JPS6231243B2 - - Google Patents

Info

Publication number
JPS6231243B2
JPS6231243B2 JP2863280A JP2863280A JPS6231243B2 JP S6231243 B2 JPS6231243 B2 JP S6231243B2 JP 2863280 A JP2863280 A JP 2863280A JP 2863280 A JP2863280 A JP 2863280A JP S6231243 B2 JPS6231243 B2 JP S6231243B2
Authority
JP
Japan
Prior art keywords
drain
feed water
condenser
water heater
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2863280A
Other languages
Japanese (ja)
Other versions
JPS56124808A (en
Inventor
Takemi Sasamuro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2863280A priority Critical patent/JPS56124808A/en
Publication of JPS56124808A publication Critical patent/JPS56124808A/en
Publication of JPS6231243B2 publication Critical patent/JPS6231243B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明は、給水加熱器のドレン制御装置に係
り、特に抽気逆止弁を有しない給水加熱器のドレ
ンのタービンへの逆流を防止するようにした給水
加熱器ドレン制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drain control device for a feedwater heater, and particularly to a drain control device for a feedwater heater that prevents drain from flowing back into a turbine in a feedwater heater that does not have a bleed check valve. Regarding equipment.

一般に、火力、原子力発電プラントの給水加熱
器ドレン系統は第1図のように構成されている。
すなわち、タービン1からの排気は復水器2で間
接冷却され復水せしめられ、その復水3は復水ポ
ンプ4で抽出昇圧された後給水加熱器5,6,7
によつて加熱され、蒸気発生装置(図示せず)へ
給水される。
Generally, the feed water heater drain system of a thermal or nuclear power plant is constructed as shown in FIG.
That is, the exhaust gas from the turbine 1 is indirectly cooled and condensed in a condenser 2, and the condensate 3 is extracted and pressurized by a condensate pump 4, and then sent to feed water heaters 5, 6, 7.
The water is heated by a steam generator and supplied to a steam generator (not shown).

上記給水加熱器5においてはタービン1の途中
段落から抽出した加熱蒸気ラインすなわち抽気系
統8からの抽気によつて給水の加熱が行なわれ、
また給水加熱器6,7もそれぞれ抽気系統9,1
0からの抽気によつてその給水の加熱が行なわれ
る。一方、給水加熱器7において復水を加熱し凝
縮したドレンはドレン配管11を通り調節弁12
で制御され低圧側の給水加熱器6に供給され、さ
らに上記給水加熱器6で凝縮したドレンはドレン
配管13を経、調節弁14で制御されて最低圧側
の給水加熱器5へと供給される。そして、上記給
水加熱器5で凝縮したドレンおよび他の給水加熱
器から集められたドレンは、ドレン配管15およ
び調節弁16を経て復水器2へ回収される。
In the feed water heater 5, the feed water is heated by the air extracted from the heating steam line extracted from the middle stage of the turbine 1, that is, from the air extraction system 8.
In addition, the feed water heaters 6 and 7 are also connected to the extraction systems 9 and 1, respectively.
Heating of the feed water is done by bleed air from 0. On the other hand, the condensate heated and condensed in the feed water heater 7 passes through the drain pipe 11 to the control valve 12.
The drain condensed in the feed water heater 6 is controlled by the control valve 14 and supplied to the feed water heater 5 on the lowest pressure side through the drain pipe 13. . The drain condensed in the feed water heater 5 and the drain collected from other feed water heaters are collected into the condenser 2 via the drain pipe 15 and the control valve 16.

また、各給水加熱器に接続されたドレン配管1
1,13,15には、プラント低出力時やドレン
水位制御異常などに対処するために、それぞれバ
イパス調節弁17,18,19を有し復水器2に
連通されたバイパス管20,21,22が設けら
れ、さらに各給水加熱器5,6,7にはそれぞれ
水位発信器23,24,25が設けられている。
In addition, drain piping 1 connected to each feed water heater
1, 13, and 15, bypass pipes 20, 21, and 15 each have bypass control valves 17, 18, and 19, and communicate with the condenser 2 in order to cope with low plant output or drain water level control abnormalities. 22 is provided, and each feed water heater 5, 6, 7 is further provided with a water level transmitter 23, 24, 25, respectively.

