JPS6229921B2 - - Google Patents

Info

Publication number
JPS6229921B2
JPS6229921B2 JP53043969A JP4396978A JPS6229921B2 JP S6229921 B2 JPS6229921 B2 JP S6229921B2 JP 53043969 A JP53043969 A JP 53043969A JP 4396978 A JP4396978 A JP 4396978A JP S6229921 B2 JPS6229921 B2 JP S6229921B2
Authority
JP
Japan
Prior art keywords
distributed constant
low
pass filter
line
filter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53043969A
Other languages
Japanese (ja)
Other versions
JPS54136258A (en
Inventor
Isashige Yamako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP4396978A priority Critical patent/JPS54136258A/en
Publication of JPS54136258A publication Critical patent/JPS54136258A/en
Publication of JPS6229921B2 publication Critical patent/JPS6229921B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はEHF,SHF,UHFおよびVHF等の周
波数帯に使用する低域通過ろ波回路に関する。 従来特性インピーダンスの異なる分布定数線路
を交互に縦続接続した低域通過ろ波回路におい
て、それらの接続部における特性インピーダンス
の急激な変化により生ずる複雑な電磁気的効果の
ため、分布定数理論に基づく設計値に対してまず
試作を行い、試行錯誤して所望のろ波特性を得る
という繁雑さがあつた。 本発明は前記低域通過ろ波回路の分布定数線路
の接続部に一方の分布定数線路の特性インピーダ
ンスの値から相隣る他方の分布定数線路の特性イ
ンピーダンスの値までゆるやかな変化を有するテ
ーパ状または微少ステツプ状の線路を設け、互い
に縦続接続して構成することを特徴とし、その目
的は理論設計値に対し試行錯誤することなく容易
に所望のろ波特性を得ることである。以下図面に
より詳細に説明する。 第1図は分布定数線路で構成した低域通過ろ波
回路の1区間を示す。この区間の伝送特性を表わ
すトランスフアーマトリツクスは光速度をc、周
波数を、分布定数線路の自由空間線路長(比誘
電率εr=1の場合に換算された線路長)をl
i、低域通過ろ波回路の終端インピーダンスを
R、分布定数線路の特性インピーダンスをZ0i
すると、 ただし、θi=2πli/cで表わされる。 また線路定数Z0i,liをそれぞれ有する各区間
をN個縦続接続した低域通過ろ波回路の伝送特性
は各区間のトランスフアー・マトリツクス全部の
積で表わされる。トランスフアー・マトリツクス
の乗算の順序は入力側から出力側へ縦続接続され
る分布定数線路各区間の順序通りに行う。このよ
うにして得られるN区間総合のトランスフアー・
マトリツクスの各成分をT11 l,T12 l,T21 lおよび
T22 lとする。次にトランスフアー・マトリツクス
を物理的意味をもつ散乱マトリツクス(Sマトリ
ツクス)に変換する。対応するN区間総合の散乱
マトリツクスの各成分をS11,S12,S21,および
S22とすると、それらの関係は で示される。従つて低域通過ろ波回路の入力側か
ら出力側へのそう入損失は20log|S21|=−
20log|T11 lデシベルで求められ、入力側の反射
係数は20log|S11|=20log{|T21 l|/|T11 l
|}デシベルとなる。各周波数ごとにそう入損
失、反射係数を計算すれば低域ろ波回路の周波数
特性が求められる。すらわちここででは低域通過
ろ波回路の各区間の特性インピーダンスZ0i、自
由空間線路長liを与えて、その周波数特性を計
算で求める手順を示した。しかし実際には所期の
低域通過ろ波回路の周波数に対するそう入損失、
反射係数等を実現する各分布定数線路区間のZ0
,li(i=1,2,…N)を決定しなければ
ならないので、以下にその手順を示す。各区間の
0i,li(i=1,2,…N)の初期値を与えて
得られるそう入損失と希望するそう入損失の差の
2乗を各周波数ごとに求め、それらの総和をQと
する。各区間のZ0iとli(i=1,2,…N)を
可変パラメータとしてQを最少にすれば、希望の
低域通過ろ波回路が設計されることになる。この
ようにしてZ0iとli(i=1,2,…N)を決定
する方法は最適化法といい、数学的方法により電
子計算機を用いて計算を繰り返し実行して各区間
のパラメータZ0i,li(i=1,2,…N)を求
めることができる。 従来の解析的に設計される低域通過ろ波回路の
一例を第2図に示す。同図においてZ0i,liがそ
れぞれ異なる分布定数線路が交互に7区間縦続接
続されていることを示し、各区間をB,D,F,
H,F′,D′およびB′で示してある。また相隣る
区間の特性インピーダンスが大幅に異なることを
模式図的に示している。前述のように、このよう
な大幅に特性インピーダンスが異なる分布定数線
路の縦続接続を含む回路は第1図の分布定数線路
モデルで考えている範囲外の電磁気的効果を伴う
ため所要の伝送特性が得られず、設計値に対し試
行錯誤的な修正を必要とした。 本発明では、相隣る分布定数線路の特性インピ
ーダンスが急激に変化しないように、徐々に変観
化する階段状またはテーパ状の線路部分を設け、
各分布定数線路定数Z0i,li(i=1,2,…
N)を最適決定するものである。一例として終端
抵抗50オーム、1050MHz以下の周波数帯で0.3デ
シベル以下のそう入損失を有する低域通過ろ波回
路を模式図的に示したものが第3図aである。同
図において区間a,a′c,c′,e,e′,gおよび
g′区間は階段状線路区間を示し、c,c′,e,
e′,g,g′は各々4個の区間に細分されるので全
区間数Nは39となる。第3図bは第3図aの階段
状の線路区間の包絡線を平均化してテーパ状にし
て実施した場合の模式図である。また第3図aの
分布定数線路構成を説明する図が第4図であり、
1,2,3,…39は入力側から順次出力側へ付
した線路番号である。第1表は第4図の線路番号
に対応する線路定数Z0i,li(i=1,2,…
39)を示したものである。また第2表は第4図す
なわち第3図aの低域通過ろ波回路のそう入損失
および入力反射係数の700MHz〜1450MHzの周波
数特性を示したものである。これによると1050M
Hz以上1450MHzにわたりそう入損失が増大して低
域ろ波特性を有することが分かる。またテーパ状
にしても同様の特性を得る。なお特性インピーダ
ンスの変化が大幅でない接続部を低域通過ろ波回
路の構成要素として設ける場合は、特にその接続
部を階段状またはテーパ状としなくてもよいこと
は容易に推察できる。
