JPS6230971B2 - - Google Patents

Info

Publication number
JPS6230971B2
JPS6230971B2 JP54161272A JP16127279A JPS6230971B2 JP S6230971 B2 JPS6230971 B2 JP S6230971B2 JP 54161272 A JP54161272 A JP 54161272A JP 16127279 A JP16127279 A JP 16127279A JP S6230971 B2 JPS6230971 B2 JP S6230971B2
Authority
JP
Japan
Prior art keywords
reaction
selectivity
catalyst
citronellal
geraniol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54161272A
Other languages
Japanese (ja)
Other versions
JPS5683434A (en
Inventor
Shuji Tsucha
Hideo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP16127279A priority Critical patent/JPS5683434A/en
Publication of JPS5683434A publication Critical patent/JPS5683434A/en
Publication of JPS6230971B2 publication Critical patent/JPS6230971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は不飽和アルコールからアルデヒド類の
製造方法に関するものである。 更に詳しく説明すると、一般式
The present invention relates to a method for producing aldehydes from unsaturated alcohols. To explain in more detail, the general formula

【式】で表わされる不飽和 アルコールを、芳香族メルカプタン類を触媒とし
て不活性ガス中に於て反応開始剤を添加して反応
させることを特徴とする一般式
A general formula characterized by reacting an unsaturated alcohol represented by the formula with an aromatic mercaptan as a catalyst in an inert gas by adding a reaction initiator.