一方、前記抽気系統9,10には、タービンの
急速停止信号Sにより電磁弁26を介して作動さ
れる強制閉鎖式の逆止弁27,28がそれぞれ設
けられている。
On the other hand, the extraction systems 9 and 10 are provided with forced-closing check valves 27 and 28, respectively, which are operated via a solenoid valve 26 in response to a rapid stop signal S of the turbine.

ところで、このような装置においては、最近建
屋のコストおよびタービンと給水加熱器を連絡す
る配管や給水加熱器同志を連絡する配管の量など
を大幅に低減するため、プラント建設スペースの
うち非常に大きな割合を占める給水加熱器を復水
器の上部内に収納することが提案されている。し
かし、限られたスペースの復水器上部内に複数の
給水加熱器を設置すると、高速のタービン排気流
を阻害する恐れがあり、給水加熱器はできるだけ
小さくし、かつ全部の給水加熱器の胴径は近似し
たものが望まれる。また、給水加熱器のドレンは
熱効率の点から、順次低圧の給水加熱器へと集め
られて流されるため、最後の給水加熱器では非常
に流量が大きくなり、給水加熱器の外径寸法も大
きくなるので、ドレン冷却部を別置状態とするこ
とが不可欠となる。
By the way, recently, in order to significantly reduce the building cost and the amount of piping connecting the turbine and feedwater heater, and the amount of piping connecting the feedwater heaters, such equipment requires a large amount of plant construction space. It has been proposed to house a proportionate feedwater heater in the upper part of the condenser. However, installing multiple feedwater heaters in the limited space above the condenser may obstruct the high-speed turbine exhaust flow, so the feedwater heaters should be as small as possible, and all feedwater heaters should be It is desirable that the diameter be similar. In addition, from the point of view of thermal efficiency, the drain from the feedwater heater is sequentially collected and sent to the low-pressure feedwater heaters, so the flow rate at the last feedwater heater is extremely large, and the outer diameter of the feedwater heater is also large. Therefore, it is essential to place the drain cooling section separately.

すなわち、第2図は上述のように給水加熱器を
復水器2の上部内に配設した装置を示す図であつ
て、前記給水加熱器5,6,7をそれぞれ復水器
2内上部に配設するとともに、さらに高圧側の抽
気系統30から抽気が供給される給水加熱器31
が設けられ、それらが互いに左右対称になるよう
に配設されている。しかして、前記給水加熱器7
で加熱された給水は、上記給水加熱器31によつ
てさらに加熱され、蒸気発生装置へと供給され
る。一方、上記給水加熱器31で発生したドレン
はドレン配管32および調節弁33を経て給水加
熱器7へと供給され、以後第1図に示したものと
同様に順次低圧側の給水加熱器へと集められる。
なお、符号34はバイパス調節弁35を有するバ
イパス管である。またタービンの急速停止信号S
によつて作動される強制閉鎖式の逆止弁27,2
8はそれぞれ抽気系統10および30に設けられ
ている。
That is, FIG. 2 is a diagram showing a device in which the feed water heaters are arranged in the upper part of the condenser 2 as described above, and the feed water heaters 5, 6, and 7 are respectively arranged in the upper part of the condenser 2. A feed water heater 31 which is disposed in
are arranged symmetrically to each other. However, the feed water heater 7
The heated feed water is further heated by the feed water heater 31 and supplied to the steam generator. On the other hand, the drain generated in the feed water heater 31 is supplied to the feed water heater 7 via the drain pipe 32 and the control valve 33, and then sequentially to the feed water heater on the low pressure side in the same way as shown in FIG. Can be collected.
In addition, the code|symbol 34 is a bypass pipe which has the bypass control valve 35. Also, the turbine rapid stop signal S
Forced closing check valve 27, 2 operated by
8 are provided in the extraction systems 10 and 30, respectively.

