JPH0724358A - Operation control of electric dust collector for main exhaust gas from sintering machine - Google Patents

Operation control of electric dust collector for main exhaust gas from sintering machine

Info

Publication number
JPH0724358A
JPH0724358A JP5195498A JP19549893A JPH0724358A JP H0724358 A JPH0724358 A JP H0724358A JP 5195498 A JP5195498 A JP 5195498A JP 19549893 A JP19549893 A JP 19549893A JP H0724358 A JPH0724358 A JP H0724358A
Authority
JP
Japan
Prior art keywords
voltage
dust
exhaust gas
peak voltage
dust collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5195498A
Other languages
Japanese (ja)
Inventor
Osamu Miyazaki
修 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5195498A priority Critical patent/JPH0724358A/en
Publication of JPH0724358A publication Critical patent/JPH0724358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To prevent dust collection efficiency from being lowered because of a reverse ionization phenomenon by statistically processing data on dust concentration after dust collection, and a correlation between peak voltage and bottom voltage between an electric discharge electrode and a dust collection electrode periodically, and control the operation by determining an electric charging cycle to the electric discharge electrode and an electric discharge voltage. CONSTITUTION:A main exhaust gas 5 from a sintering machine is purified by collecting dust from the gas using an electric dust collector 1, and the purified gas 6 is discharged. In this case, the dust concentration of the purified gas 6 is detected using a dust concentration detector, and this detection signal 9 is entered into a calculation controller 7. On the other hand, the voltage between an electric discharge electrode 1-1 and a dust collection electrode 1-2 is detected using a voltage detector 3, and this detection signal 8 is entered into the calculation controller 7. Further, data between the peak voltage of an electric charge voltage signal and the dust concentration of the electric dust collector 1 is analyzed regressively using the calculation controller 7, and thereby, a generating regressive coefficient and a correlation coefficient are determined. In addition, the same processing of the data between the peak voltage and the bottom voltage is also performed. Further it is determined whether a certain electric charge conditions control signal 10 for the electric dust collector 1 should be sent to a power pack 2, i.e., by referring to several cases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、焼結機主排ガスの集
塵に用いられている電気集塵機の運転制御方法に係り、
より詳しくは電気集塵機出口排ガス中の媒塵濃度を設定
範囲内に低減するための運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for an electric precipitator used for collecting the main exhaust gas of a sintering machine,
More specifically, it relates to an operating method for reducing the concentration of dust particles in the exhaust gas from the outlet of the electrostatic precipitator within a set range.

【0002】[0002]

【従来の技術】焼結機の集塵設備には、以前はサイクロ
ンが多用されていたが、公害規制の強化にともない、そ
のほとんどが乾式電気集塵機が使用されている。
2. Description of the Related Art Cyclones have been widely used in dust collectors of sintering machines, but most of them use dry electrostatic precipitators due to stricter pollution regulations.

【0003】電気集塵機の集塵効率ηは、ドイチェの式
からη=1ーe−wA/Qで表される。ただし、w はダスト
移動速度、A は電気集塵機の容量、Q は排ガス量であ
る。ここで、電気集塵機の容量A は固定のため、操業時
に集塵効率ηを変動させる項目は、ダスト移動速度w と
排ガス量Q である。なお、ダスト移動速度とは、コロナ
放電によってできた陰イオンがダストに帯電し正極であ
る集塵板にクーロン力によって吸引されるときの速度の
ことである。
The dust collection efficiency η of the electrostatic precipitator is represented by η = 1-e- wA / Q from the Deutsche equation. However, w is the dust moving speed, A is the capacity of the electrostatic precipitator, and Q is the amount of exhaust gas. Here, since the capacity A of the electrostatic precipitator is fixed, the items that change the dust collection efficiency η during operation are the dust moving speed w and the exhaust gas amount Q. The dust moving speed is the speed at which anions formed by corona discharge are charged to dust and are attracted to the dust collector plate, which is the positive electrode, by the Coulomb force.

【0004】従来、電気集塵機の制御方法としては、下
記に示す方法が知られている。 (1)槌打装置により集塵電極の槌打を間欠的に行って
集塵電極表面の堆積ダストを機械的に除去し、ダスト移
動速度W を上げる方法、(2)集塵板に付着堆積したダ
スト層の電気抵抗値ρdの値によって集塵効率ηが大き
く変化し、ρd=f(水分、温度)で表されるので、ガ
ス中の水分量と温度を実測して電気抵抗値ρdを算出
し、以下に示す4つの領域のうち、B、C、Dいずれか
の領域になるかを判断し制御する方法がある。 A領域(再飛散、η=0) B領域(正常、η良好)1×10≦ρd≦5×10
10(Ω・cm) C領域(火花頻発、η悪化)5×10≦ρd≦1×1
11(Ω・cm) D領域(逆電離、η悪化)1×1012≦ρd(Ω・c
m)
Conventionally, the following method has been known as a control method for an electrostatic precipitator. (1) A method of hammering the dust collecting electrode intermittently by a hammering device to mechanically remove the accumulated dust on the surface of the dust collecting electrode and increase the dust moving speed W, (2) Deposition on the dust collecting plate The dust collection efficiency η greatly changes depending on the electric resistance value ρd of the dust layer and is represented by ρd = f (water content, temperature). Therefore, the electric resistance value ρd is measured by actually measuring the water content and temperature in the gas. There is a method of calculating and controlling by determining which of the four areas shown below is the area of B, C, or D. Area A (re-scattering, η = 0) Area B (normal, good η) 1 × 10 4 ≦ ρd ≦ 5 × 10
10 (Ω · cm) C region (frequent sparks, η deterioration) 5 × 10 5 ≦ ρd ≦ 1 × 1
0 11 (Ω · cm) D region (reverse ionization, η deterioration) 1 × 10 12 ≦ ρd (Ω · c
m)

