JPS6056012B2 - Frequency characteristic adjustment circuit - Google Patents

Frequency characteristic adjustment circuit

Info

Publication number
JPS6056012B2
JPS6056012B2 JP12129978A JP12129978A JPS6056012B2 JP S6056012 B2 JPS6056012 B2 JP S6056012B2 JP 12129978 A JP12129978 A JP 12129978A JP 12129978 A JP12129978 A JP 12129978A JP S6056012 B2 JPS6056012 B2 JP S6056012B2
Authority
JP
Japan
Prior art keywords
circuit
adder
resistor
capacitor
frequency characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12129978A
Other languages
Japanese (ja)
Other versions
JPS5547719A (en
Inventor
和正 石川
進一 高橋
正秀 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Columbia Co Ltd
Original Assignee
Nippon Columbia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Columbia Co Ltd filed Critical Nippon Columbia Co Ltd
Priority to JP12129978A priority Critical patent/JPS6056012B2/en
Priority to US06/076,765 priority patent/US4336501A/en
Publication of JPS5547719A publication Critical patent/JPS5547719A/en
Publication of JPS6056012B2 publication Critical patent/JPS6056012B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/14Control of transmission; Equalising characterised by the equalising network used
    • H04B3/143Control of transmission; Equalising characterised by the equalising network used using amplitude-frequency equalisers
    • H04B3/144Control of transmission; Equalising characterised by the equalising network used using amplitude-frequency equalisers fixed equalizers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1217Frequency selective two-port networks using amplifiers with feedback using a plurality of operational amplifiers

Description

【発明の詳細な説明】 本発明は周波数特性調整回路に関する。[Detailed description of the invention] The present invention relates to a frequency characteristic adjustment circuit.

第1図に示す様な周波数特性(2次形)を有する周波数
特性調整回路の伝達関数T(s)は52+ l+ A)
ΔwS+wo2T(S)■52+(1+B)ΔwS+
wo2゜’゛゜゜’(1)で示される。
The transfer function T(s) of the frequency characteristic adjustment circuit having the frequency characteristic (quadratic type) as shown in Fig. 1 is 52+l+A)
ΔwS+wo2T(S)■52+(1+B)ΔwS+
It is shown as wo2゜'゛゜゜' (1).

ここでW。はフィルタの共振周波数の角速度てありΔw
はフィルタの共振特性の帯域幅を示す。又入力信号の角
速度をwとし 5=iwとする。
W here. is the angular velocity of the resonant frequency of the filter, and Δw
indicates the bandwidth of the resonance characteristic of the filter. Also, let the angular velocity of the input signal be w and 5=iw.

又、A及びBはフィルタ特性を定める定数で、少くとも
一方はゼロであり、T(s)は第1図の如くA=0であ
ればBの値に応じたディップを有するバンドエリミネー
ト特性を示し、B=0であればAの値に応じたピークを
有するバンドパスフJイルタ特性を示すことは周知の通
りである。
Furthermore, A and B are constants that determine the filter characteristics, and at least one of them is zero, and T(s) has a band elimination characteristic with a dip corresponding to the value of B if A=0 as shown in Figure 1. It is well known that if B=0, a band pass filter characteristic having a peak corresponding to the value of A is exhibited.

(1)式を実現する方法としては従来より第2図の様な
回路が用いられていた。図において1及び2は増幅器、
3はバンドパスフィルタである。しかるにここで用いる
バンドパスフィルタは第3図に示す様な2重積分型回路
であり、従つて構成が非常に複雑となつていた。なお第
3図において4は加算器、5及び6は積分器、7及び8
はフィードバッグ回路である。本発明は上述の様な欠点
のない簡単な構成の周波数特性調整回路を提供するもの
で、以下図面に従つて詳細に説明する。
Conventionally, a circuit like the one shown in FIG. 2 has been used as a method for realizing equation (1). In the figure, 1 and 2 are amplifiers,
3 is a bandpass filter. However, the bandpass filter used here is a double integral type circuit as shown in FIG. 3, and therefore has a very complicated configuration. In Fig. 3, 4 is an adder, 5 and 6 are integrators, and 7 and 8 are
is a feedback circuit. The present invention provides a frequency characteristic adjustment circuit with a simple configuration free from the above-mentioned drawbacks, and will be described in detail below with reference to the drawings.

第4図は本発明は一実施例を示すブロック図である。FIG. 4 is a block diagram showing one embodiment of the present invention.