ところで、復水器2の側方にはドレンタンク3
6が併設されており、給水加熱器6に集められた
ドレンは、ドレン配管37および調節弁38を経
て上記ドレンタンク36に導かれ、さらに最も低
圧の給水加熱器5のドレンもドレン配管39によ
りドレンタンク36に導かれる。また、ドレン配
管37はバイパス調節弁40を有するバイパス管
41によつて復水器2に接続されている。
By the way, there is a drain tank 3 on the side of the condenser 2.
The drain collected in the feed water heater 6 is guided to the drain tank 36 through the drain pipe 37 and the control valve 38, and the drain from the feed water heater 5, which has the lowest pressure, is also connected to the drain pipe 39. It is guided to the drain tank 36. Further, the drain pipe 37 is connected to the condenser 2 by a bypass pipe 41 having a bypass control valve 40.

上記ドレンタンク36に集められたドレンは、
給水加熱器5とは別に設置されたドレン冷却部4
2において復水ポンプ4によつて供給される給水
と熱交換せしめられ、ドレン配管43を介して復
水器2へ導かれる。また、ドレンタンク36の上
部と給水加熱器5とはバランス管44によつて互
いに連通せしめられている。
The drain collected in the drain tank 36 is
Drain cooling unit 4 installed separately from feed water heater 5
At 2, the water is subjected to heat exchange with the feed water supplied by the condensate pump 4, and is led to the condenser 2 via the drain pipe 43. Further, the upper part of the drain tank 36 and the feed water heater 5 are communicated with each other through a balance pipe 44.

しかして、このような装置においては、最低圧
の給水加熱器5にはそれに流入するドレンがない
ため、他の給水加熱器6,7,31と同様に小形
にすることができ、復水器内上部に他の給水加熱
器とともに設置することができ、建屋を大幅に縮
小できるとともに各給水加熱器を連絡する配管も
大幅に低減できる利点を有している。さらに、ド
レンタンク36を設置して給水加熱器のドレンを
集めることにより、給水加熱器5の中にドレンを
貯溜させ水位を作る必要がなく、この結果プラン
ト出力によるドレン流量の変化や、給水加熱器5
内の圧力が変化しても、ドレンタンク36の水位
が変化することによつてドレンは復水器2へ導か
れる。すなわち、ドレンタンク36はバランス管
44によつて給水加熱器5と均圧されているの
で、給水加熱器5内の圧力と復水器2内の圧力と
の差から、ドレンタンク36からドレン冷却部4
2を経てドレン配管43により復水器に至るまで
の流路の摩擦損失を引いた値が、ドレンタンク3
6内の水位とドレン配管43を復水器2に接続す
る高さとの差となるので、ドレンタンク36内の
水位がこのバランスを作るように上下動し、自然
にドレン系統の流量の制御が行なわれる。そのた
め、ドレン配管43には複雑で且つ調整や保守が
大変な調節弁を設置する必要がなく、コストの面
でも有利なものとなる。
In such a device, since the lowest pressure feed water heater 5 has no drain flowing into it, it can be made smaller like the other feed water heaters 6, 7, 31, and the condenser It can be installed together with other feed water heaters in the upper part of the interior, and has the advantage of being able to significantly reduce the size of the building and the number of piping connecting each feed water heater. Furthermore, by installing the drain tank 36 to collect the drain from the feed water heater, there is no need to store the drain in the feed water heater 5 and create a water level. Vessel 5
Even if the internal pressure changes, drain is guided to the condenser 2 by changing the water level in the drain tank 36. That is, since the pressure of the drain tank 36 is equalized with the feed water heater 5 by the balance pipe 44, the drain cooling is carried out from the drain tank 36 due to the difference between the pressure in the feed water heater 5 and the pressure in the condenser 2. Part 4
2 to the condenser via the drain pipe 43 is the value obtained by subtracting the friction loss of the flow path from the drain tank 3 to the condenser.
Since there is a difference between the water level in the drain tank 36 and the height at which the drain pipe 43 is connected to the condenser 2, the water level in the drain tank 36 moves up and down to create this balance, and the flow rate of the drain system is naturally controlled. It is done. Therefore, there is no need to install a complicated control valve that is difficult to adjust and maintain in the drain pipe 43, which is advantageous in terms of cost.

