JPS6230970B2 - - Google Patents

Info

Publication number
JPS6230970B2
JPS6230970B2 JP54160101A JP16010179A JPS6230970B2 JP S6230970 B2 JPS6230970 B2 JP S6230970B2 JP 54160101 A JP54160101 A JP 54160101A JP 16010179 A JP16010179 A JP 16010179A JP S6230970 B2 JPS6230970 B2 JP S6230970B2
Authority
JP
Japan
Prior art keywords
unsaturated
reaction
selectivity
catalyst
citral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54160101A
Other languages
Japanese (ja)
Other versions
JPS5683435A (en
Inventor
Shuji Tsucha
Hideo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP16010179A priority Critical patent/JPS5683435A/en
Publication of JPS5683435A publication Critical patent/JPS5683435A/en
Publication of JPS6230970B2 publication Critical patent/JPS6230970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は不飽和アルコールから不飽和アルデヒ
ド類の製造方法に関するものである。更に詳しく
説明すると、一般式
The present invention relates to a method for producing unsaturated aldehydes from unsaturated alcohols. To explain in more detail, the general formula

【式】 で表わされる不飽和アルコールを、芳香属メルカ
プタン類を触媒として、極性非プロトン溶媒を用
いて、酸素雰囲気下に反応させることを特徴とす
る一般式
A general formula characterized by reacting an unsaturated alcohol represented by the formula with an aromatic mercaptan as a catalyst and a polar aprotic solvent in an oxygen atmosphere.