【0005】また、他の方法として、(3)前記4つの
各々の領域に最も適切な電気集塵機の荷電制御を選択適
用して集塵効率を高める方法が提案されている(特開昭
60−94160号公報等参照)。この方法は、ダスト
の見掛け上の固有抵抗値が温度および湿度によって大き
な影響を受けることに着目し、これをパラメーターとし
て測定することにより、ダストの見掛け上の固有抵抗値
を演算し、集塵電極において陽イオンを発生し集塵空間
に拡散するバックコロナの発生とその状態を自動的に判
定して荷電方式を選択する方式である。
As another method, (3) a method has been proposed in which the most appropriate charge control of an electrostatic precipitator is selectively applied to each of the above four areas to enhance the dust collecting efficiency (Japanese Patent Laid-Open No. 60-60). 94160, etc.). This method focuses on the fact that the apparent resistivity value of dust is greatly affected by temperature and humidity, and by measuring this as a parameter, the apparent resistivity value of dust is calculated to obtain the dust collection electrode. In this method, the charging method is selected by automatically determining the occurrence and state of back corona that generates cations and diffuses into the dust collecting space.

【0006】また、(4)電気集塵機の出口排ガス中の
媒塵濃度を検出し、その検出値が設定範囲を外れたとき
に間欠荷電を行う電気集塵機の荷電率を調整して電気集
塵機の出口排ガス中の媒塵濃度が設定範囲内になるよう
に制御する方法(特開昭59−36559号公報参
照)、(5)電気集塵機の火花発生電圧を検出し、その
値にある係数を乗じてピーク電圧を設定する制御方法
(特開昭61−249557号公報参照)、(6)高抵
抗ダストの集塵に際して、火花発生頻発状態に応じて間
欠荷電と連続荷電とを自動的に切替え、集塵効率の向上
をはかる運転方法(特開昭62−45361号公報参
照)等が提案されている。
(4) The outlet of the electrostatic precipitator, which detects the concentration of dust particles in the exhaust gas from the outlet of the electrostatic precipitator, and adjusts the charge rate of the electrostatic precipitator that performs intermittent charging when the detected value is out of the set range. A method for controlling the concentration of dust particles in the exhaust gas to be within a set range (see Japanese Patent Laid-Open No. 59-36559), (5) Detecting the spark generation voltage of the electrostatic precipitator, and multiplying the value by a coefficient. Control method for setting peak voltage (see Japanese Patent Laid-Open No. 61-249557), (6) When collecting high-resistance dust, automatic switching between intermittent charging and continuous charging is performed according to the frequent occurrence of sparks. An operation method (see Japanese Patent Laid-Open No. 62-45361) for improving dust efficiency has been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記した従来
の方法には、以下に示す欠点がある。すなわち、(1)
の槌打装置により集塵電極の槌打を間欠的に行って集塵
電極表面の堆積ダストを機械的に除去し、ダスト移動速
度W を上げる方法は、電気集塵機入側の変動に集塵効率
ηが支配され安定しないという欠点がある。また、
(2)(3)のガス中の水分量と温度を実測して電気抵
抗値ρdを算出し、電気集塵機荷電制御を行う方法は、
電気集塵機荷電制御を前記の各領域で一定となるよう制
御しているため領域内での細かい変動に対応できない
上、最終の出力である電気集塵機出口排ガス中のダスト
濃度を直接管理していないため集塵効率ηを的確に把握
できないという欠点がある。
However, the above-mentioned conventional methods have the following drawbacks. That is, (1)
The method of intermittently hammering the dust collecting electrode with the hammering device to mechanically remove the accumulated dust on the surface of the dust collecting electrode and increase the dust moving speed W is to improve the dust collecting efficiency due to fluctuations on the inlet side of the electrostatic precipitator. There is a drawback that η is controlled and is not stable. Also,
(2) The method of (3) measuring the amount of water in the gas and the temperature to calculate the electric resistance value ρd and performing the electric dust collector charging control is as follows.
Since the charge control of the electrostatic precipitator is controlled to be constant in each of the above-mentioned areas, it is not possible to cope with minute fluctuations within the area, and the final output dust concentration in the exhaust gas from the electrostatic precipitator is not directly controlled. There is a drawback that the dust collection efficiency η cannot be accurately grasped.