【式】で表わされるアルデ ヒドの製造方法〔式中、R1は水素又は低級アル
キル基を表わし、R2は飽和もしくは不飽和の炭
化水素基を表わす。〕に関するものである。 従来、不飽和アルコールからアルデヒド類の製
造方法には、 (1) Cu―Zn,Cu―Cr,ZnOなどの固体触媒を用
いて異性化する方法。 (2) アルミナ系触媒を用いて異性化する方法。 (3) Pt,Pd,Rh/SiO2触媒を用いて異性化する
方法。 等があげられる。しかしながら、これ等の方法で
は高選択率で目的物を得られる例もあるが、一般
に、固体触媒を用いる気相反応では触媒の表層部
の微細な構造などによつて反応結果が大きく左右
されることが避け難く、触媒の調製に特別の注意
と熟練を要するという煩雑さがある。本発明者ら
は、かかる従来の欠点を克服すべく不飽和アルコ
ールからのアルデヒド類の製造方法を液相法に於
て検討した結果、不飽和アルコールを芳香族メル
カプタン触媒を用いて、不活性ガス雰囲気下に於
て反応開始剤を用いることによりアルデヒド類を
きわめて高選択率で得られることを見出し、本発
明を完成した。 本発明で用いるメルカプタン類としては、ベン
ゼンチオール、O,m,p―トルエンチオール、
クロロチオフエノール等に代表される無置換及
び/又は置換芳香族メルカプタン類である。ここ
で、オクチルメルカプタン、テシルメルカプタン
等に代表されるアルキルメルカプタン類、ジチオ
グリコール、デシルジチオール等に代表されるア
ルキルジチオール類、その他チオグリコール酸、
メルカプトエタノールの如きメルカプタン類を使
用した場合は、転化率が低く、低収率となる。 本発明で用いることができる芳香族メルカプタ
ン類は、容易にかつ安価に入手し得る触媒であつ
て反応後触媒の分離再使用が簡単な操作でできる
という特徴を有し、工業的価値はきわめて高い。 本発明に用いるかかる不飽和アルコールの具体
例としては、ゲラニオール・ネロール(3,7―
ジメチル―2,6―オクタジエン―1―オー
ル)、フアルネソール(3,7,11―トリメチル
―2,6,10―ドデカトリエン―1―オール)、
フイトール(3,7,11,15―テトラメチル―2
―ヘキサデセン―1―オール)等を例示すること
ができる。 本発明で得られるアルデヒド類としてはシトロ
ネラール、3,7,11―トリメチル―6,10―ド
デカジエン―1―アール、3,7,11,15―テト
ラメチル―ヘキサデカン―1―アール等が例示で
きる。 いずれのアルデヒドも香料工業において重要な
物質であり、香料としてあるいは香料の合成中間
原料として用いられる。また、これらのアルデヒ
ド類は医薬や農薬の合成中間原料として有用な化
合物であり、例えばシトロネラールなどは幼若ホ
ルモン様活性物質の合成中間体として有用であ
る。 本発明に用いる触媒の使用量は、原料不飽和ア
ルコールに対し0.5〜100重量%の範囲が好まし
く、特に1〜50重量%の範囲が良い。 触媒の使用量が50重量%以上になると経済的な
見地から、又0.5重量%以下になると反応の進行
が遅くなり好ましくない。 反応雰囲気は、不活性ガス雰囲気下に反応開始
剤を用いて行うが、ここで不活性ガスとしては、
ヘリウム、アルゴン等の希ガス類や窒素等の反応
に関与しないガスである。又、反応開始剤として
は、アゾビスイソブチロニトリル〔AIBN〕、過
酸化ベンゾイル〔BPO〕等のラジカル反応を開
始させる添加剤等であり、その添加量は、不飽和
アルコールに対し0.05〜10重量%が好ましく、特
に0.5〜5重量%が良い。 本反応では、溶媒を用いなくとも高選択率でア
ルデヒドを与える。 溶媒を使用した場合は、多くの場合反応速度が
低下するが、特定の溶媒を用いることにより、ア
ルデヒドの選択率がさらに向上する。アルデヒド
の選択率を向上させる効果を有する溶媒として
は、N,N―ジメチルホルムアミド(DMF)、
N,N―ジエチルホルムアミド(DEF)、N,N
―ジメチルアセトアミド(DMAA)等の酸アミ
ド類、ジメチルスルホキシド(DMSO)、テトラ
メチルスルホン(スルホラン)等の含イオウ化合
物、テトラメチル尿素等の尿素化合物、ヘキサメ
チルホスホルアミド等のリン酸アミドなどに代表
される誘電率の高い一般に極性非プロトン溶媒と
呼ばれているものである。又その他としてピリジ
ン及びピリジン誘導体等も有効である。反応温度
は20℃〜200℃の範囲がよく、特に50℃〜150℃の
範囲が好ましい。 反応終了後は、単蒸留又は希アルカリ水溶液等
による化学的分離操作により触媒を分離した後、
蒸留により生成物と未反応原料を分離することが
できる。 以下に実施例を挙げて、本発明方法を詳細に説
明する。 実施例 1 ゲラニオール20gとネロール10gの混合液にチ
オフエノール3gとアゾビスイソブチロニトリル
(AIBN)0.9gを加え、窒素雰囲気下に於て、100
℃で1時間撹拌させた。 反応液はガスクロマトグラフイーにより分析を
行つた結果、ゲラニオール・ネロール混合物の転
化率は50%であり、生成したシトロネラールの選
択率は89%であつた。 実施例 2 実施例1に於て、チオフエノール6gとし、80
℃で4時間25分撹拌させた他は、実施例1と同様
に行つた結果、ゲラニオール・ネロール混合物の
転化率は80%であり、生成したシトロネラールの
選択率は86%であつた。 実施例 3〜5 実施例1に於て、溶媒を用い又その他の条件を
表1に掲げる様に変えた他は実施例1と同様に反
応を行い表1の結果を得た。
Method for producing an aldehyde represented by the formula [wherein R 1 represents hydrogen or a lower alkyl group, and R 2 represents a saturated or unsaturated hydrocarbon group]. ]. Conventionally, methods for producing aldehydes from unsaturated alcohols include: (1) isomerization using solid catalysts such as Cu-Zn, Cu-Cr, and ZnO; (2) A method of isomerization using an alumina catalyst. (3) Isomerization method using Pt, Pd, Rh/SiO 2 catalyst. etc. can be mentioned. However, although there are cases in which these methods can obtain the target product with high selectivity, in general, in gas phase reactions using solid catalysts, the reaction results are greatly influenced by the fine structure of the surface layer of the catalyst. This is difficult to avoid and requires special care and skill in the preparation of the catalyst. In order to overcome these conventional drawbacks, the present inventors investigated a method for producing aldehydes from unsaturated alcohols using a liquid phase method. The present invention was completed based on the discovery that aldehydes can be obtained with extremely high selectivity by using a reaction initiator in an atmosphere. Mercaptans used in the present invention include benzenethiol, O,m,p-toluenethiol,
These are unsubstituted and/or substituted aromatic mercaptans such as chlorothiophenol. Here, alkyl mercaptans such as octyl mercaptan and tesyl mercaptan, alkyl dithiols such as dithioglycol and decyl dithiol, other thioglycolic acids,
When mercaptans such as mercaptoethanol are used, the conversion rate is low and the yield is low. The aromatic mercaptans that can be used in the present invention are catalysts that can be easily and inexpensively obtained, and the catalyst can be separated and reused after the reaction with a simple operation, and has extremely high industrial value. . Specific examples of such unsaturated alcohols used in the present invention include geraniol and nerol (3,7-
dimethyl-2,6-octadien-1-ol), falnesol (3,7,11-trimethyl-2,6,10-dodecatrien-1-ol),
Phytol (3,7,11,15-tetramethyl-2
-hexadecen-1-ol). Examples of aldehydes obtainable in the present invention include citronellal, 3,7,11-trimethyl-6,10-dodecadien-1-al, and 3,7,11,15-tetramethyl-hexadecane-1-al. All aldehydes are important substances in the fragrance industry and are used as fragrances or as intermediate raw materials for fragrance synthesis. In addition, these aldehydes are compounds useful as intermediate materials for the synthesis of medicines and agricultural chemicals; for example, citronellal and the like are useful as intermediates for the synthesis of juvenile hormone-like active substances. The amount of the catalyst used in the present invention is preferably in the range of 0.5 to 100% by weight, particularly preferably in the range of 1 to 50% by weight, based on the raw material unsaturated alcohol. If the amount of catalyst used is more than 50% by weight, it is not preferable from an economical point of view, and if it is less than 0.5% by weight, the progress of the reaction will be slowed down, which is undesirable. The reaction atmosphere is an inert gas atmosphere using a reaction initiator, and the inert gas is:
It is a gas that does not participate in reactions such as rare gases such as helium and argon, and nitrogen. In addition, the reaction initiator is an additive that initiates a radical reaction such as azobisisobutyronitrile [AIBN], benzoyl peroxide [BPO], etc., and the amount added is 0.05 to 10% relative to the unsaturated alcohol. It is preferably 0.5 to 5% by weight, particularly 0.5 to 5% by weight. This reaction provides aldehydes with high selectivity without using a solvent. Although the reaction rate is often reduced when a solvent is used, the selectivity of the aldehyde can be further improved by using a specific solvent. Examples of solvents that have the effect of improving aldehyde selectivity include N,N-dimethylformamide (DMF);
N,N-diethylformamide (DEF), N,N
-Acid amides such as dimethylacetamide (DMAA), sulfur-containing compounds such as dimethylsulfoxide (DMSO) and tetramethylsulfone (sulfolane), urea compounds such as tetramethylurea, phosphoric acid amides such as hexamethylphosphoramide, etc. It is a typical polar aprotic solvent with a high dielectric constant. In addition, pyridine and pyridine derivatives are also effective. The reaction temperature is preferably in the range of 20°C to 200°C, particularly preferably in the range of 50°C to 150°C. After the reaction is complete, the catalyst is separated by simple distillation or chemical separation using a dilute alkaline aqueous solution, etc.
Distillation can separate the product and unreacted raw materials. The method of the present invention will be explained in detail with reference to Examples below. Example 1 3 g of thiophenol and 0.9 g of azobisisobutyronitrile (AIBN) were added to a mixed solution of 20 g of geraniol and 10 g of nerol, and the mixture was heated to 100 g in a nitrogen atmosphere.
The mixture was allowed to stir at ℃ for 1 hour. Analysis of the reaction solution by gas chromatography revealed that the conversion rate of the geraniol/nerol mixture was 50%, and the selectivity of the produced citronellal was 89%. Example 2 In Example 1, thiophenol was changed to 6 g, and 80
The same procedure as in Example 1 was carried out except that the mixture was stirred at ℃ for 4 hours and 25 minutes. As a result, the conversion rate of the geraniol/nerol mixture was 80%, and the selectivity of the produced citronellal was 86%. Examples 3 to 5 The reaction was carried out in the same manner as in Example 1, except that the solvent was used and other conditions were changed as shown in Table 1, and the results shown in Table 1 were obtained.

