JPS6230791Y2 - - Google Patents

Info

Publication number
JPS6230791Y2
JPS6230791Y2 JP2162780U JP2162780U JPS6230791Y2 JP S6230791 Y2 JPS6230791 Y2 JP S6230791Y2 JP 2162780 U JP2162780 U JP 2162780U JP 2162780 U JP2162780 U JP 2162780U JP S6230791 Y2 JPS6230791 Y2 JP S6230791Y2
Authority
JP
Japan
Prior art keywords
heating element
partition wall
heat generating
thickness
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2162780U
Other languages
Japanese (ja)
Other versions
JPS56123492U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2162780U priority Critical patent/JPS6230791Y2/ja
Publication of JPS56123492U publication Critical patent/JPS56123492U/ja
Application granted granted Critical
Publication of JPS6230791Y2 publication Critical patent/JPS6230791Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Description

【考案の詳細な説明】 本考案は、正の抵抗温度特性を有する半導体磁
器よりなる発熱装置に関するものであり、特に、
正の抵抗温度特性を有する半導体磁器に多数の貫
通孔を設けてなる発熱装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a heat generating device made of semiconductor porcelain having positive resistance-temperature characteristics.
The present invention relates to a heat generating device formed by providing a large number of through holes in semiconductor porcelain having positive resistance-temperature characteristics.

近年、従来のニクロム線等を使用した発熱装置
に代るものとして、自己温度制御機能を有し単位
体積当りの発熱量が多くなりしかも構造堅固であ
る等の理由から、正の抵抗温度特性を有する半導
体磁器に多数の貫通孔を設けたものを発熱体とし
て用いこれに対して送風するように構成した発熱
装置が使用されてきている。この種の発熱装置の
一例を添付図面の第1図に略示している。第1図
は、発熱装置の縦断面を略示しており、この発熱
装置は、例えば、ドライヤー等に使用されうるも
ので、円筒状のハウジング1内に発熱体2を支持
部材3にて支持して備え、更に、モータ4にて駆
動される送風翼5を備えてなつている。この発熱
体2は、正の抵抗温度特性を有する半導体磁器、
いわゆるPTC材料から円板状に形成されたもの
で、第2図の正面図によく示されているように、
横断面が正方形の多数の貫通孔6が等間隔に配列
して形成されている。この発熱体2の両端面に
は、第1図によく示されているように、電力供給
用の電極7および8が設けられており、これら電
極7および8を電源に接続すると、貫通孔6間の
隔壁9に電流が流れ、発熱体2が発熱することに
なる。発熱体2へ電力を供給した状態で、モータ
4を付勢して、送風翼5を駆動すると、ハウジン
グ1の後端板10の通気孔11、発熱体2の貫通
孔6およびハウジング1の前面の出力開口12を
通しての送風がなされ、発熱体2の貫通孔6を通
過する際に空気流が加熱されるので、出力開口1
2から温風が得られることになる。
In recent years, as an alternative to conventional heating devices using nichrome wire, etc., devices with positive resistance-temperature characteristics have been introduced because they have a self-temperature control function, generate a large amount of heat per unit volume, and are structurally sound. A heat generating device has been used in which a semiconductor ceramic having a large number of through holes is provided as a heat generating body and air is blown to the heat generating body. An example of a heating device of this type is shown schematically in FIG. 1 of the accompanying drawings. FIG. 1 schematically shows a longitudinal section of a heat generating device, which can be used for example in a hair dryer, and has a heating element 2 supported by a support member 3 in a cylindrical housing 1. The air blower 5 further includes blower blades 5 driven by a motor 4. This heating element 2 is made of semiconductor porcelain having positive resistance temperature characteristics.
It is formed into a disk shape from a so-called PTC material, and as shown in the front view of Figure 2,
A large number of through holes 6 having a square cross section are formed and arranged at equal intervals. As clearly shown in FIG. 1, electrodes 7 and 8 for power supply are provided on both end faces of this heating element 2, and when these electrodes 7 and 8 are connected to a power source, the through hole 6 A current flows through the partition wall 9 between them, causing the heating element 2 to generate heat. When power is supplied to the heating element 2 and the motor 4 is energized to drive the blower blades 5, the ventilation hole 11 of the rear end plate 10 of the housing 1, the through hole 6 of the heating element 2, and the front surface of the housing 1 are activated. Air is blown through the output opening 12 of the heating element 2, and the airflow is heated when passing through the through hole 6 of the heating element 2.
Warm air can be obtained from 2.