【0008】また、(4)の電気集塵機の出口媒塵濃度
に応じて荷電率を制御する方法は、荷電条件と媒塵、粉
塵等の発生源との相関性が判明しているものに限定され
るため、焼結機主排ガス用電気集塵機の集塵効率ηを高
めるための最適制御を十分に行うことができないという
欠点がある。
Further, the method (4) for controlling the charging rate according to the concentration of the dust particles at the outlet of the electrostatic precipitator is limited to the one in which the correlation between the charging conditions and the generation sources of dust particles, dust particles, etc. is known. Therefore, there is a drawback that the optimum control for increasing the dust collection efficiency η of the electrostatic precipitator for the main exhaust gas of the sintering machine cannot be sufficiently performed.

【0009】さらに、(5)(6)の制御方法は、電気
集塵機の放電極と集塵極間の荷電状況のみに基づいた制
御であるため、集塵効率の状況を適確に把握することが
できない上、(5)の制御方法は時々刻々変化する集塵
状況に対応することが不可能であり、(6)の制御方法
は切替タイマーの設定値をその都度調整する必要があ
り、また応答性も悪い等の理由により、いずれも前記
(4)と同様、集塵効率ηを高めるための最適制御を十
分に行うことができないという欠点がある。
Further, since the control methods (5) and (6) are control based on only the charging state between the discharge electrode and the dust collecting electrode of the electrostatic precipitator, the state of the dust collecting efficiency should be properly grasped. In addition, the control method of (5) cannot cope with the dust collection situation that changes from moment to moment, and the control method of (6) needs to adjust the set value of the switching timer each time. Due to poor responsiveness and the like, each of them has a drawback that the optimum control for increasing the dust collection efficiency η cannot be sufficiently performed as in the case of (4).

【0010】この発明は、上記した従来技術の欠点を解
消するためになされたもので、電気集塵機の除塵効率を
最大限に発揮し得る焼結機主排ガス用電気集塵機の運転
制御方法を提案しようとするものである。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and proposes an operation control method of an electric dust collector for a main exhaust gas of a sintering machine, which can maximize the dust removal efficiency of the electric dust collector. It is what

【0011】[0011]

【課題を解決するための手段】この発明は、逆電離現象
による集塵効率の低下を防止するために、印加電圧と印
加時間をコントロールし、常に電気集塵機の集塵効率η
を最大とし得る、すなわち電気集塵機出口排ガス中の媒
塵濃度を最小にし得る最適運転を可能とする制御方法で
あり、その要旨は、電気集塵機の放電極と集塵極間の荷
電電圧信号と、電気集塵機出口排ガス中ダスト濃度検出
信号を演算制御装置に取込み、電気集塵機荷電電圧のピ
ーク電圧と集塵機出口排ガス中ダスト濃度の相関係数と
母回帰係数、およびピーク電圧とボトム電圧の相関係数
を求め、下記ケース1の場合は荷電電圧を上げ、ケース
2の場合は荷電周期を短くし、ケース3の場合は荷電周
期を長くし、ケース4の場合は荷電電圧を下げるように
電気集塵機を運転制御し、前記荷電電圧と荷電周期の設
定値は、前記ピーク電圧と集塵機出口排ガス中ダスト濃
度の母回帰係数の大きさに基づいて決定することを特徴
とする焼結機主排ガス用電気集塵機の運転制御方法であ
る。 ケース1:ピーク電圧と集塵機出口排ガス中ダスト濃度
の相関係数が負で、ピーク電圧とボトム電圧の相関係数
が正。 ケース2:ピーク電圧と集塵機出口排ガス中ダスト濃度
の相関係数が負で、ピーク電圧とボトム電圧の相関係数
も負。 ケース3:ピーク電圧と集塵機出口排ガス中ダスト濃度
の相関係数が正で、ピーク電圧とボトム電圧の相関係数
も正。 ケース4:ピーク電圧と集塵機出口排ガス中ダスト濃度
の相関係数が正で、ピーク電圧とボトム電圧の相関係数
が負。
SUMMARY OF THE INVENTION The present invention controls the applied voltage and the application time to prevent the deterioration of the dust collection efficiency due to the reverse ionization phenomenon, so that the dust collection efficiency .eta.
Can be the maximum, that is, a control method that enables an optimal operation that can minimize the dust concentration in the exhaust gas of the electrostatic precipitator outlet, the gist of which is a charging voltage signal between the discharge electrode and the collecting electrode of the electrostatic precipitator, The signal for detecting the dust concentration in the exhaust gas at the outlet of the electric dust collector is taken into the arithmetic and control unit, and the correlation coefficient between the peak voltage of the charging voltage of the electric dust collector and the dust concentration in the exhaust gas at the outlet of the dust collector and the regression coefficient, and the correlation coefficient between the peak voltage and the bottom voltage are calculated. Then, in case 1 below, the charging voltage is increased, in case 2 the charging cycle is shortened, in case 3 the charging cycle is lengthened, in case 4 the electrostatic precipitator is operated to lower the charging voltage. The set value of the charging voltage and the charging period is controlled based on the peak voltage and the magnitude of the population regression coefficient of the dust concentration in the exhaust gas from the dust collector outlet exhaust gas. It is an operation control method of the scan for the electrostatic precipitator. Case 1: The correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector exit is negative, and the correlation coefficient between the peak voltage and the bottom voltage is positive. Case 2: The correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector exit is negative, and the correlation coefficient between the peak voltage and the bottom voltage is also negative. Case 3: The correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector outlet is positive, and the correlation coefficient between the peak voltage and the bottom voltage is also positive. Case 4: The correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector outlet is positive, and the correlation coefficient between the peak voltage and the bottom voltage is negative.

