic precipitators have poor collection performance for submicron particles of 1 μm or less. The following items are generally clear from the following formula.

I:電流、E:電界強度 I=K/1+KS S:ばいじんの比表面積 K1,K2:係数 すなわち、同じばいじん濃度であつても、微粒
子が増加するほど放電電流は減少し、ばいじんの
帯電量が減少するために集じん性能は減少する。
この関係を第3図、第4図に示す。第3図は放電
電流の減少率(縦軸)とばいじん濃度(横軸)と
の関係を示したもので、微粒子が増加するほど、
放電電流が減少することを示している。第4図は
本発明者らが見い出した関係であり、同一の燃焼
条件のもとで発生した場合の電気集じん装置の集
じん性能を表わす粒子の見掛移動速度比と集じん
フアクタCFの関係を示す。縦軸の粒子の見掛け
移動速度比は実機EPのある条件での粒子の見掛
け移動速度ωを100とした場合の、他の条件の実
機EP又はモデルEPでの粒子の見掛け移動速度ω
の比を示したものであり、この速度比が大きいほ
ど集じん性能が向上することを示す。また、横軸
の集塵フアクタCFは集じん性能に影響を及ぼす
諸因子によつて算出される指数であり、図中に示
したCFの算出式において、各記号は次を意味す
る。
I: Current, E: Electric field strength I = K 1 E 2 /1 + K 2 S S: Specific surface area of soot and dust K 1 , K 2 : Coefficient In other words, even if the soot and dust concentration is the same, the discharge current decreases as the number of fine particles increases. However, the dust collection performance decreases because the amount of charge on the dust decreases.
This relationship is shown in FIGS. 3 and 4. Figure 3 shows the relationship between the rate of decrease in discharge current (vertical axis) and the dust concentration (horizontal axis).
This shows that the discharge current decreases. Figure 4 shows the relationship discovered by the present inventors, and shows the relationship between the apparent moving speed ratio of particles and the dust collection factor CF, which represents the dust collection performance of an electrostatic precipitator when generated under the same combustion conditions. Show relationships. The apparent moving speed ratio of particles on the vertical axis is the apparent moving speed ω of particles under a certain condition of the actual EP when the apparent moving speed ω of the particles is 100, and the apparent moving speed ω of the particles under other conditions of the actual EP or model EP.
The larger the speed ratio, the better the dust collection performance. Further, the dust collection factor CF on the horizontal axis is an index calculated from various factors that affect dust collection performance, and in the formula for calculating CF shown in the figure, each symbol means the following.

:ばいじんの平均粒子径(μm) E:EPの平均電界強度(KV/cm) i:EPの単位集塵面積当りの放電電流(mA/
m2) D:実機EPの集塵極間隔(cm) D0:モデルEPの集塵極間隔(cm) a,b:実験的に求められる定数(−) この第4図から集塵フアクタCFを大きくすれ
ば集じん性能が向上すること、集塵フアクタCF
を大きくするためには平均電界強度Eや放電電流
iを大きくすればよいことがわかる。
: Average particle diameter of soot and dust (μm) E: Average electric field strength of EP (KV/cm) i: Discharge current per unit dust collection area of EP (mA/cm)
m 2 ) D: Spacing between the dust collection poles of the actual EP (cm) D 0 : Spacing between the dust collection poles of the model EP (cm) a, b: Experimentally determined constants (-) From this figure 4, the dust collection factor CF The dust collection performance improves by increasing the dust collection factor CF.
It can be seen that in order to increase the average electric field strength E and the discharge current i, the average electric field strength E and the discharge current i can be increased.

また、同一印加電圧のもとでも放電電流が減少
したり、ばいじんの粒子径が小さくなると集じん
性能が低下することが理解できる。
Furthermore, it can be understood that even under the same applied voltage, the dust collection performance decreases as the discharge current decreases or the particle size of the dust decreases.

最後の項目は、未燃分が特に多く含まれる微粒
子、すなわち、気相析出のスートを多く含み、こ
のスートは主成分が炭素であるために、電気抵抗
率が低く、電気集じん装置のいわゆる再飛散を生
ずる電気抵抗率程度であるために再飛散を生じ、
集じん性能の低下を生じる。
The last item is fine particles that contain a particularly large amount of unburned matter, that is, a large amount of soot deposited in the gas phase.Since the main component of this soot is carbon, it has a low electrical resistivity and is used in electrostatic precipitators. Because the electrical resistivity is at a level that causes re-splatter, re-splatter occurs;
This will cause a decrease in dust collection performance.