The present invention relates to a low-pass filter circuit used in frequency bands such as EHF, SHF, UHF and VHF. Conventionally, in low-pass filter circuits in which distributed constant lines with different characteristic impedances are alternately connected in cascade, design values based on distributed constant theory are required due to complex electromagnetic effects caused by sudden changes in characteristic impedance at these connections. First, we had to make a prototype and then go through trial and error to obtain the desired filtering characteristics, which was complicated. The present invention provides a tapered shape having a gradual change in the characteristic impedance value of one distributed constant line to the characteristic impedance value of the other adjacent distributed constant line at the connection portion of the distributed constant lines of the low-pass filter circuit. Alternatively, the filter is characterized in that minute step-shaped lines are provided and connected in cascade to each other, and the purpose is to easily obtain desired filtering characteristics without trial and error based on theoretical design values. This will be explained in detail below with reference to the drawings. FIG. 1 shows one section of a low-pass filter circuit composed of distributed constant lines. The transfer matrix that expresses the transmission characteristics of this section is the speed of light, c, frequency, and the free space line length of the distributed constant line (line length converted when relative permittivity εr=1).
i , the terminal impedance of the low-pass filter circuit is R, and the characteristic impedance of the distributed constant line is Z 0i , However, it is expressed as θ i =2πl i /c. Further, the transmission characteristic of a low-pass filter circuit in which N sections each having line constants Z 0i and l i are connected in cascade is represented by the product of all the transfer matrices of each section. The order of multiplication of the transfer matrix is performed in accordance with the order of each section of the distributed constant line cascaded from the input side to the output side. The total transfer of N sections obtained in this way is
Each component of the matrix is T 11 l , T 12 l , T 21 l and
Let T 22 l . Next, the transfer matrix is converted into a physically meaningful scattering matrix (S matrix). Let each component of the corresponding N-interval total scattering matrix be S 11 , S 12 , S 21 , and
S 22 , their relationship is It is indicated by. Therefore, the input loss from the input side to the output side of the low-pass filter circuit is 20log | S 21 | = -
20log | T 11 l is determined in decibels, and the reflection coefficient on the input side is 20log | S 11 | = 20 log { | T 21 l | / | T 11 l
|decibel. By calculating the input loss and reflection coefficient for each frequency, the frequency characteristics of the low-pass filter circuit can be determined. Here, we have given the characteristic impedance Z 0i and free space line length l i of each section of the low-pass filter circuit, and have shown a procedure for calculating the frequency characteristics. However, in reality, the input loss for the frequency of the intended low-pass filter circuit,
Z 0 of each distributed constant line section to realize reflection coefficient etc.