【0012】[0012]

【作用】電気集塵機の荷電の基本概念は、下記の通りで
ある。電気集塵機の荷電方法には、図7に示すごとく時
間と印加電圧の関係を示すごとく次の3種類がある。 (a) 連続荷電:一般的な方法で一定電圧を放電極、集電
極に印加する荷電方法。 (b) 間欠荷電:連続荷電では、集電極に高抵抗のダスト
(焼結排ガスは代表的)が堆積すると局部的なスパーク
が発生し、高電圧を印加できなくなる(印加電圧を決定
するのは極間の絶縁破壊が起きる時点での電圧であるた
め)。そこで、印加電圧を瞬間的にOFFするとこの現
象が若干防止できるため数秒間隔でONーOFFを繰返
す荷電を行う。これを間欠荷電方法という。 (c) パルス荷電:間欠荷電のONーOFF操作をスイッ
チング回路によりマイクロセカントのオーダーでONー
OFFする荷電方法。
The basic concept of charging the electrostatic precipitator is as follows. There are the following three types of charging methods for the electrostatic precipitator as shown in the relationship between time and applied voltage as shown in FIG. (a) Continuous charging: A charging method in which a constant voltage is applied to the discharge electrode and the collecting electrode by a general method. (b) Intermittent charging: In continuous charging, when high-resistance dust (typically sintering exhaust gas) accumulates on the collecting electrode, local sparks are generated and high voltage cannot be applied. Because it is the voltage at the time of dielectric breakdown between the electrodes). Therefore, if the applied voltage is momentarily turned off, this phenomenon can be prevented a little, so charging is repeated by turning on and off at intervals of several seconds. This is called an intermittent charging method. (c) Pulse charging: A charging method in which an ON / OFF operation of intermittent charging is turned ON / OFF in the order of microseconds by a switching circuit.

【0013】高抵抗ダストを集塵する電気集塵機では、
前記した通り集電極と放電極の間で局部的なスパークが
起り易くなり、集塵効率が低下する。これを逆電離現象
という。この逆電離現象が発生すると、電気集塵機の荷
電電圧を上げても集塵効率はアップせず、さらに荷電後
すぐにボトム電圧が下がることが実験的に判明してい
る。逆電離現象の防止策としては、印加電圧を下げる
か、印加時間を短くする方法が有効と考えられるが、常
に最適の印加を実施するためには逆電離現象の発生の有
無を適確に判断し、印加電圧と印加時間を適正にコント
ロールしなければならない。
In an electric dust collector that collects high-resistance dust,
As described above, a local spark is likely to occur between the collector electrode and the discharge electrode, and the dust collection efficiency is reduced. This is called the reverse ionization phenomenon. It has been experimentally proved that when this reverse ionization phenomenon occurs, the dust collection efficiency does not increase even if the charging voltage of the electrostatic precipitator is increased, and the bottom voltage decreases immediately after charging. As a measure to prevent the reverse ionization phenomenon, it is considered that the method of lowering the applied voltage or shortening the application time is effective, but in order to always carry out the optimum application, it is possible to accurately judge whether or not the reverse ionization phenomenon has occurred. However, the applied voltage and the applied time must be properly controlled.

【0014】この発明では、逆電離現象の発生の有無を
判断するための基本概念を図8(a)(b)に示す。図
8(a)は電気集塵機ピーク電圧と電気集塵機出側ダス
ト濃度の関係を、図(b)は電気集塵機ピーク電圧と電
気集塵機ボトム電圧の関係をそれぞれ示す。
In the present invention, the basic concept for determining whether or not the reverse ionization phenomenon has occurred is shown in FIGS. 8 (a) and 8 (b). 8A shows the relationship between the electric precipitator peak voltage and the electric dust collector output side dust concentration, and FIG. 8B shows the relationship between the electric precipitator peak voltage and the electric precipitator bottom voltage.