本発明は上述のように、石炭ボイラの排ガス中
のばいじんの濃度や性状が、排ガス中の酸素濃度
や一酸化炭素濃度に密接な関係があるという知見
に基づき、酸素濃度や一酸化炭素濃度の検出結果
によつて、電気集じん装置の印加電圧及び又は放
電電流を制御し、集じん性能を一定に保つように
したものである。
As mentioned above, the present invention is based on the knowledge that the concentration and properties of soot and dust in the exhaust gas of a coal boiler are closely related to the oxygen concentration and carbon monoxide concentration in the exhaust gas. Based on the detection results, the applied voltage and/or discharge current of the electrostatic precipitator is controlled to keep the dust collection performance constant.

以下、本発明の一実施例を第5図、第6図を用
いて説明する。ボイラ1から出た排ガスは、排ガ
ス分析計2により、酸素濃度及び一酸化炭素濃度
を検出され、エアヒータ3を通つて電気集じん装
置4に導入され、電気集じん装置で、ばいじんを
除去された後煙突より排出される。この電気集じ
ん装置4には、高電圧電源5により高電圧が印加
されている。この高電圧電源5には、排ガス分析
計2からの出力によつて、高電圧電源の電圧、電
流を制御できるように比較制御器6が接続されて
いる。この比較制御器6には、ボイラ1の特性で
ある酸素濃度あるいは一酸化炭素濃度とばいじん
特性であるばいじん量及びばいじんの粒径変化を
示す第1図と第6図(横軸:粒子径、縦軸、累積
重量割合)の関係が入力されている。第6図は排
ガス中の酸素濃度が2%と5%のときのばいじん
の粒子径分布の傾向を例示したものである。すな
わち、縦軸の累積重量割合は横軸の粒子径以下の
粒子の累積重量を全体の重量で除した値を意味す
る。したがつて、本図の場合、酸素濃度2%の場
合には、5%の場合よりも微粒子が多いことがわ
かる。これらの量の変化に対応して、電気集じん
装置に印加する電圧及び電流を制御するようにな
つている。この制御の方法としては前掲第4図に
示した指数(集じんフアクタCF)が一定となる
ようにする。こうすることによつて、ばいじんの
量だけでなく、ばいじんの質の変化にも対応でき
るような電気集じん装置の制御が可能となる。
An embodiment of the present invention will be described below with reference to FIGS. 5 and 6. The exhaust gas emitted from the boiler 1 has its oxygen concentration and carbon monoxide concentration detected by an exhaust gas analyzer 2, and is introduced into an electrostatic precipitator 4 through an air heater 3, where soot and dust are removed. It is discharged from the rear chimney. A high voltage is applied to this electrostatic precipitator 4 by a high voltage power supply 5. A comparator controller 6 is connected to the high voltage power supply 5 so that the voltage and current of the high voltage power supply can be controlled based on the output from the exhaust gas analyzer 2. This comparison controller 6 has figures 1 and 6 (horizontal axis: particle diameter, vertical axis, cumulative weight percentage) is input. FIG. 6 illustrates the tendency of the particle size distribution of soot and dust when the oxygen concentration in the exhaust gas is 2% and 5%. That is, the cumulative weight percentage on the vertical axis means the value obtained by dividing the cumulative weight of particles with a particle size smaller than the horizontal axis by the total weight. Therefore, in the case of this figure, it can be seen that there are more fine particles when the oxygen concentration is 2% than when the oxygen concentration is 5%. The voltage and current applied to the electrostatic precipitator are controlled in response to changes in these quantities. The method of this control is to keep the index (dust collection factor CF) shown in FIG. 4 above constant. By doing so, it becomes possible to control the electrostatic precipitator in a manner that can respond not only to changes in the amount of soot and dust but also to changes in the quality of soot and dust.