この種の発熱装置は、従来のニクロム線等を使
用したものに比較して、構造的に堅固でしかも自
己温度制御機能を有し単位体積当りの発熱量も多
いので有利なものであるが、従来の構造では次の
ような欠点がありまだまだ改良の余地の残されて
いるものである。すなわち、第3図は、第2図の
A部拡大図であり、この第3図に明瞭に示されて
いるように、従来の発熱体2の貫通孔6間の間隔
の厚さtは、どこもほゞ均一なものとされてい
た。これは、この種発熱体は押出し成形法等によ
つて製造されるのであるが、その製造を容易なも
のとするためには貫通孔及び隔壁の形状をなるべ
く単純なものとするのが好ましいことや、熱歪に
よる破損を防止する等の意味で均一な温度分布を
得るにはそうした方がよいと考えたこと等による
ものと考えられる。しかし、このように貫通孔間
の間隔の厚さをどこも均一にしたものでは、第3
図において部分13の方より部分14の方が比表
面積が大きくなつており、熱放散が速やかであ
る。換言すれば、隔壁9の厚さをどこも均一なも
のとしたことによりかえつて、部分13に熱がこ
もりやすくなつてしまつており、この従来の構造
の発熱体は、発熱体全体の均一な温度分布を得て
全体として発熱量を均一にして発熱体全体を無駄
なく利用して単位体積当り最大の発熱量を得ると
いう点から見ると、問題のあるものであることが
分つた。
This type of heating device is advantageous in that it is structurally more solid, has a self-temperature control function, and generates a large amount of heat per unit volume compared to conventional devices using nichrome wire, etc. The conventional structure has the following drawbacks, and there is still room for improvement. That is, FIG. 3 is an enlarged view of part A in FIG. 2, and as clearly shown in FIG. 3, the thickness t of the interval between the through holes 6 of the conventional heating element 2 is: It was considered to be almost uniform everywhere. This is because this type of heating element is manufactured by extrusion molding, etc., and in order to make it easy to manufacture, it is preferable to make the shapes of the through holes and partition walls as simple as possible. This is thought to be due to the fact that it was thought that it would be better to do so in order to obtain a uniform temperature distribution in order to prevent damage due to thermal distortion. However, in the case where the thickness of the interval between the through holes is made uniform everywhere, the third
In the figure, portion 14 has a larger specific surface area than portion 13, and heat dissipates more quickly. In other words, by making the thickness of the partition wall 9 uniform everywhere, heat is more likely to be trapped in the portion 13, and the heating element with this conventional structure has a uniform temperature throughout the heating element. It has been found that there is a problem from the point of view of obtaining the maximum amount of heat generated per unit volume by obtaining distribution, making the amount of heat generated uniform as a whole, and utilizing the entire heating element without wasting it.

本考案の目的は、このような従来技術にかんが
みて、発熱体を形成する半導体磁器材料の完全な
有効利用を図りより高い単位体積当りの発熱量が
得られるようにした発熱装置を提供することであ
る。
In view of such prior art, the purpose of the present invention is to provide a heat generating device that makes full effective use of the semiconductor ceramic material forming the heat generating element and can obtain a higher calorific value per unit volume. It is.