【0015】すなわち、図8(a)において、電気集塵
機ピーク電圧と電気集塵機出側ダスト濃度の相関係数
は、ピーク電圧が上昇するにつれて出側ダスト濃度が低
くなる場合は負、ピーク電圧が上昇するにつれて出側ダ
スト濃度が高くなる場合は正と判断し、図(b)におい
て、電気集塵機ピーク電圧と電気集塵機ボトム電圧の相
関係数は、ピーク電圧が上昇するにつれてボトム電圧が
低くなる場合は負、ピーク電圧が上昇するにつれてボト
ム電圧が高くなる場合は正と判断する。そして、ピーク
電圧と集塵機出口排ガス中ダスト濃度の相関係数と、ピ
ーク電圧とボトム電圧の相関係数がケース1の場合は、
荷電電圧をアップし、ケース2の場合は荷電周期を短く
し、ケース3の場合は荷電周期を長くし、ケース4の場
合は荷電電圧を下げる方向で制御することにより、逆電
離現象が防止され集塵効率の低下を抑制することができ
る。その際の設定値変更度合いは、ピーク電圧とダスト
濃度との母回帰係数(絶対値)の大きさにより決定す
る。すなわち、母回帰係数が大の時は変更幅も大とす
る。なお、以上の制御でケース4が多発する場合は荷電
状況異常と判断し、電気集塵機の保全作業を実施する。
That is, in FIG. 8A, the correlation coefficient between the peak voltage of the electrostatic precipitator and the dust concentration on the output side of the electrostatic precipitator is negative when the dust concentration on the outgoing side decreases as the peak voltage rises, and the peak voltage rises. If the discharge side dust concentration increases as the temperature rises, the correlation coefficient between the electrostatic precipitator peak voltage and the electrostatic precipitator bottom voltage is determined as shown in FIG. If the bottom voltage becomes negative and the peak voltage increases as the peak voltage increases, it is determined to be positive. When the correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector exit and the correlation coefficient between the peak voltage and the bottom voltage are Case 1,
The reverse ionization phenomenon is prevented by increasing the charging voltage, shortening the charging cycle in case 2, controlling the charging cycle in case 3 and decreasing the charging voltage in case 4. It is possible to suppress a decrease in dust collection efficiency. The degree of change in the set value at that time is determined by the magnitude of the population regression coefficient (absolute value) between the peak voltage and the dust concentration. That is, when the population regression coefficient is large, the change range is also large. If the case 4 frequently occurs under the above control, it is determined that the charging status is abnormal, and the maintenance work of the electrostatic precipitator is performed.

【0016】この発明は上記のごとく、電気集塵機の荷
電状況とダスト濃度から印加電圧と印加時間をコントロ
ールするので、逆電離現象を防止でき集塵効率の低下を
最小限に抑えることができる。また、従来の制御方法で
はフィードバック因子が実験的に求められた固定値であ
るのに対し、この発明では時々刻々と変化する状況をと
らえて電気集塵機運転条件にフィードバックするので電
気集塵機を的確に制御することができる。
As described above, according to the present invention, the applied voltage and the applied time are controlled based on the charged state of the electrostatic precipitator and the dust concentration, so that the reverse ionization phenomenon can be prevented and the deterioration of the dust collecting efficiency can be minimized. Further, in the conventional control method, the feedback factor is a fixed value that is experimentally obtained, whereas in the present invention, the situation that changes from moment to moment is captured and fed back to the electrostatic precipitator operating conditions, so the electrostatic precipitator is accurately controlled. can do.

【0017】[0017]

【実施例】図1はこの発明方法を実施するための装置構
成例を示すブロック図で、1は電気集塵機、1−1は放
電極、1−2は集塵極、2はパワーパック、3は電圧検
出器、4はダスト濃度検出器、5は焼結機主排ガス、6
は清浄化ガス、7は演算制御装置(コンピューター)、
8は電気集塵機荷電電圧信号、9はダスト濃度検出信
号、10は電気集塵機荷電条件制御信号をそれぞれ示
す。
1 is a block diagram showing an example of the construction of an apparatus for carrying out the method of the present invention, 1 is an electrostatic precipitator, 1-1 is a discharge electrode, 1-2 is a dust collecting electrode, 2 is a power pack, 3 Is a voltage detector, 4 is a dust concentration detector, 5 is a main exhaust gas of a sintering machine, 6
Is a cleaning gas, 7 is an arithmetic and control unit (computer),
Reference numeral 8 is an electrostatic precipitator charging voltage signal, 9 is a dust concentration detection signal, and 10 is an electrostatic precipitator charging condition control signal.

【0018】焼結機の主排ガス5は電気集塵機1に導入
されて集塵され、その清浄化ガス6として排出される
が、この時、電気集塵機出側に設けたダスト濃度検出器
4にて清浄化ガス6中のダスト濃度を検出し、そのダス
ト濃度検出信号9が演算制御装置7に入力される。また
同時に、放電極1−1と集塵極1−2間の電圧を検出す
る電圧検出器3から電気集塵機荷電電圧信号8が演算制
御装置7に入力される。
The main exhaust gas 5 of the sintering machine is introduced into the electrostatic precipitator 1 to collect dust and is discharged as a cleaning gas 6 thereof. At this time, the dust concentration detector 4 provided on the outlet side of the electrostatic precipitator. The dust concentration in the cleaning gas 6 is detected, and the dust concentration detection signal 9 is input to the arithmetic and control unit 7. At the same time, the electric dust collector charging voltage signal 8 is input to the arithmetic and control unit 7 from the voltage detector 3 which detects the voltage between the discharge electrode 1-1 and the dust collecting electrode 1-2.

