JPS6230994A - Breakwater facility for pool water in nuclear reactor pool - Google Patents
Breakwater facility for pool water in nuclear reactor poolInfo
- Publication number
- JPS6230994A JPS6230994A JP60169865A JP16986585A JPS6230994A JP S6230994 A JPS6230994 A JP S6230994A JP 60169865 A JP60169865 A JP 60169865A JP 16986585 A JP16986585 A JP 16986585A JP S6230994 A JPS6230994 A JP S6230994A
- Authority
- JP
- Japan
- Prior art keywords
- pool
- reactor
- breakwater
- water
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
〔発明の技術分野〕
この発明は、燃料貯藏/−ル、機器貯蔵ブールおよび原
子炉ウェル等のD■子炉プール内におけるプール水が運
転床土に溢水しないようにjる原子炉プールのプール水
防波設備に関する。
〔発明の技術的背蹟とその問題点〕
一般に、原子炉社屋には、第7図に承りように原子炉つ
1ル3を挟/υで機器貯蔵プール5および燃料貯蔵プー
ル7が設置される。これらの機器貯蔵プール5や燃料貯
蔵プール7内には、原子炉圧力容器8から取り出された
原子炉機器や使用流核燃料がイれぞれ収容される。
原子炉の定期点検時には、プールゲート9および原子炉
つIシカバー第1が外され、機器貯蔵プール5および燃
料貯蔵ブール7内に水が満されて、原子炉圧力容器8か
ら取り出された使用演核燃料や原子炉機器が冷IJIさ
れる。また、定期tH検後す使用済核燃F1を冷却する
ために、燃料貯藏ブ〜ルア内には水が満される。一方、
運転体12における原子炉ウェル3、機器貯蔵プール5
および燃r1貯藏ブール7の周囲には、段部13が設け
られ、この段部13に千4す15が設置される。この千
1つ15は金属製パイプぐ製作され、段部13の全域に
0つて設(−」られ−C運転(jの転落防第1が果され
る。
ところで、定1!+1点検中の原子炉機器および使用済
核燃料の運搬時や地震時には、原子炉つfル3、機器貯
蔵プール5および燃料貯蔵プール7に波が発生]ること
がある。ところが、この波の波高が大きな場合には、段
部13がプール水面から約400#程度の高さのため、
プール水が段部13を越えて運転床12十に溢水覆る虞
れがある。しかも、このプール水は使用済核燃料や原子
炉機器を直接冷却するので、放射線量率が非富に高い。
その結果、プール水の溢水によって放射線汚染領域が拡
大し、充分な対策を講じlこにも拘らず、原子炉の安全
性が損われる虞れがある。
〔発明の目的〕
この発明は、ト記事実を考慮してなされたちのであり、
定明魚検中の原子炉機器等の運搬時や地震時等に、原子
炉プール内のプール水が運転床上へ温水[Technical Field of the Invention] This invention relates to a nuclear reactor pool that prevents pool water in a D.sub. reactor pool such as a fuel storage tank, an equipment storage boule, and a reactor well from overflowing into the operating floor soil. Regarding water breakwater equipment. [Technical disadvantages of the invention and its problems] Generally, in a nuclear reactor building, an equipment storage pool 5 and a fuel storage pool 7 are installed across the reactor tower 3, as shown in Figure 7. Ru. Reactor equipment and used nuclear fuel taken out from the reactor pressure vessel 8 are stored in the equipment storage pool 5 and the fuel storage pool 7, respectively. During periodic inspections of the reactor, the pool gate 9 and the reactor cover No. 1 are removed, the equipment storage pool 5 and the fuel storage boule 7 are filled with water, and the operating equipment removed from the reactor pressure vessel 8 is removed. Nuclear fuel and reactor equipment are subjected to cold IJI. In addition, the fuel storage tank is filled with water to cool down the spent nuclear fuel F1 after the periodic tH inspection. on the other hand,