本考案の前述の目的は、正の抵抗温度特性を有
する半導体磁器に多数の貫通孔を設けるとともに
その両面に電極を形成してなる発熱体を備える発
熱装置において、前記貫通孔を取り囲む隔壁の厚
みを発熱体各部の比表面積がほゞ等しくなるよう
に異ならせることによつて達成される。
The above-mentioned object of the present invention is to provide a heat generating device including a heating element formed by providing a large number of through holes in a semiconductor porcelain having positive resistance-temperature characteristics and forming electrodes on both surfaces thereof, in which the thickness of a partition wall surrounding the through holes is reduced. This is achieved by making the specific surface areas of each part of the heating element different so that they are approximately equal.

また、本考案の実施例によれば、隔壁の厚みは
隣接する隔壁との接合点近傍より離れるにしたが
つて増大される。
Further, according to the embodiment of the present invention, the thickness of the partition wall increases from the vicinity of the junction with the adjacent partition wall as the distance increases.

次に、添付図面の第4図及び第5図に基づいて
本考案の実施例について本考案をより詳細に説明
する。
Next, the present invention will be described in more detail with reference to FIGS. 4 and 5 of the accompanying drawings.

第4図は、本考案の一実施例としての発熱装置
に使用する発熱体を示す第3図と同様の図であ
る。この第4図の発熱体は、チタン酸バリウム
(BaTiO3)に半導体化のための微量添加物を添加
して焼結した正の抵抗温度特性を有する半導体磁
器、いわゆるPTC材料から円板状に形成され横
断面が大体において正方形の多数の貫通孔6Aが
等間隔に配列して形成されたものである点は、第
1図から第3図について説明した従来の発熱体と
同様である。しかし、本考案により、第4図の発
熱体の貫通孔6A間の隔壁、すなわち、貫通孔6
Aを取り囲む隔壁9Aの厚さは、横断面方向にお
いて均一でなく、隣接する隔壁との接合部15か
ら離れるにしたがつて厚くされている。隔壁9A
の基部の厚みt1が最小で、中間部の厚みt2が最大
で、その間直線的に厚みが変化されている。この
ため、貫通孔6Aの横断面形状は、完全な正方形
ではなくなつているが、このように厚さの異なつ
た隔壁構造とすることにより、発熱体各部の半導
体磁器体積に対する比表面積がほゞ等しくなるの
で、接合部15に熱がこもつてしまうようなこと
がなくなる。従つて、第4図の構造の発熱体によ
れば、使用時の発熱体各部の温度をほゞ均一とし
その発熱量もほゞ均一とすることができ、結果と
して半導体磁器材料のより完全な有効利用を図る
ことができ単位体積当りの発熱量をより高いもの
とすることができる。しかも、熱歪による破損等
も生じにくいものとなる。
FIG. 4 is a diagram similar to FIG. 3 showing a heating element used in a heating device as an embodiment of the present invention. The heating element shown in Figure 4 is made into a disk shape from a so-called PTC material, which is a semiconductor porcelain that has a positive resistance temperature characteristic and is made by adding a small amount of additives to make it a semiconductor to barium titanate (BaTiO 3 ) and sintering it. It is similar to the conventional heating element described with reference to FIGS. 1 to 3 in that a large number of through holes 6A having a generally square cross section are formed and arranged at equal intervals. However, according to the present invention, the partition wall between the through holes 6A of the heating element in FIG.
The thickness of the partition wall 9A surrounding A is not uniform in the cross-sectional direction, and increases as the distance from the joint 15 with the adjacent partition wall increases. Partition wall 9A
The thickness t 1 at the base is the minimum, the thickness t 2 at the middle part is the maximum, and the thickness changes linearly between them. For this reason, the cross-sectional shape of the through hole 6A is no longer a perfect square, but by having a partition wall structure with different thicknesses, the specific surface area of each part of the heating element relative to the volume of the semiconductor ceramic is approximately equal. Since they are equal, heat will not accumulate in the joint 15. Therefore, according to the heating element having the structure shown in FIG. 4, the temperature of each part of the heating element during use can be made almost uniform, and the amount of heat generated can also be made almost uniform, and as a result, the semiconductor ceramic material can be made more perfect. Effective utilization can be achieved, and the amount of heat generated per unit volume can be increased. Furthermore, damage due to thermal strain is less likely to occur.