【0019】演算制御装置7では、電気集塵機荷電電圧
信号8のうちピーク電圧とダスト濃度との間で回帰分析
を行い、母回帰係数と相関係数を求める。さらに、ピー
ク電圧とボトム電圧との間でも同様の処理を行う。そし
て、電気集塵機荷電条件制御信号10をパワーパック2
へ送信するための判定、すなわち前記ケース1〜4の判
定を行い、各ケースに応じた電気集塵機荷電条件制御信
号10をパワーパック2へ送信する。表1は相関係数に
よる判定表、表2は各ケースの電気集塵機荷電条件制御
信号の内容、表3は母回帰係数の大きさによる設定値変
更幅を示したものである。
The arithmetic and control unit 7 performs a regression analysis between the peak voltage and the dust concentration in the electrostatic precipitator charging voltage signal 8 to obtain a mother regression coefficient and a correlation coefficient. Further, similar processing is performed between the peak voltage and the bottom voltage. Then, the electric dust collector charging condition control signal 10 is sent to the power pack 2
To the power pack 2. The determination for transmitting to the power pack 2 is performed, that is, the determination of Cases 1 to 4 described above is performed. Table 1 shows the determination table by the correlation coefficient, Table 2 shows the contents of the electrostatic precipitator charging condition control signal in each case, and Table 3 shows the set value change range depending on the magnitude of the population regression coefficient.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】すなわち、演算制御装置7により、例えば
「ケース3」と判定された場合、荷電条件制御信号の内
容は「荷電周期を長くする」と決定し、その度合は母回
帰係数0.8より「8Hz 」と決定する。すなわち、逆
電離現象が発生したため荷電周期を8Hz 長くする制御
信号が電気集塵機1のパワーパック2へ送信される。そ
の結果、電気集塵機1の出口排ガス中ダスト濃度の低位
安定化がはかられる。
That is, when the arithmetic and control unit 7 determines, for example, "case 3", the content of the charge condition control signal is determined to "lengthen the charge cycle", and the degree is determined from the mother regression coefficient of 0.8. Determined as "8Hz". That is, since the reverse ionization phenomenon has occurred, a control signal for increasing the charging period by 8 Hz is transmitted to the power pack 2 of the electrostatic precipitator 1. As a result, the dust concentration in the exhaust gas at the outlet of the electrostatic precipitator 1 can be stabilized at a low level.

【0024】実施例1 表4に示す試験条件にて焼結機主排ガス用電気集塵機の
制御試験を実施した結果を図2〜6に示す。図2はピー
ク電圧とダスト濃度との相関係数と、ピーク電圧とボト
ム電圧との相関係数、図3は母回帰係数、図4は電気集
塵機荷電電圧、図5は電気集塵機荷電周期、図6は除塵
効率をそれぞれ示す。なお、従来法の荷電条件は、印加
電圧最大50kvとし(逆電離発生時は低下する)、パ
ルス荷電による15Hz一定荷電とした。
Example 1 FIGS. 2 to 6 show the results of the control test of the electrostatic precipitator for the main exhaust gas of the sintering machine under the test conditions shown in Table 4. 2 is a correlation coefficient between peak voltage and dust concentration, a correlation coefficient between peak voltage and bottom voltage, FIG. 3 is a mother regression coefficient, FIG. 4 is an electrostatic precipitator charging voltage, FIG. 5 is an electrostatic precipitator charging cycle, and FIG. 6 shows the dust removal efficiency, respectively. The charging conditions in the conventional method were set to a maximum applied voltage of 50 kv (decreased when reverse ionization occurs) and a constant charging of 15 Hz by pulse charging.

【0025】すなわち、本実施例では従来法による荷電
開始後3時間が経過した時点で本発明法を適用した。そ
の時の制御条件としての各種検出信号は30秒ピッチで
サンプリングし、2分間の平均値を適用した。また、回
帰分析にはデータ数として30個を用いた。したがっ
て、制御切替後1時間はデータ数確保のため制御は行わ
ず、1時間経過後最初の制御信号をパワーパックに送信
し制御した。続いて、10分ピッチで回帰分析を行い
(データ数は30個とするため最初の10分間のテータ
は削除する)、制御を実施した。
That is, in the present embodiment, the method of the present invention was applied when 3 hours had elapsed after the start of charging by the conventional method. Various detection signals as control conditions at that time were sampled at a pitch of 30 seconds, and an average value for 2 minutes was applied. In addition, 30 data were used for the regression analysis. Therefore, the control was not performed for securing the number of data for one hour after the control switching, and after the lapse of one hour, the first control signal was transmitted to the power pack for control. Subsequently, regression analysis was performed at a 10-minute pitch (the data number is 30 so that the data for the first 10 minutes is deleted), and control was performed.

【0026】図2〜6の結果より明らかなごとく、従来
法(一定荷電)に比較し、本発明法によれば電気集塵機
荷電電圧が上昇していることから、逆電離現象を抑制す
ることができ、その結果除塵効率を大幅に高めることが
できた(図6参照)。
As is clear from the results shown in FIGS. 2 to 6, according to the method of the present invention, the charging voltage of the electrostatic precipitator is higher than that of the conventional method (constant charging), so that the reverse ionization phenomenon can be suppressed. As a result, the dust removal efficiency could be significantly increased (see FIG. 6).