Reactor well 3 and equipment storage pool 5 in operating body 12
A stepped portion 13 is provided around the fuel r1 storage boule 7, and a thousand and fourteens 15 are installed on this stepped portion 13. This thousand and one pieces 15 are made of metal pipes and installed in the entire area of the step part 13 to achieve -C operation (J's fall prevention first. By the way, during the constant 1!+1 inspection When transporting nuclear reactor equipment and spent nuclear fuel or during an earthquake, waves may occur in the reactor pool 3, equipment storage pool 5, and fuel storage pool 7.However, if the height of these waves is large, Because the step 13 is about 400cm above the pool water surface,
There is a risk that the pool water will exceed the stepped portion 13 and overflow onto the driving floor 120. Moreover, since this pool water directly cools spent nuclear fuel and reactor equipment, the radiation dose rate is extremely high. As a result, the radiation contaminated area will expand due to overflowing pool water, and there is a risk that the safety of the nuclear reactor will be compromised, despite sufficient measures being taken. [Object of the invention] This invention was made in consideration of the facts of the article,
When transporting reactor equipment during Jingming fish inspection or during an earthquake, pool water in the reactor pool flows onto the operating floor as heated water.
上記目的を達成−46ために、この発明に係る原子炉プ
ールのプール水防波設備1よ、原子炉運転床の原子炉プ
ール周囲にプール水の溢水を防第1する防波壁を設置−
3、この防波壁が−1−記原子炉運転床の原子炉プール
周囲に設けられIC段部に着脱自在に嵌合されるとども
に、防波壁上部が前記原子炉プールの側に向って屈曲し
て形成されたものである。
(発明の実施例)
以下、この発明の実施例を図面に基いて説明4る。
第1図は、この発明に係る原子炉プールのプール水防波
設備における一実施例を適用しIC原子炉建屋を示す縦
断面図である。
原子か建屋21は、タービン発電機へ蒸気を供給りるた
めの原子炉設備を内包Jる。つJ、す、原子炉社屋21
内には原子炉格納容器23およびり一ブレッションヂト
ンバ25等が収容され、原子炉格納容器23内に原子炉
圧力容器27が収められる。原子炉げ屋21の上部には
、原子炉プールとして、原子炉つrル29、燃料貯蔵プ
ール31および機器貯蔵プール33が形成される。原子
炉つIル29は原子炉格納容器23の1一部を覆い、原
子かつfルカバー35により閉塞される。また、燃料貯
蔵ブール31には常時プール水が満され、ハ;(子炉汀
力容器27から取り出された使用済核燃料が貯蔵され冷
7Jlされる。さらに、機器貯蔵プール33には、原子
炉機器が収納される。