【表】 実施例 6 実施例1に於て、原料をネロールとし、反応時
間を45分とした他は、実施例1と同様に行つた結
果、ネロール転化率76%、生成ゲラニオール選択
率49%、生成シトロネラール選択率45%であつ
た。 即ち、不飽和アルコール転化率は40%であり消
費不飽和アルコールからシトロネラールへの選択
率は87%であつた。 実施例 7 実施例6に於て、原料をゲラニオールとし、反
応時間を30分とした他は実施例6と同様に行つた
結果、ゲラニオール転化率71%、生成ネロール選
択率25%、生成シトロネラール選択率60%であつ
た。即ち、不飽和アルコール転化率は53%であ
り、消費不飽和アルコールからシトロネラールへ
の選択率は81%であつた。 比較例 1 実施例3に於て、反応雰囲気を空気雰囲気下と
し、AIBNを加えずに3時間撹拌した他は実施例
3と同様に行つた結果、ゲラニオール・ネロール
混合物の転化率は31%であり、シトロネラール選
択率は51%であり、シトラール選択率は43%であ
つた。
[Table] Example 6 The same procedure as in Example 1 was carried out except that the raw material was nerol and the reaction time was 45 minutes. As a result, the conversion of nerol was 76%, and the selectivity of geraniol produced was 49%. , the selectivity for citronellal produced was 45%. That is, the unsaturated alcohol conversion rate was 40%, and the selectivity from consumed unsaturated alcohol to citronellal was 87%. Example 7 Example 6 was carried out in the same manner as in Example 6, except that the raw material was geraniol and the reaction time was 30 minutes. As a result, the conversion of geraniol was 71%, the selectivity of nerol produced was 25%, and the selection of citronellal produced was The rate was 60%. That is, the unsaturated alcohol conversion rate was 53%, and the selectivity from consumed unsaturated alcohol to citronellal was 81%. Comparative Example 1 The same procedure as in Example 3 was carried out except that the reaction atmosphere was an air atmosphere and stirring was performed for 3 hours without adding AIBN. As a result, the conversion rate of the geraniol/nerol mixture was 31%. The citronellal selectivity was 51% and the citral selectivity was 43%.