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】以上説明したごとく、この発明方法によ
れば、除塵後のダスト濃度と、放電極と集塵極間のピー
ク電圧およびボトム電圧との間の相関性を周期的に統計
処理し、その結果に基づいて放電極への荷電周期および
荷電電圧を決定して制御するので、特に焼結主排ガスの
ような高抵抗ダスト集塵時に発生し易くなる逆電離現象
を効果的に防止でき、電気集塵機荷電電圧を上昇できる
結果、電気集塵機の集塵効率を最大に保つことが可能と
なり、電気集塵機出口排出ガス中の媒塵濃度の大幅低減
がはかられるという大きな効果を奏するものである。
As described above, according to the method of the present invention, the correlation between the dust concentration after dust removal and the peak voltage and bottom voltage between the discharge electrode and the dust collecting electrode is statistically processed periodically. Since the charging period and the charging voltage to the discharge electrode are determined and controlled based on the result, it is possible to effectively prevent the reverse ionization phenomenon that tends to occur especially when collecting high-resistance dust such as sintering main exhaust gas. As a result of being able to increase the charging voltage of the electrostatic precipitator, it is possible to maintain the maximum dust collecting efficiency of the electrostatic precipitator, which has a great effect of significantly reducing the concentration of dust particles in the exhaust gas at the outlet of the electrostatic precipitator. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明方法を実施するための装置構成例を示
すブロック図である。
FIG. 1 is a block diagram showing an example of a device configuration for carrying out the method of the present invention.

【図2】この発明の実施例1におけるピーク電圧とダス
ト濃度との相関係数と、ピーク電圧とボトム電圧との相
関係数を示す図である。
FIG. 2 is a diagram showing a correlation coefficient between a peak voltage and a dust concentration and a correlation coefficient between a peak voltage and a bottom voltage in Example 1 of the present invention.

【図3】同上実施例における母回帰係数を示す図であ
る。
FIG. 3 is a diagram showing a population regression coefficient in the same example.

【図4】同上実施例における電気集塵機荷電電圧の推移
を示す図である。
FIG. 4 is a diagram showing a change in charging voltage of the electrostatic precipitator according to the embodiment.

【図5】同上実施例における電気集塵機パルス荷電周期
の推移を示す図である。
FIG. 5 is a diagram showing a transition of a pulse charging period of the electrostatic precipitator in the same example.

【図6】同上実施例における除塵効率を従来法と比較し
て示す図である。
FIG. 6 is a view showing the dust removal efficiency in the above-mentioned embodiment in comparison with the conventional method.

【図7】電気集塵機の荷電方法の種類を示す図である。FIG. 7 is a diagram showing types of charging methods for the electrostatic precipitator.

【図8】電気集塵機の逆電離現象発生の有無を判断する
ための基本概念図で、(a)は電気集塵機ピーク電圧と
集塵機出側ダスト濃度の関係を示す図、(b)は電気集
塵機ピーク電圧とボトム電圧の関係を示す図である。
FIG. 8 is a basic conceptual diagram for determining whether or not the reverse ionization phenomenon of the electrostatic precipitator occurs, (a) is a diagram showing a relationship between the electrostatic precipitator peak voltage and the dust concentration on the output side of the electrostatic precipitator, and (b) is a peak of the electrostatic precipitator. It is a figure which shows the relationship between a voltage and a bottom voltage.

【符号の説明】[Explanation of symbols]