これら原子炉つ■ル29、燃料貯蔵プール31および機
器貯蔵プール33は、第2図に示1よう(S運転法37
に聞第1シて形成される。このうち、原子炉つ丁ル29
は、ト述の如く原子炉ウェルカバー35により閉塞され
′る。また、第1図にも示づように、燃料貯蔵プール3
1および原子炉つ■ル29と、機器貯蔵プール33およ
び原子炉つ■ル29どは、取外し可能なプールゲー)−
39J、つてイ1切られる。
運転床37にお()る原子炉つJル29、燃料貯蔵ブー
ル31および機器貯蔵プール33の聞1−1周囲には、
ブールグー1〜39部分を除いて、第3図に示り−よう
に断面四角形状の段部41が形成される。この段部41
の表面に内張り43が施される。
この内張り43は、それぞれ原子炉つrル29、燃料貯
蔵プール31または機器貯蔵プール33の内表面から段
部7第1を経て運転床37へ芋り、段部41を覆うJ、
うにして施される。
第2図にも示1にうに、この段部41の全周に、原子炉
ウェル29、燃料貯蔵プール31おJ、び機器貯蔵プー
ル33を囲むようにして防波壁45が設置j%れる。こ
の防波壁45は、段部41の周方向に配置された複数の
防波壁1−レメン1−47を一連に結合し−CIM成さ
れる。イの結合は、第4図に示IJ、うに、防波壁IT
レメント47の一側面に凸部49を有する結合部材51
Aと、他の側面に凹部53を右づる結合部材51r3と
を結石し、これら結合部4451Δ、Bの凸部49)お
よff凹部E53を嵌合さUることにJ、リイiされる
。結合部(A51A、[3μゴム等の弾P1休【・形成
(きれる。まI、二、凸部49および凹部53は、それ
ぞれ結合部材5う1A、 51 I−3の長手プ)向全
域に口って形成される。
各防波ITレメント/I7は、例えばステンレス等の不
銹金属り目ら構成される。この防波壁ニレメン1〜47
の一1部は、原子炉つ■ル29、燃料貯蔵ブール31お
よび機器貯M!−ル33の側に向・)で屈曲し、その屈
曲部が湾曲(こ形成される。この屈曲部にJ、す、防波
壁45へ衝突するプール水の波が原子炉つJル29、燃
料貯蔵ブール31おJ。
び機器貯蔵プール33側へ戻されるJ、うに/iつでい
る。
各防波壁]レメント47の下部はスカート形状に形成さ
れ、イの内部5/′Iは段部41に嵌合可能な断面」字
形状に構成される。この内部571には、その全域に0
す、ゴlい等の弾性体から形成されたパツキンが貼着さ
れる。このパツキン55にJ、り運転床37への1−ル
水の漏洩が防第1−される。J:Iこ、防波壁Tレメン
1〜47の下部−1−面b 7 L;L、原子炉つ■ル
29、燃料貯蔵ゾール31および機器貯蔵プール33の
側に干降した斜面に形成され、防波壁−[レメン1〜4
7に廟突したプール水を原子炉つ■ル29、燃料貯蔵プ
ール31および機器貯蔵プール33へ案内する。(トら
に、防波壁■レメン1−47の下部上面557にはフッ
1〜座59が形成される。81部41に植設された植込
みポル]・61を上記ノッl〜座!:)9を介してフー
プ1−63にて締め(!I IJることにより、防波壁
ニレメンl−47が段部41に取り付【Jられる。
次1こ作用を説明J−る。
原子炉の定期点検時には、第1図においで、原子炉つ[
ルカバー35およびプールグー1へ39を取り除いて原
子炉つLル29、燃料貯蔵1−ル31おJ、び機器貯蔵
プール33を連結し、これら原子炉つ」ル29.燃判貯
蔵ブール31および機器貯蔵ブール33の全てに水を満
1゜その後、原子炉fil力容器27内から使用溜積燃
料を取り出し、原子炉機器を搬出して、これらを水中移
動させ、燃料貯蔵ブール31または機器貯蔵プール33
内へ運l#2リ−る。
この使用溜積燃料等の運搬助や地震簡に(、艮、原子炉
つYル29、燃料貯蔵プール31および(幾器貯蔵ブー
ル33内のプール水に波が発生することがあるが、その
波高が大きくなってb、波は第3図に承りように防波壁
45に衝突し、原子炉つIル29や燃料貯蔵ブール31
内へ戻される。しl、二がって、運転床37上へプール
水が溢水することばない。また、原子炉の定期車検時以
外に番よ燃料貯蔵ブール31のみに水が満されるが、こ
のとぎ地震が発生しプール水の波高が人さく IK *
でも、同様に波は防波壁45によって戻され、プール水
が運転床37へ溢水することはrtい。これらの結采、
放IJ4線崩率の高いプール水が、作業者の居る運転床
371に及ばず、tli用線汚線汚染領域大Jることが
(7い。故に、原子炉の安全性を向−1さゼることがで
きる。 ′
また、各防波壁−[−レメンl−47第1結合部4J
51Δ、13によつ(’?7いに密着して結合され、か
つ各防波壁Jレメント47が八ツ。1ン55を介して段
部41へ取り付LJられることから、隣接した防波壁エ
レメント47間に隙間が/1ぜず、さらに、防波壁ニレ
メン1〜47おJ、び段部41との間に4)隙間が4[
+!ず、原子炉つ■ル等29.31.33内のプール水
が運転床37へ漏洩することがない。
したがって、この場合にもtttt O,1線汚染領域
の拡大が防止され、原子炉の安全性を向上させることが
できる。
さらに、防波壁45は、複数の防波壁Jレメント47を
個別に段部41へ取り付【t、これら防波壁ルメン1へ
47を!jいに結合さ1!で構成されることから、l!