【式】で表わされ る不飽和アルデヒドの製造方法〔式中、R1は水
素又は低級アルキル基を表わし、R2は飽和もし
くは不飽和の炭化水素基を表わす。〕に関するも
のである。 従来、不飽和アルコールから不飽和アルデヒド
類の製造方法には、 (1) 重クロム酸混液で酸化する方法、 (2) 活性MnO2と加熱酸化する方法、 (3) Cu、Agなどの金属又はこれらの合金を含む
固体触媒による接触空気酸化する方法、 (4) Cu―Zn、Cu―Cr、ZnOなどの固体触媒を用
いて脱水素する方法、 (5) Zn、In、Ta、Al、Gaなどの低融点金属又
は、これらの合金の溶融状物と接触させる方法
などがある。 重クロム酸混液で酸化する方法は、及び活性
MnO2による熱酸化する方法では多量の酸化剤を
消費する欠点があり、Cu、Agなどの金属又はこ
れらの合金を含む固体触媒による接触空気酸化す
る方法及びCu―Zn、Cu―Cr、ZnOなどの固体触
媒を用いて脱水素する方法によれば、高選択率で
得られる例もあるが、一般に固体触媒を用いる気
相反応では触媒の表層部の微細な構造などによつ
て反応結果が大きく左右されることが避け難く又
触媒の調製に特別の注意と熟練を要するという煩
雑さがある。又、Zn、In、Ta、Al、Gaなどの低
融点金属又はこれらの合金の溶融状物と接触させ
る方法では、数100℃の高温を要し、原料アルコ
ールは低濃度で接触時間を大きくとらなければな
らない処から、実用場面での操業効率は低く、不
飽和アルデヒドを得るには、いまだ低選択率であ
る。 本発明者らは、かかる従来の欠点を克服すべく
不飽和アルコールからの不飽和アルデヒド類の製
造方法を検討した結果、不飽和アルコールを芳香
族メルカプタン触媒を用いて酸素雰囲気下反応さ
せることにより不飽和アルデヒド類を比較的高選
択率で得ることを見い出し、本発明を完成した。
本発明で用いるメルカプタン類としては、ベンゼ
ンチオール、O,m,P―トルエンチオール、ク
ロロチオフエノール等に代表される無置換及び/
又は置換芳香族メルカプタン類を例示することが
できる。ここで、オクチルメルカプタン、デシル
メルカプタン等に代表されるアルキルメルカプタ
ン類、ジチオグリコール、デシルジチオール等に
代表されるアルキルジチオール類、その他チオグ
リコール酸、メルカプトエタノールの如きメルカ
プタン類を使用した場合は、不飽和アルコールの
転化率の上昇につれて選択率の低下が見られ好ま
しくない。 本発明で用いることができる芳香族メルカプタ
ン類は、容易にかつ安価に入手しうる触媒であつ
て反応後触媒の分離再使用が簡単な操作で出来る
という特徴を有し、工業的価値はきわめて高い。 本発明に用いるかかる不飽和アルコールの具体
例としては、ゲラニオール・ネロール(3,7―
ジメチル―2,6―オクタジエン―1―オー
ル)、アアルネソール(3,7,11―トリメチル
―2,6,10―ドデカトリエン―1―オール)、
フイトール(3,7,11,15―テトラメチル―2
―ヘキサデセン―1―オール)等を例示すること
ができる。本発明で得られる不飽和アルデヒド類
としては、シトラール、フアルネサール、フイチ
ルアルデヒド等が例示できる。いずれのアルデヒ
ドも香料工業において重要な物質であり、香料と
してあるいは香料の合成中間原料、溶剤または保
留剤として用いられる。またこれらのアルデヒド
類は医薬や農薬の合成中間原料として有用な化合
物であり、例えばシトラールはビタミンAの合成
中間体として重要である。 本発明に用いる触媒の使用量は、原料不飽和ア
ルコールに対し0.5〜100重量パーセントの範囲が
好ましく、特に1〜50重量パーセントの範囲が良
い。触媒の使用量が50重量%以上になると経済的
な見地から、又0.5重量%以下になると反応の進
行が遅くなり好ましくない。 反応雰囲気は、酸素雰囲気にすることが必要で
あり、酸素、空気または酸素富化空気を使用する
ことができる。 本発明の特徴として特定の溶媒を用いることが
必要である。特定の溶媒としては、N,N―ジメ
チルホルムアミド(DMF)、N,N―ジエチルホ
ルムアミド(DEF)、N,N―ジメチルアセトア
ミド(DMA)等の酸アミド類、ジメチルスルホ
キシド(DMSO)、テトラメチレンスルホン(ス
ルホラン)等の含イオウ化合物、テトラメチル尿
素等の尿素系化合物、ヘキサメチルホスホルアミ
ド等のリン酸アミドなどに代表される誘電率の高
い一般に極性非プロトン溶媒と呼ばれているもの
である。又、ピリジン及びピリジン誘導体も有効
である。しかし、一般に溶媒として用いられる炭
化水素類、エーテル類、エステル類や、その他ニ
トロ化合物、ニトリル類などでは本反応に対する
効果は小さくなる。反応温度は20℃から200℃の
範囲がよく、特に40℃〜150℃の範囲が好まし
い。反応終了後は単蒸留又は希アルカリ水溶液等
による化学的分離操作により触媒を分離した後、
蒸留又は亜硫酸ソーダなどの付加剤を用いて生成
物と未反応原料を分離することができる。以下に
実施例を挙げて本発明方法を詳細に説明する。 実施例 1 ゲラニオール20gとネロール10gの混合液にチ
オフエノール1.5gとN,N―ジメチルホルムア
ミド(DMF)60gを加え、酸素雰囲気下に於て
80℃で1時間15分撹拌させた。反応液は、ガスク
ロマトグラフイーにより分析を行つた結果、ゲラ
ニオール・ネロール混合物の転化率は30%であ
り、生成したシトラールの選択率は81%であり、
副生物としてシトロネラールが選択率で7%得ら
れた。 比較例 1 実施例1に於て、チオフエノールを3gとし無
溶媒で60℃1時間撹拌した他は、実施例1と同様
に反応を行つた結果、ゲラニオール・ネロール混
合物の転化率は、29%であり、生成したシトラー
ルの選択率は14%であつた。 実施例 2 実施例1に於て、触媒をm―トルエンチオール
にした他は実施例1と同様に反応を行つた結果、
ゲラニオール・ネロール混合物の転化率は27%で
あり、生成したシトラールの選択率は72%であ
り、シトロネラールの選択率は8%であつた。 実施例 3〜6 実施例1に於て、溶媒の種類及びその他の条件
を表1に掲げる条件に変え他は実施例1と同様に
反応を行い表1の結果を得た。
A method for producing an unsaturated aldehyde represented by the formula [In the formula, R 1 represents hydrogen or a lower alkyl group, and R 2 represents a saturated or unsaturated hydrocarbon group. ]. Conventionally, methods for producing unsaturated aldehydes from unsaturated alcohols include (1) oxidation with a dichromic acid mixture, (2) heating oxidation with active MnO 2 , (3) oxidation with metals such as Cu, Ag, or (4) Dehydrogenation method using solid catalysts such as Cu-Zn, Cu-Cr, ZnO, etc. (5) Zn, In, Ta, Al, Ga There is a method of contacting with a molten material of a low melting point metal such as or an alloy thereof. The method of oxidizing with dichromic acid mixture is
The method of thermal oxidation using MnO 2 has the disadvantage of consuming a large amount of oxidizing agent, and the method of catalytic air oxidation using a solid catalyst containing metals such as Cu and Ag or their alloys, and the method of catalytic air oxidation using Cu-Zn, Cu-Cr, ZnO, etc. Dehydrogenation methods using solid catalysts can achieve high selectivity in some cases, but gas phase reactions that use solid catalysts generally have a large reaction result due to the fine structure of the surface layer of the catalyst. There is a complication in that the preparation of the catalyst requires special care and skill. In addition, the method of contacting with a melt of low melting point metals such as Zn, In, Ta, Al, Ga, or their alloys requires a high temperature of several hundred degrees Celsius, and the raw alcohol has a low concentration and a long contact time. As a result, the operational efficiency in practical situations is low, and the selectivity for obtaining unsaturated aldehydes is still low. In order to overcome these conventional drawbacks, the present inventors investigated a method for producing unsaturated aldehydes from unsaturated alcohols, and found that unsaturated alcohols are reacted with aromatic mercaptan catalysts in an oxygen atmosphere. The present invention was completed by discovering that saturated aldehydes can be obtained with relatively high selectivity.
Examples of mercaptans used in the present invention include unsubstituted and/or
Or substituted aromatic mercaptans can be exemplified. When using alkyl mercaptans such as octyl mercaptan and decyl mercaptan, alkyl dithiols such as dithioglycol and decyl dithiol, and other mercaptans such as thioglycolic acid and mercaptoethanol, unsaturated As the alcohol conversion rate increases, the selectivity decreases, which is undesirable. The aromatic mercaptans that can be used in the present invention are catalysts that can be easily and inexpensively obtained, and the catalyst can be separated and reused after the reaction with a simple operation, and has extremely high industrial value. . Specific examples of such unsaturated alcohols used in the present invention include geraniol and nerol (3,7-
dimethyl-2,6-octadien-1-ol), aarnesol (3,7,11-trimethyl-2,6,10-dodecatrien-1-ol),
Phytol (3,7,11,15-tetramethyl-2
-hexadecen-1-ol). Examples of the unsaturated aldehydes obtained in the present invention include citral, farnesal, and phythylaldehyde. All aldehydes are important substances in the fragrance industry and are used as fragrances, intermediate raw materials for synthesis of fragrances, solvents, or preservatives. Further, these aldehydes are compounds useful as intermediate raw materials for the synthesis of medicines and agricultural chemicals. For example, citral is important as an intermediate for the synthesis of vitamin A. The amount of the catalyst used in the present invention is preferably in the range of 0.5 to 100% by weight, particularly preferably in the range of 1 to 50% by weight, based on the raw unsaturated alcohol. If the amount of catalyst used is more than 50% by weight, it is not preferable from an economical point of view, and if it is less than 0.5% by weight, the progress of the reaction will be slowed down, which is undesirable. The reaction atmosphere needs to be an oxygen atmosphere, and oxygen, air or oxygen-enriched air can be used. As a feature of the present invention, it is necessary to use a specific solvent. Specific solvents include acid amides such as N,N-dimethylformamide (DMF), N,N-diethylformamide (DEF), and N,N-dimethylacetamide (DMA), dimethylsulfoxide (DMSO), and tetramethylene sulfone. These are generally called polar aprotic solvents with high dielectric constants, such as sulfur-containing compounds such as (sulfolane), urea compounds such as tetramethylurea, and phosphoric acid amides such as hexamethylphosphoramide. . Pyridine and pyridine derivatives are also effective. However, hydrocarbons, ethers, esters, and other nitro compounds, nitrites, etc., which are generally used as solvents, have a small effect on this reaction. The reaction temperature is preferably in the range of 20°C to 200°C, particularly preferably in the range of 40°C to 150°C. After the reaction is completed, the catalyst is separated by simple distillation or chemical separation using a dilute aqueous alkaline solution, etc.
Product and unreacted materials can be separated using distillation or an additive such as sodium sulfite. The method of the present invention will be explained in detail with reference to Examples below. Example 1 1.5 g of thiophenol and 60 g of N,N-dimethylformamide (DMF) were added to a mixed solution of 20 g of geraniol and 10 g of nerol, and the mixture was heated under an oxygen atmosphere.
The mixture was stirred at 80°C for 1 hour and 15 minutes. The reaction solution was analyzed by gas chromatography, and the conversion rate of the geraniol/nerol mixture was 30%, and the selectivity of the produced citral was 81%.
Citronellal was obtained as a by-product with a selectivity of 7%. Comparative Example 1 The reaction was carried out in the same manner as in Example 1, except that 3 g of thiophenol was used and stirred for 1 hour at 60°C without a solvent. As a result, the conversion rate of the geraniol/nerol mixture was 29%. The selectivity of the produced citral was 14%. Example 2 The reaction was carried out in the same manner as in Example 1 except that m-toluenethiol was used as the catalyst. As a result,
The conversion rate of the geraniol-nerol mixture was 27%, the selectivity of the produced citral was 72%, and the selectivity of citronellal was 8%. Examples 3 to 6 In Example 1, except that the type of solvent and other conditions were changed to those listed in Table 1, the reaction was carried out in the same manner as in Example 1, and the results shown in Table 1 were obtained.