Since it is necessary to determine i and l i (i=1, 2, . . . N), the procedure is shown below. Find the square of the difference between the input loss obtained by giving the initial values of Z 0i , l i (i=1, 2,...N) for each interval and the desired input loss for each frequency, and calculate the sum of them. Let be Q. By minimizing Q by using Z 0i and l i (i=1, 2, . . . N) of each section as variable parameters, a desired low-pass filter circuit can be designed. The method of determining Z 0i and l i (i=1, 2,...N) in this way is called an optimization method, and the parameter Z for each interval is determined by repeatedly performing calculations using an electronic computer using a mathematical method. 0i , l i (i=1, 2, . . . N) can be obtained. An example of a conventional analytically designed low-pass filter circuit is shown in FIG. In the figure, Z 0i and l i indicate that seven sections of distributed constant lines with different values are connected in cascade alternately, and each section is designated as B, D, F,
They are designated H, F', D' and B'. It also schematically shows that the characteristic impedances of adjacent sections are significantly different. As mentioned above, a circuit including a cascade connection of distributed constant lines with significantly different characteristic impedances involves electromagnetic effects that are outside the range considered in the distributed constant line model in Figure 1, so the required transmission characteristics cannot be achieved. Therefore, it was necessary to modify the design values through trial and error. In the present invention, in order to prevent the characteristic impedance of adjacent distributed constant lines from changing suddenly, a stepped or tapered line portion is provided that gradually changes in appearance.
Each distributed constant line constant Z 0i , l i (i=1, 2,...
N) is optimally determined. As an example, FIG. 3a schematically shows a low-pass filter circuit with a terminating resistor of 50 ohms and an input loss of 0.3 dB or less in a frequency band of 1050 MHz or less. In the same figure, sections a, a′c, c′, e, e′, g and
g' section indicates a stepped track section, c, c', e,
Since e', g, and g' are each subdivided into four sections, the total number of sections N is 39. FIG. 3b is a schematic diagram of the case where the envelope of the stepped line section of FIG. 3a is averaged and tapered. Further, FIG. 4 is a diagram illustrating the distributed constant line configuration of FIG. 3a,
1, 2, 3, . . . 39 are line numbers assigned sequentially from the input side to the output side. Table 1 shows line constants Z 0i , l i (i=1, 2,...
39). Further, Table 2 shows the frequency characteristics of the input loss and input reflection coefficient of the low-pass filter circuit of FIG. 4, that is, FIG. According to this 1050M
It can be seen that the input loss increases from Hz to 1450 MHz and has low-pass filtering characteristics. Further, similar characteristics can be obtained even if the shape is tapered. It should be noted that when a connection portion in which the characteristic impedance does not change significantly is provided as a component of a low-pass filter circuit, it can be easily inferred that the connection portion does not have to have a stepped or tapered shape.