/]波壁45の取付が容易となり、取付作業性の向上を
図ることができる。
なお、ト記実施例ぐは、第2図に示1ように、防波壁4
5がプールグ−1−39には設置されないものト:つき
説明しI、二が、特に燃料貯蔵ブール31側のプールゲ
ート39にも防波壁Tレメン]−47を取り付CJ、燃
r1プール31を−・巡して取り囲む防波壁45どし−
CもJ、い。この場合には、プールゲート3つにも段部
41を形成し、この段部41に防波壁ニレメン1へ47
を嵌合し取り付ける。したがって、この他の実施例の場
合には、燃fi+貯蔵ブール31の全周が防波壁45に
囲まれることから、燃料貯蔵プール31にのみプール水
が満される原子炉の定期点検時以外の場合に地震が発生
し、波高の大きな波が生じても、その波を確実に寒き+
tめることかでき、より一層原子炉の安全性を向上させ
ることができる。
また、上記実施例の場合には、第3図に示づように防波
壁エレメント47を段部41に取り付ける植込みボルト
61およびナツト63が、防波壁エレメント47下部の
原子炉つポル29、燃料貯蔵ブール31または機器貯蔵
プール33側に位置する場合につき説明したが、第5図
に示すように、これらの植込みポル]へ61おJ、びナ
ツト63が防波壁エレメント65下部の運転床37側に
位置するものであってもJζい。この場合に【よ、ナラ
1−63の締付作業が筒中となり、防波壁エレメント6
5の取付をより一層容易にすることができる。
さらに、防波壁]二1ノメント67にガラス等の透明部
材から成るのぞき窓71を設けて、原子炉の定期点検時
に使用湾核燃着1等の運搬を確認できるにうにしてもよ
い。また、この防波壁エレメント67に取手73を取り
付【−ノ、防波壁■レメン1−67の取付・取付を容易
にすることもできる。
(発明の効果)
以−1−のように、この発明に係る原子炉プールのプー
ル水l!/】波設備にJ、れば、原子炉運転床の原子炉
プールの周囲にプール水の溢水を防止する防波壁を設け
、この防波壁が原子炉運転床の原子かプール周囲に設c
Jられた段部に着脱自在に嵌合されるとともに、防波壁
り部が原子炉プールの側に向って屈曲して形成されたこ
とから、放射線量率の高いプール水に波が発生しても、
だのプール水を運転床へ溢水させhいJ、うにして原子
炉の安全性を向トざ口ることができるという効果を奏す
る。In order to achieve the above object-46, in the pool water breakwater equipment for a reactor pool 1 according to the present invention, a breakwater is installed around the reactor pool on the reactor operating floor to primarily prevent pool water from overflowing.