Claims (1)

【特許請求の範囲】 1 一般式 で表わされる不飽和アルコールを芳香属メルカプ
タン類を触媒として不活性ガス中に於いて反応開
始剤を加えて反応させることを特徴とする。 一般式 で表わされるアルデヒドの製造方法。 〔式中、R1は水素又は低級アルキル基を表わ
し、R2は飽和もしくは不飽和炭化水素基を表わ
す。〕
[Claims] 1. General formula The method is characterized in that an unsaturated alcohol represented by the following formula is reacted with an aromatic mercaptan as a catalyst in an inert gas by adding a reaction initiator. general formula A method for producing an aldehyde represented by [In the formula, R 1 represents hydrogen or a lower alkyl group, and R 2 represents a saturated or unsaturated hydrocarbon group. ]
JP16127279A 1979-12-12 1979-12-12 Preparation of aldehyde Granted JPS5683434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16127279A JPS5683434A (en) 1979-12-12 1979-12-12 Preparation of aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16127279A JPS5683434A (en) 1979-12-12 1979-12-12 Preparation of aldehyde

Publications (2)

Publication Number Publication Date
JPS5683434A JPS5683434A (en) 1981-07-08
JPS6230971B2 true JPS6230971B2 (en) 1987-07-06

Family

ID=15731944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16127279A Granted JPS5683434A (en) 1979-12-12 1979-12-12 Preparation of aldehyde

Country Status (1)

Country Link
JP (1) JPS5683434A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966054B1 (en) 2013-03-06 2019-01-02 Takasago International Corporation Method of producing optically-active aldehyde

Also Published As

Publication number Publication date
JPS5683434A (en) 1981-07-08

Similar Documents

Publication Publication Date Title
US4310709A (en) Manufacture of but-2-en-1-ol compounds by isomerizing the corresponding but-3-en-1-ol compounds
US4072660A (en) Process for the manufacture of resorcinols
US3960966A (en) Ketoisophorone manufacture
JPS6230971B2 (en)
KR20010078767A (en) A process for preparing a catalyst and catalytic oxidation therewith
Kataoka et al. Palladium (II)-gatalyzed oxidative rearrangement of propargyl esters
US5274145A (en) α-hydroxy-acids, preparation process and the use thereof
Aizpurua et al. Reagents and synthetic methods. 31. Silylations with N-trimethylsilyl-2-oxazolidinone (TMSO)
US4124633A (en) Tellurium catalyzed decomposition of peroxide intermediates resulting from the autoxidation of unsaturated aldehydes
JPS6230970B2 (en)
JPS6230180B2 (en)
US3654354A (en) Process for the oxidation of unsaturated hydrocarbons
JPH0157102B2 (en)
US4049706A (en) Selective oxidation of chrysanthemyl alcohol
US4700004A (en) Conversion of mercaptans to disulfides with soluble cobalt catalyst system
EP0475801B1 (en) Process for the preparation of thiophene
EP1067108A2 (en) Process for producing aryloxyacetic acids
EP0024770B1 (en) Hydrolysis of allyl ethers and ketones thus prepared
FR2730731A1 (en) PROCESS FOR CARBOXYLATION OF AN AROMATIC ETHER
JPS6310687B2 (en)
US5981792A (en) Process for the production of 1-functional allylalcohol carboxylic esters
EP0291033A1 (en) Preparation of 4-pentenoates by isomerization
Hirano et al. Synthesis of disulfides by the oxidative coupling of thiols with calcium hypochlorite and silica gel in hexane
CA1067102A (en) Process for the preparation of 1,1-dichloro-4-methylpenta-1,3-diene
JPS6257608B2 (en)