しかしながら、このような装置においても、タ
ービンのトリツプ時の過速防止および水流入防止
の点では必ずしも望ましいものではない。すなわ
ち、給水加熱器7,31の加熱蒸気の抽気系統1
0,30には強制閉鎖逆止弁27,28が設けら
れているので、タービンのトリツプ時に給水加熱
器7,31内のドレンが蒸発してタービンに逆流
して過速するのを防止し、また抽気系統10,3
0の水の逆流も防止される。ところが、復水器2
の上部に設置した給水加熱器においては、この強
制閉鎖式の逆止弁を設置することができない場合
がある。なぜなら、上記強制閉鎖式逆止弁は保守
点検および補修の点から、復水器の外部に設置す
る必要があり、この場合大口径の抽気系統の配管
を一度復水器の中に戻して給水加熱器へ接続しな
ければならない。しかも復水器2の上部はスペー
スが制約されているため、通常第2図に示すよう
に高圧側の抽気系統10,30のように比較的小
口径のものにしか上記方法をとることはできな
い。もし強いて低圧側の抽気系統9にもこの方法
をとろうとすると、復水器2内上部に多くのスペ
ースを必要とし、復水器の上部スペースをとるた
めには、制約された平面積に頼れないので、高さ
方向に復水器を延ばす必要があり、折角複数個の
給水加熱器を設置してプラント建屋の体積縮少を
画ろうとしたのに、逆に建屋の高さが増加する結
果となり、しかもタービンから復水器へ高流速で
流れる排気の流れを阻害し、プラント効率の低下
を招き、さらに浸食などにより復水器および抽気
系統などに損傷を招く等の問題点がある。
However, even such a device is not necessarily desirable in terms of preventing overspeed and water inflow when the turbine is tripped. That is, the heating steam extraction system 1 of the feed water heaters 7 and 31
0 and 30 are provided with forced closing check valves 27 and 28, which prevent the drain in the feedwater heaters 7 and 31 from evaporating and flowing back into the turbine, causing overspeed, when the turbine is tripped. Also, the extraction system 10, 3
Backflow of zero water is also prevented. However, condenser 2
In some cases, it may not be possible to install this forced-closing check valve in feed water heaters installed above the water heater. This is because the above-mentioned forced closing check valve must be installed outside the condenser for maintenance inspection and repair purposes, and in this case, the large-diameter extraction system piping must be returned to the condenser to supply water. Must be connected to a heater. Moreover, since the space above the condenser 2 is limited, the above method can usually only be applied to relatively small-diameter systems such as the high-pressure side bleed systems 10 and 30, as shown in Figure 2. . If we were forced to use this method for the bleed air system 9 on the low pressure side, we would need a lot of space above the condenser 2, and in order to take up the space above the condenser, we would have to rely on the restricted planar area. Because of this, it was necessary to extend the condenser in the height direction, and although we tried to reduce the volume of the plant building by installing multiple feed water heaters, the height of the building actually increased. Moreover, there are problems such as impeding the flow of exhaust gas from the turbine to the condenser at a high flow rate, causing a decrease in plant efficiency, and further causing damage to the condenser and extraction system due to erosion.

本発明はこのような点に鑑み、復水器内上部に
給水加熱器を設けたものにおいて、強制閉鎖式逆
止弁が設けられていない給水加熱器から、タービ
ンのトリツプ時等において蒸気等がタービンに逆
流するようなことが確実に防止され、信頼性の高
い給水加熱器ドレン制御装置を提供することを目
的とする。
In view of these points, the present invention has been developed in which a feedwater heater is provided in the upper part of the condenser, and steam, etc. is discharged from the feedwater heater without a forced closing check valve when the turbine is tripped, etc. It is an object of the present invention to provide a highly reliable feedwater heater drain control device that reliably prevents backflow to a turbine.