3. When this breakwater wall is provided around the reactor pool on the reactor operating floor described in -1- and is removably fitted to the IC step part, the upper part of the breakwater wall is placed on the side of the reactor pool. It is bent in the opposite direction. (Embodiments of the Invention) Hereinafter, embodiments of the present invention will be explained based on the drawings. FIG. 1 is a longitudinal sectional view showing an IC reactor building to which an embodiment of the pool water breakwater equipment for a reactor pool according to the present invention is applied. The nuclear reactor building 21 contains nuclear reactor equipment for supplying steam to the turbine generator. Tsu J, Su, Reactor building 21
A reactor containment vessel 23, a pressure vessel 25, etc. are housed within the reactor containment vessel 23, and a reactor pressure vessel 27 is housed within the reactor containment vessel 23. A reactor tower 29, a fuel storage pool 31, and an equipment storage pool 33 are formed above the reactor shed 21 as a reactor pool. The reactor tube 29 covers a part of the reactor containment vessel 23 and is closed by an atomic reactor cover 35. In addition, the fuel storage boule 31 is always filled with pool water, and the spent nuclear fuel taken out from the sub-reactor force vessel 27 is stored and cooled. The reactor shaft 29, fuel storage pool 31, and equipment storage pool 33 are constructed as shown in FIG.
It is formed in the first place. Of these, 29 nuclear reactors
is closed by the reactor well cover 35 as described above. In addition, as shown in Fig. 1, the fuel storage pool 3
1, the reactor tower 29, the equipment storage pool 33, the reactor tower 29, etc. are removable pool games)
39J, 1 cut off. Around the reactor tower 29, fuel storage boule 31 and equipment storage pool 33 located on the operating floor 37,
As shown in FIG. 3, a stepped portion 41 having a rectangular cross section is formed except for the boulevards 1 to 39. This step 41
A lining 43 is applied to the surface. This lining 43 extends from the inner surface of the reactor tower 29, fuel storage pool 31, or equipment storage pool 33 to the operating floor 37 via the first step 7, and covers the step 41,
It is applied in this way. As shown in FIG. 2 and 1, a breakwater wall 45 is installed around the entire circumference of this stepped portion 41 so as to surround the reactor well 29, the fuel storage pool 31 and the equipment storage pool 33. This breakwater wall 45 is formed by serially connecting a plurality of breakwater walls 1-remens 1-47 arranged in the circumferential direction of the step portion 41. The connections shown in Figure 4 are IJ, sea urchin, and breakwater IT.
A coupling member 51 having a convex portion 49 on one side of the element 47
A and the coupling member 51r3 with the recess 53 on the other side are assembled, and these coupling parts 4451Δ, the protrusion 49) of B and the recess E53 are fitted. . The connecting portion (A51A, [3μ rubber etc. elastic P1] is formed. The convex part 49 and the concave part 53 are the longitudinal part of the connecting member 5 1A and 51 I-3, respectively). Each breakwater IT element/I7 is composed of a rustless metal mesh such as stainless steel.
Part of the reactor tower 29, fuel storage boule 31 and equipment storage M! 33 side, and the bent part forms a curve. Waves of pool water colliding with the breakwater wall 45 are generated at the reactor part 29. , the fuel storage boule 31 and the equipment storage pool 33 side. It has a cross-sectional shape that can be fitted into the stepped portion 41. This interior 571 has a
A gasket made of an elastic material such as rubber is attached. This gasket 55 primarily prevents water from leaking into the driving floor 37. J: I, lower part of breakwater T elements 1 to 47 - 1 - side b 7 L; L, formed on a dry slope on the side of the reactor tower 29, fuel storage sol 31 and equipment storage pool 33 The breakwater wall - [Lemen 1-4
7 is guided to the reactor tower 29, fuel storage pool 31, and equipment storage pool 33. (Furthermore, holes 1 to 59 are formed on the upper surface 557 of the lower part of the breakwater wall ■Remen 1-47. The implanted pole planted in the 81 part 41]・61 is the above-mentioned hole to seat!: ) 9 with the hoop 1-63 (!I IJ), the breakwater wall Niremen 1-47 is attached to the stepped portion 41. During periodic inspections of nuclear reactors, as shown in Figure 1,
The reactor pool 29, fuel storage 1-J, and equipment storage pool 33 are connected by removing the reactor pool 35 and the pool 39 to the pool 1. All of the fuel storage boule 31 and equipment storage boule 33 are filled with water. After that, the used accumulated fuel is taken out from the reactor filtration vessel 27, the reactor equipment is taken out, and these are moved underwater to remove the fuel. Storage boule 31 or equipment storage pool 33
Inward luck #2. Waves may occur in the pool water in the reactor tower 29, fuel storage pool 31, and equipment storage boule 33 during the transportation of used accumulated fuel, etc., and during earthquakes. As the wave height increases, the waves collide with the breakwater wall 45 as shown in Fig.