1 電気集塵機 1−1 放電極 1−2 集塵極 2 パワーパック 3 電圧検出器 4 ダスト濃度検出器 5 焼結機主排ガス 6 清浄化ガス 7 演算制御装置(コンピューター) 8 電気集塵機荷電電圧信号 9 ダスト濃度検出信号 10 電気集塵機荷電条件制御信号 1 Electrostatic Precipitator 1-1 Discharge Electrode 1-2 Dust Collection Electrode 2 Power Pack 3 Voltage Detector 4 Dust Concentration Detector 5 Sinter Machine Main Exhaust Gas 6 Purifying Gas 7 Operation Control Device (Computer) 8 Electrostatic Precipitator Charge Voltage Signal 9 Dust concentration detection signal 10 Electric dust collector charging condition control signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電気集塵機の放電極と集塵極間の荷電電
圧信号と、電気集塵機出口排ガス中ダスト濃度検出信号
を演算制御装置に取込み、電気集塵機荷電圧のピーク電
圧と集塵機出口排ガス中ダスト濃度の相関係数と母回帰
係数、およびピーク電圧とボトム電圧の相関係数を求
め、下記ケース1の場合は荷電電圧を上げ、ケース2の
場合は荷電周期を短くし、ケース3の場合は荷電周期を
長くし、ケース4の場合は荷電電圧を下げるように電気
集塵機を運転制御し、前記荷電電圧と荷電周期の設定値
は、前記ピーク電圧と集塵機出口排ガス中ダスト濃度の
母回帰係数の大きさに基づいて決定することを特徴とす
る焼結機主排ガス用電気集塵機の運転制御方法。 ケース1:ピーク電圧と集塵機出口排ガス中ダスト濃度
の相関係数が負で、ピーク電圧とボトム電圧の相関係数
が正。 ケース2:ピーク電圧と集塵機出口排ガス中ダスト濃度
の相関係数が負で、ピーク電圧とボトム電圧の相関係数
も負。 ケース3:ピーク電圧と集塵機出口排ガス中ダスト濃度
の相関係数が正で、ピーク電圧とボトム電圧の相関係数
も正。 ケース4:ピーク電圧と集塵機出口排ガス中ダスト濃度
の相関係数が正で、ピーク電圧とボトム電圧の相関係数
が負。
1. A peak voltage of the loading voltage of the electric dust collector and the dust in the exhaust gas of the dust collector exit are taken in by a charge control voltage signal between the discharge electrode and the dust collecting electrode of the dust collector and the dust concentration detection signal of the exhaust gas at the dust exit of the dust collector. The concentration correlation coefficient and population regression coefficient, and the peak voltage and bottom voltage correlation coefficients are obtained. In case 1 below, the charging voltage is increased, in case 2 the charging cycle is shortened, and in case 3 In case 4, the electrostatic precipitator is operated and controlled so that the charging cycle is lengthened and the charging voltage is lowered, and the set values of the charging voltage and the charging cycle are the population regression coefficient of the peak voltage and the dust concentration in the exhaust gas from the dust collector outlet. A method for controlling the operation of an electrostatic precipitator for a main exhaust gas of a sintering machine, which is characterized in that it is determined based on the size. Case 1: The correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector exit is negative, and the correlation coefficient between the peak voltage and the bottom voltage is positive. Case 2: The correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector exit is negative, and the correlation coefficient between the peak voltage and the bottom voltage is also negative. Case 3: The correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector outlet is positive, and the correlation coefficient between the peak voltage and the bottom voltage is also positive. Case 4: The correlation coefficient between the peak voltage and the dust concentration in the exhaust gas from the dust collector outlet is positive, and the correlation coefficient between the peak voltage and the bottom voltage is negative.
JP5195498A 1993-07-13 1993-07-13 Operation control of electric dust collector for main exhaust gas from sintering machine Pending JPH0724358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5195498A JPH0724358A (en) 1993-07-13 1993-07-13 Operation control of electric dust collector for main exhaust gas from sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5195498A JPH0724358A (en) 1993-07-13 1993-07-13 Operation control of electric dust collector for main exhaust gas from sintering machine

Publications (1)

Publication Number Publication Date
JPH0724358A true JPH0724358A (en) 1995-01-27

Family

ID=16342091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5195498A Pending JPH0724358A (en) 1993-07-13 1993-07-13 Operation control of electric dust collector for main exhaust gas from sintering machine

Country Status (1)

Country Link
JP (1) JPH0724358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691561A (en) * 2013-12-26 2014-04-02 中冶长天国际工程有限责任公司 Ash-discharging control method and system for multi-electric field dust remover of sintering machine
JP2015047528A (en) * 2013-08-30 2015-03-16 住友金属鉱山エンジニアリング株式会社 Power controller for electric dust collector and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015047528A (en) * 2013-08-30 2015-03-16 住友金属鉱山エンジニアリング株式会社 Power controller for electric dust collector and method
CN103691561A (en) * 2013-12-26 2014-04-02 中冶长天国际工程有限责任公司 Ash-discharging control method and system for multi-electric field dust remover of sintering machine

Similar Documents

Publication Publication Date Title
US9630186B2 (en) Method and a device for cleaning an electrostatic precipitator
KR101203933B1 (en) A method of estimating the dust load of an esp, and a method and a device of controlling the rapping of an esp
US8268040B2 (en) Method of controlling the order of rapping the collecting electrode plates of an ESP
WO2019159601A1 (en) Plant equipment monitoring control system and plant equipment monitoring control method
US3469371A (en) Apparatus for controlling the removal of particle accumulations from the electrodes of an electric precipitator
JPH0724358A (en) Operation control of electric dust collector for main exhaust gas from sintering machine
JPS5936559A (en) Controlling method of electrostatic precipitator
JP2679558B2 (en) Operating method of electric dust collector for main exhaust gas of sintering machine
JP3484687B2 (en) Control method of moving electrode type electrostatic precipitator
JP2000024547A (en) Apparatus for cleaning charged particle generation part in air cleaner
JP3629968B2 (en) Air purifier control device
JPH05200324A (en) Method for controlling charging of electric precipitator
JPH0253107B2 (en)
JPH08108094A (en) Method for detecting time to clean electrostatic precipitator and device therefor
AU644310B2 (en) Method for dry electrostatic cleaning of dust and pollutant containing exhaust gases
JPS6097060A (en) Control of electric dust collector
WO1997041958A1 (en) Method for controlling an electrostatic precipitator
JPS6025560A (en) Control apparatus of electric dust collecting apparatus
JPH05104027A (en) Operation of electric precipitator
RU2168368C1 (en) Method for automatic determination, selection and control of mode of electric power supply of filter
JP2687268B2 (en) Dry type electrostatic precipitator
JPH0153106B2 (en)
JP2514411B2 (en) How to clean the electricity collecting device
JP3039758B2 (en) Pulse charged electric precipitator
JPH05212311A (en) Operation of electric precipitator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050304

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20061024

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Effective date: 20070920

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120928

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120928

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130928