以下、第3図を参照して本発明の一実施例につ
いて説明する。なお、第2図と同一部分について
は同一符号を付しその説明は省略する。
An embodiment of the present invention will be described below with reference to FIG. Note that the same parts as in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.

第3図において、ドレンタンク36とドレン冷
却器42を連通する導管45には一端を復水器2
に開口するバイパス管46の他端が連接されてお
り、そのバイパス管46には制御弁47が介設さ
れている。上記制御弁47はタービンの急速停止
信号Sによつて全開せしめられるとともに、ドレ
ンタンク36に設けられた水位検出器48からの
水位信号が所定以上になつたとき、その信号が電
磁弁49を介して上記制御弁47に印加され、そ
の信号によつても上記制御弁47が全開するよう
に構成されている。
In FIG. 3, a conduit 45 connecting the drain tank 36 and the drain cooler 42 has one end connected to the condenser 2.
The other end of a bypass pipe 46 that opens to is connected to the bypass pipe 46, and a control valve 47 is interposed in the bypass pipe 46. The control valve 47 is fully opened by the turbine rapid stop signal S, and when the water level signal from the water level detector 48 provided in the drain tank 36 exceeds a predetermined level, the signal is transmitted via the solenoid valve 49. is applied to the control valve 47, and the control valve 47 is configured to be fully opened by the signal as well.

しかして、タービン1に直結された発電機の負
荷が急速にしや断される等によつてタービンが急
速停止すると、給水加熱器5内の圧力も急減して
復水器2の器内真空度とほぼ同じ圧力まで低下す
る。一方このとき、ドレンタンク36内に滞溜し
ているドレンは温度が高いため圧力降下に対応し
て蒸発し、この蒸発したドレンは給水加熱器5内
の蒸気とともに抽気系統8内を逆流してタービン
1に入り復水器2側に流れる。このため負荷しや
断によつて定格回転数より上昇するタービンの回
転数はさらに上昇して規定値を越える恐れがあ
る。しかし、前記タービンの急速停止信号Sによ
つて制御弁47が全開され、この結果、前述の如
くドレンタンク36と復水器2との位置差によつ
てドレンタンク36内のドレンが速やかにバイパ
ス管46を経て復水器2内に排出され、タービン
1へ逆流する蒸発蒸気量は大幅に低減され、ター
ビンの過速は制限値以内に抑制される。
However, when the turbine suddenly stops due to the load on the generator directly connected to the turbine 1 being suddenly cut off, the pressure inside the feed water heater 5 also decreases rapidly, and the internal vacuum level of the condenser 2 decreases. The pressure decreases to approximately the same level as . On the other hand, at this time, the condensate accumulated in the drain tank 36 is high in temperature, so it evaporates in response to the pressure drop, and this evaporated condensate flows back into the extraction system 8 together with the steam in the feed water heater 5. It enters the turbine 1 and flows to the condenser 2 side. For this reason, the rotational speed of the turbine, which increases above the rated rotational speed due to load interruption, may further increase and exceed the specified value. However, the control valve 47 is fully opened by the rapid stop signal S of the turbine, and as a result, the drain in the drain tank 36 is quickly bypassed due to the positional difference between the drain tank 36 and the condenser 2 as described above. The amount of evaporated steam discharged into the condenser 2 through the pipe 46 and flowing back to the turbine 1 is significantly reduced, and overspeed of the turbine is suppressed within a limit value.