【表】 実施例 7 実施例1に於て、原料をネロールとし、60℃で
2時間40分とした他は実施例1と同様に反応を行
つた結果、ネロールの転化率は77%、生成ゲラニ
オールの選択率は30%、生成シトラールの選択率
は44%であつた。即ち、不飽和アルコールの転化
率は46%であり、消費不飽和アルコールからのシ
トラールの選択率は76%であつた。 実施例 8 実施例1に於て、反応雰囲気を空気気流中と
し、2時間30分とした他は実施例1と同様に反応
を行つた結果、ゲラニオール・ネロール転化率は
28%であり、シトラール選択率は50%であり、シ
トロネラールの選択率は45%であつた。
[Table] Example 7 In Example 1, the reaction was carried out in the same manner as in Example 1 except that the raw material was nerol and the temperature was 60°C for 2 hours and 40 minutes. As a result, the conversion rate of nerol was 77%, and the reaction was The selectivity for geraniol was 30%, and the selectivity for citral produced was 44%. That is, the conversion rate of unsaturated alcohol was 46%, and the selectivity of citral from the consumed unsaturated alcohol was 76%. Example 8 The reaction was carried out in the same manner as in Example 1, except that the reaction atmosphere was an air stream and the reaction time was 2 hours and 30 minutes. As a result, the conversion rate of geraniol and nerol was as follows.
The selectivity for citral was 50% and the selectivity for citronellal was 45%.