taken back inside. Second, there is no chance of pool water overflowing onto the driving bed 37. In addition, only the fuel storage boule 31 is filled with water other than during regular vehicle inspections of the reactor, but when the Konotogi earthquake occurs, the wave height of the pool water becomes crowded.IK *
However, the waves are similarly returned by the breakwater wall 45, and the pool water does not overflow onto the driving floor 37. These connections,
The pool water, which has a high radioactive IJ4 radiation decay rate, does not reach the operating floor 371 where workers are located, resulting in a large TLI line contaminated area (7). ' Also, each breakwater wall -[-Remen l-47 first joint part 4
51Δ, 13, and each breakwater J element 47 is attached to the step 41 via the 8.1 pin 55, so that the adjacent breakwater There is a gap of 1/1 between the wave wall elements 47, and a gap of 4) between the wave wall elements 1 to 47 and the stepped portion 41.
+! First, the pool water in the reactor tower, etc. 29.31.33 will not leak to the operating floor 37. Therefore, in this case as well, expansion of the tttt O,1 line contamination area is prevented, and the safety of the nuclear reactor can be improved. Furthermore, the breakwater wall 45 is configured by individually attaching a plurality of breakwater J elements 47 to the stepped portion 41 [t, 47 to these breakwater walls lumens 1! J is combined with 1! Since it is composed of l!
/] The corrugated wall 45 can be easily installed, and the installation workability can be improved. In addition, in the above embodiment, as shown in FIG.
5 is not installed in the pool group 1-39.In addition, a breakwater T-47 is also installed especially on the pool gate 39 on the fuel storage boule 31 side. Breakwater walls 45 surrounding 31
C is also J. In this case, step portions 41 are also formed on the three pool gates, and 47 points are formed in the step portions 41 to the breakwater wall Niremen 1.
Fit and install. Therefore, in the case of this other embodiment, since the entire circumference of the fuel storage pool 31 is surrounded by the breakwater wall 45, only the fuel storage pool 31 is filled with pool water except during periodic inspection of the reactor. Even if an earthquake occurs and waves with large wave heights occur in the case of
t, and the safety of the nuclear reactor can be further improved. In addition, in the case of the above embodiment, as shown in FIG. Although the explanation has been made for the case where it is located on the side of the fuel storage boule 31 or the equipment storage pool 33, as shown in FIG. Even if it is located on the 37 side, it is Jζ. In this case, the tightening work of Nara 1-63 is done inside the cylinder, and the breakwater element 6
5 can be installed even more easily. Furthermore, a viewing window 71 made of a transparent member such as glass may be provided in the breakwater wall 21 noment 67 so that the transport of nuclear fuel 1, etc. in the used bay can be confirmed during periodic inspections of the reactor. Furthermore, a handle 73 can be attached to this breakwater element 67 to facilitate the installation and attachment of the breakwater wall element 1-67. (Effects of the Invention) As shown below-1-, the pool water of the nuclear reactor pool according to the present invention! /] If the wave equipment is J, a breakwater will be installed around the reactor pool on the reactor operating floor to prevent pool water from overflowing, and this breakwater will be installed around the reactor pool on the reactor operating floor. c.