また、給水加熱器5およびドレン冷却器42は
多管式の熱交換器であり、伝熱管内を流れる復水
は復水ポンプ4によつて昇圧されているので、伝
熱管外の圧力に比べて非常に高圧となつている。
したがつて、もしこの多数の伝熱管に損傷が発生
した場合には、復水がその損傷部分から伝熱管外
へ流れることとなる。このためドレン流量が増加
したのと同じ結果となり、復水器2へ全量のドレ
ン量を排出する場合には、流量の増加割合の2乗
に比例してドレンタンク36内の水位が急上昇す
る。ところがこのような伝熱管の損傷は常時直接
監視することができないので、ドレンタンク36
内の水位上昇は突然発生し、しかも上昇は急激で
あり、運転員の操作などで処理することに期待は
できず、ドレンタンク36内が満水状態となり、
給水加熱器5をも満水となり、その水がタービン
に達してしまうことがある。このようなタービン
への水流入は、タービン1の各部に熱応力が発生
して変形を生じ、ロータがケーシングと接触した
りすることによつて大事故に到る可能性がある。
In addition, the feed water heater 5 and the drain cooler 42 are multi-tube heat exchangers, and the pressure of the condensate flowing inside the heat exchanger tubes is increased by the condensate pump 4, so that the pressure is higher than that outside the heat exchanger tubes. The pressure is extremely high.
Therefore, if damage occurs to this large number of heat exchanger tubes, condensate will flow from the damaged portion to the outside of the heat exchanger tubes. This results in the same result as an increase in the drain flow rate, and when the entire amount of drain is discharged to the condenser 2, the water level in the drain tank 36 rises rapidly in proportion to the square of the rate of increase in the flow rate. However, such damage to the heat transfer tubes cannot be directly monitored at all times, so the drain tank 36
The water level in the drain tank 36 suddenly rose, and the rise was rapid, so there was no hope that the operator would be able to handle it, and the drain tank 36 became full of water.
The feed water heater 5 may also become full of water, and the water may reach the turbine. Such inflow of water into the turbine may generate thermal stress in various parts of the turbine 1 and cause deformation, leading to a serious accident due to the rotor coming into contact with the casing.

ところが、本発明においては、ドレンタンク3
6内の水位が異常に上昇すると、水位検出器48
によつてその水位上昇が検出され、その水位上昇
信号が電磁弁49を介して制御弁47が全開せし
められる。このためドレンタンク36内のドレン
はバイパス管46を経て復水器2内に排出され、
ドレンタンク36内の水位上昇速度を大幅に減少
せしめることができる。したがつて、その間運転
員がプラントの出力を低下させたり、プラントを
通常停止させたりする時間的余裕を得ることがで
きる。
However, in the present invention, the drain tank 3
If the water level in 6 rises abnormally, the water level detector 48
The rise in the water level is detected, and the water level rise signal is sent to the electromagnetic valve 49 to cause the control valve 47 to be fully opened. Therefore, the drain in the drain tank 36 is discharged into the condenser 2 through the bypass pipe 46,
The rising speed of the water level in the drain tank 36 can be significantly reduced. Therefore, during this time, the operator can have time to reduce the output of the plant or to normally stop the plant.

なお、この場合、制御弁47の動作や水位検出
器48の設定水位より若干低い水位で信号を出
し、運転員に事故発生を知らせ準備態勢をとり得
るようにすれば、より一層効果的である。
In this case, it would be even more effective to issue a signal at a water level slightly lower than the water level set by the control valve 47 or the water level detector 48 to notify the operator of the occurrence of an accident and prepare for the accident. .

以上説明したように、本発明においては低圧側
の給水加熱器からのドレンを別に設けたドレンタ
ンクに集めるようにするとともに、タービンの急
停止時或は上記ドレンタンク内の上昇速度の異常
時に上記ドレンタンクと復水器とを結ぶバイパス
管を開放して、ドレンタンク内のドレンを急速に
復水器に排出するようにしたので、給水加熱器内
で発生した蒸気或は水等がタービンに逆流し、そ
れに伴なつてプラントの事故を発生するようなこ
とを確実に防止することができ、プラントの信頼
性を大幅に向上せしめることができる等の効果を
奏する。
As explained above, in the present invention, the drain from the feed water heater on the low pressure side is collected in a separately provided drain tank, and when the turbine suddenly stops or the rising speed in the drain tank is abnormal, By opening the bypass pipe that connects the drain tank and condenser, the drain in the drain tank is rapidly discharged to the condenser, so steam or water generated in the feed water heater is not transferred to the turbine. It is possible to reliably prevent backflow and the resulting accidents in the plant, and the reliability of the plant can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の給水加熱器のドレン制御装置の
系統図、第2図は上記ドレン制御装置の改良を示
す系統図、第3図は本発明の給水加熱器のドレン
制御装置の系統図である。 1……タービン、2……復水器、5,6,7,
31……給水加熱器、36……ドレンタンク、4
6……バイパス管、47……制御弁、48……水
位検出器。
Fig. 1 is a system diagram of a conventional drain control device for a feed water heater, Fig. 2 is a system diagram showing an improvement of the above drain control device, and Fig. 3 is a system diagram of a drain control device for a feed water heater of the present invention. be. 1... Turbine, 2... Condenser, 5, 6, 7,
31... Water heater, 36... Drain tank, 4
6...Bypass pipe, 47...Control valve, 48...Water level detector.