【表】【table】

【表】【table】

【表】【table】

【表】 以上説明したように、本発明は低域通過ろ波回
路において、各分布定数線路の接続部に一方の特
性インピーダンスから他方の特性インピーダンス
の値までゆるやかに変化するテーパ状または階段
状の線路を設けて構成したものであるから、所望
のろ波特性を試行錯誤することなく容易に得るこ
とができるという利点がある。
[Table] As explained above, the present invention provides a low-pass filter circuit with a tapered or stepped shape that gently changes the characteristic impedance from one characteristic impedance to the other at the connection portion of each distributed constant line. Since it is configured by providing a line, it has the advantage that desired filtering characteristics can be easily obtained without trial and error.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は分布定数線路1区間を示す模式図、第
2図は従来の低域通過ろ波回路、第3図aは本発
明の実施例で、階段状線路を設けた場合、第3図
bは本発明の他の実施例でテーパ状線路を設けた
場合を示す。また第4図は第3図aの説明図であ
るる。第4図の1乃至39は線路番号を示す。
Fig. 1 is a schematic diagram showing one section of a distributed constant line, Fig. 2 is a conventional low-pass filter circuit, and Fig. 3a is an embodiment of the present invention. b shows another embodiment of the present invention in which a tapered line is provided. FIG. 4 is an explanatory diagram of FIG. 3a. 1 to 39 in FIG. 4 indicate line numbers.

Claims (1)

【特許請求の範囲】[Claims] 1 特性インピーダンスの異なる分布定数線路を
交互に縦続接続した低域通過ろ波回路において、
それらの分布定数線路の接続部分に一方の分布定
数線路の特性インピーダンスの値から相隣る他方
の分布定数線路の特性インピーダンスの値までゆ
るやかな変化を有する階段状またはテーパ状の線
路を設けることを特徴とする低域通過ろ波回路。
1. In a low-pass filter circuit in which distributed constant lines with different characteristic impedances are alternately connected in cascade,
A step-like or tapered line having a gradual change from the characteristic impedance value of one distributed constant line to the characteristic impedance value of the other adjacent distributed constant line is provided at the connection part of these distributed constant lines. Features a low-pass filter circuit.
JP4396978A 1978-04-14 1978-04-14 Low pass filter circuit Granted JPS54136258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4396978A JPS54136258A (en) 1978-04-14 1978-04-14 Low pass filter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4396978A JPS54136258A (en) 1978-04-14 1978-04-14 Low pass filter circuit

Publications (2)

Publication Number Publication Date
JPS54136258A JPS54136258A (en) 1979-10-23
JPS6229921B2 true JPS6229921B2 (en) 1987-06-29

Family

ID=12678527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4396978A Granted JPS54136258A (en) 1978-04-14 1978-04-14 Low pass filter circuit

Country Status (1)

Country Link
JP (1) JPS54136258A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859418A (en) * 1955-06-21 1958-11-04 Joseph H Vogelman High power transmission line filters
US3909755A (en) * 1974-07-18 1975-09-30 Us Army Low pass microwave filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859418A (en) * 1955-06-21 1958-11-04 Joseph H Vogelman High power transmission line filters
US3909755A (en) * 1974-07-18 1975-09-30 Us Army Low pass microwave filter

Also Published As

Publication number Publication date
JPS54136258A (en) 1979-10-23

Similar Documents

Publication Publication Date Title
US3755749A (en) Sound reenforcement equalization system
JPH06140808A (en) Dielectric filter
Beranek et al. Calculation and measurement of the loudness of sounds
JPS6229921B2 (en)
JPS5811124B2 (en) Frequency characteristic adjustment circuit
US2859418A (en) High power transmission line filters
JPH06237135A (en) Audio equalization circuit
Carlin et al. Computer design of filters with lumped-distributed elements or frequency variable terminations
JPH01162360A (en) Integrated circuit with built-in terminating resistor
JPS6056012B2 (en) Frequency characteristic adjustment circuit
US4271398A (en) Tone control device
JPS6028441B2 (en) strip line filter
JPS6058605B2 (en) π type resistor attenuator
Labyntsev et al. The method of synthesis of microstrip filters using HFSS software package
Taub et al. Design of band-stop filters in the presence of dissipation
US2619535A (en) Electric wave filter
TWI758932B (en) Electrical filter structure
Ross A Simple Method for Obtaining the System Function of a Cascade Connection of Transmission Lines (Correspondence)
JPH0210645Y2 (en)
Linke A graphical approach to the synthesis of general insertion attenuation functions
JPS60160201A (en) Attenuator
JPS5925822U (en) Frequency characteristic adjustment circuit
JPS6069905A (en) Strip line attenuating circuit
JPS6334342Y2 (en)
JPH0422568Y2 (en)