前述の如く電気集じん装置の運転電圧は印加で
きる最高の電圧にとられているのが一般的であ
る。すなわち、火花放電直前の電圧が印加されて
いるために、電圧を変化することにより、電気入
力、すなわち、ばいじんの荷電量を変化させるこ
とは困難である。そこで本発明のような制御方法
を取り得る方法として以下に述べる方法がある。
一般に、電気集じん装置に印加する電圧波形は第
7図a(横軸:時間、縦軸:印加電圧)のような
波形であるのに対し、入力している電圧波形は第
7図b(横軸:時間、縦軸:1次電圧)のような
波形である。すなわち、第7図aは電気集じん装
置の静電容量のために波形が変化しているのであ
る。そこで、制御するための波形としては、第7
図bをもとに説明する。印加電圧を一定、すなわ
ち、実効電圧を一定にしておき、入力側の制御素
子の導通角を変化させることにより、電流を制御
し、ばいじんの変化に対応して、電気入力を一定
に保とうとするものである。例えば、通常の運転
の時には、導通角をAのように電流を抑えてお
き、ボイラの負荷が変化しばいじんの状態が変化
し、ばいじんを帯電させるための電荷が不足する
状態になつたときには、すなわち、電流が小さく
なつたときには導通角AをBの位置まで徐々に拡
げて、第4図に示した指数を一定に保つように制
御することにより電気集じん装置の集じん性能を
一定に保つことができる。この制御方法は、負荷
変動に伴うばいじんの物性の変化だけでなく、石
炭火力用電気集じん装置に生ずる経時変化、すな
わち、運転初期の集じん性能が運転時間の経過と
ともに低下する現象の場合にも適用可能である。
この場合は、この経時変化の理由としては、集じ
ん極に付着したばいじんが槌打によりはくりしな
いで残つているために生じるものであり、印加電
圧が一定のもとでも放電電流が減少し、第4図で
示した指数が減少し、集じん性能が低下するもの
であるために、本発明の制御方法は適用可能であ
る。
As mentioned above, the operating voltage of an electrostatic precipitator is generally set to the highest voltage that can be applied. That is, since the voltage immediately before spark discharge is applied, it is difficult to change the electrical input, that is, the amount of charge of the dust, by changing the voltage. Therefore, there is a method described below as a possible method of controlling the method according to the present invention.
Generally, the voltage waveform applied to an electrostatic precipitator is a waveform as shown in Figure 7a (horizontal axis: time, vertical axis: applied voltage), whereas the input voltage waveform is as shown in Figure 7b ( The horizontal axis: time, the vertical axis: primary voltage). That is, in FIG. 7a, the waveform changes due to the capacitance of the electrostatic precipitator. Therefore, the seventh waveform for control is
This will be explained based on Figure b. The applied voltage is kept constant, that is, the effective voltage is kept constant, and the current is controlled by changing the conduction angle of the control element on the input side, and the electrical input is kept constant in response to changes in dust. It is something. For example, during normal operation, the current is suppressed with the conduction angle set to A, but when the load on the boiler changes, the state of the dust changes, and there is not enough charge to charge the dust. In other words, when the current decreases, the conduction angle A is gradually expanded to the position B, and by controlling the index shown in Figure 4 to remain constant, the dust collection performance of the electrostatic precipitator is maintained constant. be able to. This control method is applicable not only to changes in the physical properties of soot and dust due to load fluctuations, but also to changes over time that occur in electrostatic precipitators for coal-fired power plants, in other words, the phenomenon in which the dust collection performance at the initial stage of operation deteriorates over time. is also applicable.
In this case, the reason for this change over time is that the dust adhering to the dust collection electrode remains without being peeled off by hammering, and the discharge current decreases even when the applied voltage is constant. , the index shown in FIG. 4 decreases, and the dust collection performance deteriorates, so the control method of the present invention is applicable.

また、第7図bに示した波形は全波整流の波形
であるが、石炭焚ボイラに使用される石炭によつ
ては、発生するばいじんの電気抵抗率が高くて、
高抵抗障害や逆電離現象があらわれることが考え
られるので、炭種の変更に対応させるためには、
第7図bの波形を半波整流も可能にしておくとよ
い。つまり、高抵抗障害や逆電離現象の場合には
一般的に異常電流が流れて、実際に集じん作用に
関与する電流以外の無効な電流が流れることにな
るため、これらの現象を抑えるためには、半波整
流にして、導通角Aを制御することにより、放電
現象を発生させない時間を設けることは有効であ
る。
Furthermore, the waveform shown in Figure 7b is a full-wave rectification waveform, but depending on the coal used in the coal-fired boiler, the electrical resistivity of the dust generated is high.
High resistance disturbances and reverse ionization phenomena may occur, so in order to respond to changes in coal type,
It is preferable to allow half-wave rectification of the waveform shown in FIG. 7b. In other words, in the case of a high resistance fault or reverse ionization phenomenon, an abnormal current generally flows, and an invalid current other than the current actually involved in dust collection flows, so in order to suppress these phenomena, It is effective to use half-wave rectification and control the conduction angle A to provide a time during which no discharge phenomenon occurs.

以上述べたように、本発明によれば、ばいじん
の量及び質の変化及び放電電流の変化に対応して
電気集じん装置の集じん性能を一定に保ち得ると
いう効果がある。
As described above, according to the present invention, there is an effect that the dust collection performance of the electrostatic precipitator can be kept constant in response to changes in the quantity and quality of soot and dust and changes in discharge current.