Claims (1)

【特許請求の範囲】[Claims] 1 復水器本体上部内に、加熱蒸気管に逆止弁を
設けてない給水加熱器を設けるとともに、上記給
水加熱器におけるドレンを復水器に回収するよう
にした給水加熱器ドレン制御装置において、低圧
側の給水加熱器に接続され、その給水加熱器から
のドレンを貯溜するドレンタンクを設けるととも
に、上記ドレンタンクと復水器との間に、タービ
ントリツプ信号或はドレンタンク内の水位過上昇
信号によつて開放されるバイパス管路を設けたこ
とを特徴とする、給水加熱器ドレン制御装置。
1. In a feedwater heater drain control device in which a feedwater heater without a check valve is provided in the heating steam pipe is provided in the upper part of the condenser main body, and the drain in the feedwater heater is collected into the condenser. , a drain tank is connected to the feed water heater on the low pressure side and stores drain from the feed water heater, and a turbine trip signal or water level in the drain tank is provided between the drain tank and the condenser. A feed water heater drain control device, characterized in that it is provided with a bypass line that is opened in response to an over-rise signal.
JP2863280A 1980-03-07 1980-03-07 Feed water heater drain control device Granted JPS56124808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2863280A JPS56124808A (en) 1980-03-07 1980-03-07 Feed water heater drain control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2863280A JPS56124808A (en) 1980-03-07 1980-03-07 Feed water heater drain control device

Publications (2)

Publication Number Publication Date
JPS56124808A JPS56124808A (en) 1981-09-30
JPS6231243B2 true JPS6231243B2 (en) 1987-07-07

Family

ID=12253913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2863280A Granted JPS56124808A (en) 1980-03-07 1980-03-07 Feed water heater drain control device

Country Status (1)

Country Link
JP (1) JPS56124808A (en)

Also Published As

Publication number Publication date
JPS56124808A (en) 1981-09-30

Similar Documents

Publication Publication Date Title
US5794446A (en) Power plant performance management systems and methods
US4003205A (en) Method and apparatus for operating a steam turbine plant having feed water heaters
US5791147A (en) Power plant performance management systems and methods
KR102046537B1 (en) Small modular reactor system and the method of rapid reaching to begining critical condition using it
JPH03124902A (en) Combined cycle power plant and operating method therefor
JPS6136121B2 (en)
US6128901A (en) Pressure control system to improve power plant efficiency
US4301650A (en) Pressure regulating apparatus for a closed water circuit
JPS6027882B2 (en) Automatic rearrangement device for water supply for steam generators
JPS6231243B2 (en)
US5079922A (en) Moisture-separator-reheater drain cooler system
CN111247602B (en) Method and system for switching to a safe state after an emergency situation in a nuclear power plant
JP2017072101A (en) Steam turbine system and its control method
JP2923122B2 (en) Drain recovery equipment for nuclear power plants
JPH0392507A (en) Turbine bypass device for steam turbine
JPS6017607A (en) Reheater
JPS58108396A (en) Protector for heat exchanger
JP2520025B2 (en) Detection pipe for vacuum trip device
JP2909300B2 (en) Heater drain equipment
JPH09210301A (en) Emergency protective apparatus for fluidized bed boiler
KR20230069191A (en) Steam generator with desuperheater
JPS6257882B2 (en)
JPS593248Y2 (en) condensate equipment
JP6335660B2 (en) Turbine building flood prevention device
JPS6011283B2 (en) feed water heater