It is removably fitted to the stepped part of the reactor pool, and the breakwater part is bent toward the side of the reactor pool, so waves are generated in the pool water with a high radiation dose rate. Even though
This has the effect that the safety of the reactor can be compromised by allowing the pool water to overflow onto the operating floor.
第1図はこの発明に係る原子炉プールのプール−第1=
水防波設備におIJる一実施例を適用した原子炉建屋を
示す縦断面図、第2図は第1図の運転床の平面図、第3
図は第1図にお1ノる防波壁ニレメン1〜の斜視図、第
4図は防波壁エレメントの結合部Iを示す斜視図、第5
図は他の実施例における防波壁エレメントを示す断面図
、第6図はさらに他の実施例における防波壁エレメント
の斜視図、第7図は従来の原子炉建屋の縦断面図である
。
21・・・原子炉建屋、29・・・原子炉つ■ル、31
・・・燃料貯蔵プール、33・・・機器貯蔵プール、3
7・・・運転床、41・・・段部、45・・・防波壁、
47・・・防波壁エレメント。FIG. 1 is a vertical sectional view showing a reactor building to which an embodiment of IJ is applied to the water breakwater equipment of the reactor pool according to the present invention, and FIG. 2 is a vertical sectional view of the operating floor of FIG. Floor plan, 3rd
The figures are a perspective view of the breakwater wall elements 1 to 1 shown in FIG.
The figure is a sectional view showing a breakwater element in another embodiment, FIG. 6 is a perspective view of a breakwater element in still another embodiment, and FIG. 7 is a longitudinal sectional view of a conventional reactor building. 21...Reactor building, 29...Reactor tower, 31
...Fuel storage pool, 33...Equipment storage pool, 3
7... Driving floor, 41... Stepped section, 45... Breakwater wall,
47...Break wall element.
Claims (1)
を防止する防波壁が設けられ、この防波壁は、上記原子
炉運転床の原子炉プール周囲に設けられた段部に着脱自
在に嵌合されるとともに、防波壁上部が前記原子炉プー
ルの側に向って屈曲して形成された原子炉プールのプー
ル水防波設備。 2、防波壁の下部は、原子炉運転床の段部に嵌合可能な
スカート形状に形成された特許請求の範囲第1項記載の
原子炉プールのプール水防波設備。 3、防波壁は、原子炉運転床の原子炉プール周方向に複
数配置された防波壁エレメントから構成された特許請求
の範囲第1項または第2項記載の原子炉プールのプール
水防波設備。[Claims] 1. A breakwater wall is provided around the reactor pool on the reactor operating floor to prevent pool water from overflowing, and this breakwater wall is provided around the reactor pool on the reactor operating floor. Pool water breakwater equipment for a nuclear reactor pool, which is removably fitted into a stepped part of the reactor pool, and is formed by bending an upper part of the breakwater wall toward the reactor pool side. 2. The pool water breakwater equipment for a nuclear reactor pool as set forth in claim 1, wherein the lower part of the breakwater wall is formed in a skirt shape that can fit into the stepped portion of the reactor operating bed. 3. A pool water barrier for a reactor pool according to claim 1 or 2, wherein the breakwater is composed of a plurality of breakwater elements arranged in the circumferential direction of the reactor pool on the reactor operating floor. Facility.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169865A JPS6230994A (en) | 1985-08-02 | 1985-08-02 | Breakwater facility for pool water in nuclear reactor pool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169865A JPS6230994A (en) | 1985-08-02 | 1985-08-02 | Breakwater facility for pool water in nuclear reactor pool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6230994A true JPS6230994A (en) | 1987-02-09 |
Family
ID=15894380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60169865A Pending JPS6230994A (en) | 1985-08-02 | 1985-08-02 | Breakwater facility for pool water in nuclear reactor pool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6230994A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006317230A (en) * | 2005-05-11 | 2006-11-24 | Toshiba Corp | Fence structure of fuel storage pool |