本発明によれば、ボイラの負荷変動や排ガス性
状の変化に対応して電気集じん装置の集じん性能
を一定に保持できるという効果がある。
According to the present invention, there is an effect that the dust collection performance of the electrostatic precipitator can be maintained constant in response to changes in the boiler load and exhaust gas properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸素濃度及び一酸化炭素濃度とばいじ
ん濃度の関係、第2図は粒子径と未燃分の関係、
第3図はダスト濃度と放電電流減少率との関係、
第4図は集じんフアクタCFと粒子の見掛け移動
速度比との関係、第5図は本発明の構成、第6図
は粒子径分布、第7図は本発明の制御原理を示す
図である。 1…ボイラ、2…排ガス分析計、3…エアヒー
タ、4…電気集じん装置、5…高電圧電源、6…
比較制御器。
Figure 1 shows the relationship between oxygen concentration, carbon monoxide concentration, and soot and dust concentration, Figure 2 shows the relationship between particle size and unburned content,
Figure 3 shows the relationship between dust concentration and discharge current reduction rate.
Figure 4 shows the relationship between the dust collection factor CF and the apparent moving speed ratio of particles, Figure 5 shows the configuration of the present invention, Figure 6 shows the particle size distribution, and Figure 7 shows the control principle of the present invention. . 1... Boiler, 2... Exhaust gas analyzer, 3... Air heater, 4... Electrostatic precipitator, 5... High voltage power supply, 6...
Comparison control.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭ボイラから排出される排ガス中のばいじ
んを電気集じん装置によつて捕集する際に前記排
ガス中の酸素濃度又は一酸化炭素濃度を検出し、
酸素濃度が低くなるかもしくは一酸化炭素濃度が
高くなるにつれて、前記電気集じん装置の印加電
圧及び又は放電電流が増大するように制御し、前
記酸素濃度が高くなるか、もしくは一酸化炭素濃
度が低くなるにつれて、前記電気集じん装置の印
加電圧及び又は放電電流が減少するように制御す
ることを特徴とする電気集じん装置の運転方法。
1. Detecting the oxygen concentration or carbon monoxide concentration in the exhaust gas when collecting soot and dust in the exhaust gas discharged from a coal boiler using an electrostatic precipitator,
As the oxygen concentration decreases or the carbon monoxide concentration increases, the applied voltage and/or discharge current of the electrostatic precipitator is controlled to increase, and the oxygen concentration increases or the carbon monoxide concentration increases. A method for operating an electrostatic precipitator, characterized in that the applied voltage and/or discharge current of the electrostatic precipitator is controlled to decrease as the voltage decreases.
JP153383A 1983-01-08 1983-01-08 Operation of electric dust collecting apparatus Granted JPS59127658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP153383A JPS59127658A (en) 1983-01-08 1983-01-08 Operation of electric dust collecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP153383A JPS59127658A (en) 1983-01-08 1983-01-08 Operation of electric dust collecting apparatus

Publications (2)

Publication Number Publication Date
JPS59127658A JPS59127658A (en) 1984-07-23
JPS6231614B2 true JPS6231614B2 (en) 1987-07-09

Family

ID=11504153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP153383A Granted JPS59127658A (en) 1983-01-08 1983-01-08 Operation of electric dust collecting apparatus

Country Status (1)

Country Link
JP (1) JPS59127658A (en)

Also Published As

Publication number Publication date
JPS59127658A (en) 1984-07-23

Similar Documents

Publication Publication Date Title
US5288309A (en) Flue gas conditioning agent demand control apparatus
US4987839A (en) Removal of particulate matter from combustion gas streams
McCain et al. Results of field measurements of industrial particulate sources and electrostatic precipitator performance
JP6093776B2 (en) Method and apparatus for cleaning an electrostatic precipitator
JP5538403B2 (en) Method and apparatus for controlling power supplied to electrostatic dust collector
US20100037767A1 (en) Method of estimating the dust load of an esp, and a method and a device of controlling the rapping of an esp
JPH039780B2 (en)
CN88100140A (en) The regulating system of SO 3 flue gas
WO1995033568A1 (en) Flue gas conditioning system for intermittently energized precipitation
US5477464A (en) Method for controlling the current pulse supply to an electrostatic precipitator
Wadenpohl et al. Electrostatic agglomeration and centrifugal separation of diesel soot particles
JPS6231614B2 (en)
EP0450357B1 (en) Control system for flue gas conditioning
JPS5936559A (en) Controlling method of electrostatic precipitator
Turner et al. Sizing and costing of electrostatic precipitators: Part I. Sizing considerations
Plaks Fabric filtration with integral particle charging and collection in a combined electric and flow field: Part I. Background, experimental work, analysis of data, and approach to the development of a mathematical engineering design model
JPS6094160A (en) Operation of electric dust collector
RU2045091C1 (en) Device controlling gas cleaning process in electric filter
Katz Factors affecting resistivity in electrostatic precipitation
JPH05200324A (en) Method for controlling charging of electric precipitator
JPS645943B2 (en)
JPS62132560A (en) Inversive ionization detector for electrostatic precipitator
CN117282542A (en) Dust removal system of coal unit and ash removal control method of coal unit
WO1988003837A1 (en) A method and an arrangement for enabling changes in the level of dust extraction in dust precipitators to be determined
JPH0724358A (en) Operation control of electric dust collector for main exhaust gas from sintering machine