尚、第4図の実施例では、隔壁9Aの厚さが、
最小t1から最大t2まで直線的に変化するようにし
たのであるが、これに限らず、各部の比表面積が
ほゞ等しくなるようなものであれば、任意の曲線
にて変化させても同様の効果を得ることができる
ものである。
In the embodiment shown in FIG. 4, the thickness of the partition wall 9A is
Although we designed it to change linearly from the minimum t 1 to the maximum t 2 , it is not limited to this, and as long as the specific surface area of each part is approximately equal, it can be changed using an arbitrary curve. Similar effects can be obtained.

第5図は、本考案の別の実施例としての発熱装
置に使用する発熱体を示す第4図と同様の図であ
る。この第5図の発熱体は、貫通孔の横断面形状
が大体において正六角形である点を除けば、第4
図の実施例のものと同様である。この実施例にお
いても、貫通孔6Bの間の隔壁9Bの厚さは、横
断面方向において均一でなく、隣接する隔壁との
接合部15Aから離れるにしたがつて厚くされて
いる。すなわち、隔壁9Bの基部の厚みt1が最小
で、中間部の厚みt2が最大で、その間、曲線的に
厚みが変化されている。このため、貫通孔6Bの
横断面形状は、完全な正六角形ではなくなつてい
るが、このように厚さの異なつた隔壁構造とする
ことにより、発熱体各部の半導体磁器体積に対す
る比表面積がほゞ等しくなるので、接合部15A
に特に熱がこもつてしまうようなことがなくな
る。従つて、第5図の構造の発熱体によれば、第
4図の実施例のものと同様に、単位体積当りの発
熱量がより高くしかも熱歪による破損等の問題も
全くない発熱装置を提供することができる。
FIG. 5 is a diagram similar to FIG. 4 showing a heating element used in a heating device as another embodiment of the present invention. The heating element shown in FIG. 5 has the following features:
It is similar to the embodiment shown in the figure. In this embodiment as well, the thickness of the partition wall 9B between the through holes 6B is not uniform in the cross-sectional direction, and increases as the distance from the joint 15A with the adjacent partition wall increases. That is, the thickness t 1 at the base of the partition wall 9B is the minimum, the thickness t 2 at the middle portion is the maximum, and the thickness changes in a curved manner between them. For this reason, the cross-sectional shape of the through hole 6B is no longer a perfect regular hexagon, but by creating a partition wall structure with different thicknesses, the specific surface area of each part of the heating element relative to the volume of the semiconductor ceramic can be reduced. Since they are equal, the joint part 15A
This eliminates the possibility of overheating. Therefore, according to the heating element having the structure shown in FIG. 5, it is possible to create a heating device which, like the embodiment shown in FIG. 4, has a higher calorific value per unit volume and has no problems such as damage due to thermal distortion. can be provided.