JP2006329799A (en) * | 2005-05-26 | 2006-12-07 | Toshiba Corp | Sloshing overflow prevention device |
JP2007163204A (en) * | 2005-12-12 | 2007-06-28 | Toshiba Corp | Reactor building and method for renovating it |
JP2010096537A (en) * | 2008-10-14 | 2010-04-30 | Toshiba Corp | Sloshing and overflow suppression device |
JP2010190605A (en) * | 2009-02-16 | 2010-09-02 | Toshiba Corp | Spent fuel pool facility |
JP2010190870A (en) * | 2009-02-20 | 2010-09-02 | Hitachi-Ge Nuclear Energy Ltd | Apparatus for preventing sloshing and overflow of spent fuel storage pool |
JP2013112358A (en) * | 2011-11-28 | 2013-06-10 | Mitsubishi Heavy Ind Ltd | Sloshing prevention structure |
-
1985
- 1985-08-02 JP JP60169865A patent/JPS6230994A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006317230A (en) * | 2005-05-11 | 2006-11-24 | Toshiba Corp | Fence structure of fuel storage pool |
JP2006329799A (en) * | 2005-05-26 | 2006-12-07 | Toshiba Corp | Sloshing overflow prevention device |
JP4519714B2 (en) * | 2005-05-26 | 2010-08-04 | 株式会社東芝 | Sloshing overflow prevention device |
JP2007163204A (en) * | 2005-12-12 | 2007-06-28 | Toshiba Corp | Reactor building and method for renovating it |
JP2010096537A (en) * | 2008-10-14 | 2010-04-30 | Toshiba Corp | Sloshing and overflow suppression device |
JP2010190605A (en) * | 2009-02-16 | 2010-09-02 | Toshiba Corp | Spent fuel pool facility |
JP2010190870A (en) * | 2009-02-20 | 2010-09-02 | Hitachi-Ge Nuclear Energy Ltd | Apparatus for preventing sloshing and overflow of spent fuel storage pool |
JP2013112358A (en) * | 2011-11-28 | 2013-06-10 | Mitsubishi Heavy Ind Ltd | Sloshing prevention structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5868694A (en) | Neutron protection device | |
JPS6230994A (en) | Breakwater facility for pool water in nuclear reactor pool | |
US5825838A (en) | Reactor flooding system for a retaining molten core materials in a reactor vessel by the improved external vessel cooling capability | |
CN102439667B (en) | Radiation shield body installed in variable expansion gap radiation shield and power generating euqipment | |
KR0150110B1 (en) | Permanent pool cavity seal for nuclear reactor | |
US4609523A (en) | Passive pH adjustment of nuclear reactor containment flood water | |
US4729869A (en) | Modular radiation shielding system | |
US7813464B1 (en) | Permanent seal ring for a nuclear reactor cavity | |
US5009836A (en) | Method for temporary shielding of reactor vessel internals | |
US3725198A (en) | Nuclear containment system | |
SE443471B (en) | STORAGE TANK AND WAY TO MAKE THIS | |
JPH07128485A (en) | Fuel pool equipment | |
US5359632A (en) | Reactor vessel cavity seal plate | |
JPS61181996A (en) | Regulator for water level in pool of pool for nuclear reactor | |
US4950086A (en) | Structure having radioactive plant components | |
JPS6355496A (en) | Nuclear reactor | |
JPS59171890A (en) | Radiation shielding device of reactor well | |
JPS62297791A (en) | Shielding device for exchanging nuclear reactor fuel | |
JPS59171893A (en) | Fuel pool device | |
JPS63179291A (en) | Shielding plug | |
JPH08114700A (en) | Simple radiation shielding container | |
JPS5963596A (en) | Main steam stop valve structure of atomic power plant | |
JPS6073396A (en) | Sealing bellows | |
JPS62195593A (en) | Shielding plug device for nuclear reactor well | |
JPH09113676A (en) | Equipment temporary pool |