Claims (1)

【特許請求の範囲】 1 一般式 で表わされる不飽和アルコールを芳香属メルカプ
タン類を触媒として極性非プロトン溶媒を用い
て、酸素雰囲気下に反応させることを特徴とす
る。 一般式 で表わされる不飽和アルデヒドの製造方法。 〔式中、R1は水素又は低級アルキル基を表わ
し、R2は飽和もしくは不飽和炭化水素基を表わ
す。〕
[Claims] 1. General formula It is characterized by reacting an unsaturated alcohol represented by the following in an oxygen atmosphere using an aromatic mercaptan as a catalyst and a polar aprotic solvent. general formula A method for producing an unsaturated aldehyde represented by [In the formula, R 1 represents hydrogen or a lower alkyl group, and R 2 represents a saturated or unsaturated hydrocarbon group. ]
JP16010179A 1979-12-10 1979-12-10 Preparation of unsaturated aldehyde Granted JPS5683435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16010179A JPS5683435A (en) 1979-12-10 1979-12-10 Preparation of unsaturated aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16010179A JPS5683435A (en) 1979-12-10 1979-12-10 Preparation of unsaturated aldehyde

Publications (2)

Publication Number Publication Date
JPS5683435A JPS5683435A (en) 1981-07-08
JPS6230970B2 true JPS6230970B2 (en) 1987-07-06

Family

ID=15707865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16010179A Granted JPS5683435A (en) 1979-12-10 1979-12-10 Preparation of unsaturated aldehyde

Country Status (1)

Country Link
JP (1) JPS5683435A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604277B2 (en) 2005-12-28 2009-10-20 Yanmar Co., Ltd. Working vehicle equipped with assist grip
CN101128341B (en) 2005-12-28 2010-08-25 洋马株式会社 Tractor

Also Published As

Publication number Publication date
JPS5683435A (en) 1981-07-08

Similar Documents

Publication Publication Date Title
US2064254A (en) Production of higher ketones
US2042220A (en) Catalytic oxidation of unsaturated alcohols
JP2016172719A (en) Process for preparing acrolein from glycerol or glycerin
PL83243B1 (en)
US4107204A (en) Catalytic oxidation of acrolein to acrylic acid
KR101115296B1 (en) Catalyst for synthesizing alkanethiol and method for the production thereof
JPS6230970B2 (en)
US4010205A (en) Process for the preparation of a diketone derivative
BRILL et al. Metal-Salt—Catalyzed Oxidation of Methacrolein
US3994980A (en) Cobalt molybdate as catalyst for preparation of mercaptans from carbonyl compounds hydrogen sulfide and hydrogen
US11028033B2 (en) Method for producing terpene aldehydes and terpene ketones
KR870001316B1 (en) Process for the production of olefinic acids and esters
JPS6230971B2 (en)
JPS6230180B2 (en)
US6476258B1 (en) Process for producing aryloxyacetic acids
CA1048993A (en) Process for the preparation of acrylic and methacrylic acids
TW200406376A (en) Process for production of an alcohol
EP1193238B1 (en) Process for producing 2,4,5-trialkylbenzaldehydes
EP0475801B1 (en) Process for the preparation of thiophene
CA1059531A (en) Selective oxidation of chrysanthemyl alcohol
US4354045A (en) Preparation of formaldehyde
US2402615A (en) Catalytic process and products thereof
Chitwood et al. Phenols by Dehydrogenation
US3471566A (en) Oxidation of mercurous salts
CN113731440B (en) Method for preparing aldehyde by catalytic oxidation of alcohol by composite metal catalyst