尚、前述の実施例では、貫通孔の横断面形状
は、大体において正方形又は正六角形であつた
が、この貫通孔の形状は、これに限らず、三角
形、八角形等その他の任意の多角形でもよいもの
である。また、発熱体に設ける電極は、オーム性
でも非オーム性でもよく本考案の同様の効果の得
られるものである。更にまた、発熱体の貫通孔へ
通流される流体も空気に限らず液体等他の任意の
流体でありうる。
In the above-mentioned embodiments, the cross-sectional shape of the through-hole was generally a square or a regular hexagon, but the shape of the through-hole is not limited to this, and may be any other polygonal shape such as a triangle or an octagon. But it's good. Further, the electrodes provided on the heating element may be ohmic or non-ohmic, and the same effects of the present invention can be obtained. Furthermore, the fluid passed through the through hole of the heating element is not limited to air, but may be any other fluid such as liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面の第1図は従来の発熱装置の一例を示
す概略縦断面図、第2図は第1図の発熱装置にお
ける発熱体の正面図、第3図は第2図のA部拡大
図、第4図および第5図は本考案の異なる2つの
実施例としての発熱体をそれぞれ示す第3図と同
様の図である。 2……発熱体、6A,6B……貫通孔、7,8
……電極、9A,9B……隔壁、15,15A…
…接合部。
FIG. 1 of the accompanying drawings is a schematic longitudinal sectional view showing an example of a conventional heat generating device, FIG. 2 is a front view of a heating element in the heat generating device of FIG. 1, and FIG. 3 is an enlarged view of part A in FIG. 2. 4 and 5 are views similar to FIG. 3, respectively showing heating elements as two different embodiments of the present invention. 2... Heating element, 6A, 6B... Through hole, 7, 8
... Electrode, 9A, 9B ... Partition wall, 15, 15A...
...junction.

Claims (1)

【実用新案登録請求の範囲】 (1) 正の抵抗温度特性を有する半導体磁器に多数
の貫通孔を設けるとともにその両面に電極を形
成してなる発熱体を備える発熱装置において、
前記貫通孔を取り囲む隔壁の厚みを発熱体各部
の比表面積がほゞ等しくなるように異ならせた
ことを特徴とする発熱装置。 (2) 前記隔壁の厚みは、隣接する隔壁との接合部
近傍より離れるにしたがつて増大している実用
新案登録請求の範囲第(1)項記載の発熱装置。
[Scope of Claim for Utility Model Registration] (1) A heating device comprising a heating element formed by providing a large number of through holes in semiconductor porcelain having positive resistance-temperature characteristics and forming electrodes on both sides of the heating element,
A heat generating device characterized in that the thickness of the partition wall surrounding the through hole is varied so that the specific surface area of each part of the heat generating body is approximately equal. (2) The heat generating device according to claim 1, wherein the thickness of the partition wall increases as the distance increases from the vicinity of the joint with the adjacent partition wall.
JP2162780U 1980-02-21 1980-02-21 Expired JPS6230791Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2162780U JPS6230791Y2 (en) 1980-02-21 1980-02-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2162780U JPS6230791Y2 (en) 1980-02-21 1980-02-21

Publications (2)

Publication Number Publication Date
JPS56123492U JPS56123492U (en) 1981-09-19
JPS6230791Y2 true JPS6230791Y2 (en) 1987-08-07

Family

ID=29617783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2162780U Expired JPS6230791Y2 (en) 1980-02-21 1980-02-21

Country Status (1)

Country Link
JP (1) JPS6230791Y2 (en)

Also Published As

Publication number Publication date
JPS56123492U (en) 1981-09-19

Similar Documents

Publication Publication Date Title
JPH0613937B2 (en) Fluid heating element
KR102091470B1 (en) Hair Dryer Having Ceramic Heater Unit
JPS6230791Y2 (en)
JPS6125563Y2 (en)
JPH0210684A (en) Fan forced heater
JPS6318146Y2 (en)
JP2557902Y2 (en) heater
JPH0210683A (en) Forced hot air heater
JPS631420Y2 (en)
JPS6362181A (en) Blower heater
JPH0754763Y2 (en) Ventilation electric warmer
JPH10106725A (en) Sheet-like heater element and electric carpet
JPH0727594Y2 (en) Ceramic heater
JPS6119401Y2 (en)
JPS6245429Y2 (en)
JPH03127797U (en)
JPS6028903Y2 (en) electric hot air machine
JPS5970210A (en) Electric heating device for car
JPH05174946A (en) Heating unit
JPS594552Y2 (en) heat generating device
JPS6028904Y2 (en) Hot air generation unit
JPS63149088U (en)
JP2503373Y2 (en) Ceramic heater
JPS5833490Y2 (en) hot air generator
JPS5815806Y2 (en) Onpuusoufuusouchi