図において入力端子17は第1の加算器11の一方の入
力端子に接続される。加算器11の出力21は2分岐し
て、一方は可変抵抗器12及びコンデンサ13からなる
直列回路と、可変抵抗器14及びコンデンサ15からな
る並列接続回路を経て接地される。該直列接続回路の接
続点20は2分岐し、一方はフイードフオワード回路2
2を介して第2の加算器19の一方の入力端子に印加さ
れ、もう一方はフィードバック回路16を経て前記加算
器11の他方の入力端子に印加される。前記出力21は
又加算器19のもう一方の入力端子に印加され、加算器
19の出力は出力端子18に導出される。可変抵抗器1
2と14は常に等しい抵抗値を有する様に連動可変にな
される。以上の様な構成に於て、入力端子17の電圧を
u(s)加算器11の出力21の電圧をE(s)、共通
接続点20の電圧をE1(s)、フィードバック回路1
6の伝達係数をβ、フイードフオワード回路22の伝達
係数をαとし、前記出力21から共通接続点20までの
伝達関数をT1(s)とすると、ここで第4図において
、可変抵抗器12,14,の抵抗値をRとし、コンデン
サ13,15の容量をCとし、T1(s)を求めると、
上式に(2)式を代人すれば 上式に(5)式を代人すれば (1)式と(6)式を比較して両式が等しくなる条件を
求めると、従つて第4図のフィードバック及びフイード
フオワード回路16及び22の伝達係数β及ひαをそれ
ぞれ(9)式及び(8)式により求まるβ及びαに設定
すれば、(1)式の伝達関数T(s)を有する周波数特
性調整回路を実現出来る。
In the figure, input terminal 17 is connected to one input terminal of first adder 11 . The output 21 of the adder 11 is branched into two branches, one of which is grounded through a series circuit consisting of a variable resistor 12 and a capacitor 13 and a parallel circuit consisting of a variable resistor 14 and a capacitor 15. The connection point 20 of the series connection circuit branches into two branches, one of which is connected to the feed forward circuit 2.
2 is applied to one input terminal of the second adder 19, and the other is applied to the other input terminal of the adder 11 via the feedback circuit 16. Said output 21 is also applied to the other input terminal of an adder 19, the output of which is led to the output terminal 18. Variable resistor 1
2 and 14 are linked and variable so that they always have the same resistance value. In the above configuration, the voltage at the input terminal 17 is u(s), the voltage at the output 21 of the adder 11 is E(s), the voltage at the common connection point 20 is E1(s), and the feedback circuit 1
6, the transfer coefficient of the feedforward circuit 22 is α, and the transfer function from the output 21 to the common connection point 20 is T1(s). In FIG. Let the resistance value of 12, 14 be R, and the capacitance of capacitors 13 and 15 be C, and calculate T1(s).
If we substitute equation (2) for the above equation, we substitute equation (5) for the above equation, we compare equations (1) and (6), and find the conditions under which both equations are equal. If the transfer coefficients β and α of the feedback and feedforward circuits 16 and 22 in FIG. 4 are set to β and α determined by equations (9) and (8), respectively, the transfer function T( s) can be realized.

又、(7)式より可変抵抗器12及びコンデンサ13の
値の積と可変抵抗器14及びコンデンサ15の値の積と
を共に同一値CRとし、この積CRを変化させれば、共
振周波数ω。を変化させることが出来る。第5図は第4
図に於けるフィードバック及びフイードフオワード回路
16及び22の伝達係数β及びαを整理して共振回路の
良さを示すQ(=WO/Δw)と、共振点における増幅
度(又は減衰度)に関係するA(又はB)をそれぞれ独
立に可変にし得る様にしたもので、第4図と同一機能を
有する部分には同一符号を付して説明を省略する。
Also, from equation (7), if the product of the values of the variable resistor 12 and the capacitor 13 and the product of the values of the variable resistor 14 and the capacitor 15 are both the same value CR, and this product CR is changed, the resonant frequency ω . can be changed. Figure 5 is the 4th
The transmission coefficients β and α of the feedback and feed forward circuits 16 and 22 in the figure are arranged to give Q (=WO/Δw), which indicates the quality of the resonant circuit, and the degree of amplification (or degree of attenuation) at the resonance point. The related A (or B) can be made variable independently, and the parts having the same functions as those in FIG. 4 are given the same reference numerals and the explanation thereof will be omitted.

図において加算器38は入力端子30,31,32及び
33を有し、各入力端子における加算係数はそれぞれ1
,−1,−1及び3になされている。又加算器39は入
力端子34,35,36及び37を有し、各入力端子に
おける加算係数はそれぞれ1,−3,1及び1になされ
ている。共通接続点20は前記入力端子33及び35に
接続されると共に増幅器40に接続される。増幅器40
の出力は4分岐して、前記入力端子32及び36に接続
されると共に増幅器41及び42を経て夫々前記入力端
子31及び37に接続される。以上の様な構成において
、増幅器40,41及 Δwび42
の増幅度をそれぞれ一、B及びAとすれ
WOば第5図の回路は第4図の回路と等価になる。
In the figure, the adder 38 has input terminals 30, 31, 32, and 33, and the addition coefficient at each input terminal is 1.
, -1, -1 and 3. The adder 39 has input terminals 34, 35, 36 and 37, and the addition coefficients at each input terminal are set to 1, -3, 1 and 1, respectively. A common connection point 20 is connected to the input terminals 33 and 35 and to an amplifier 40. amplifier 40
The output is branched into four branches and connected to the input terminals 32 and 36, and via amplifiers 41 and 42 to the input terminals 31 and 37, respectively. In the above configuration, the amplifiers 40, 41 and Δw and 42
Let the amplification degrees of be 1, B, and A, respectively.
If WO, the circuit of FIG. 5 becomes equivalent to the circuit of FIG. 4.

勿論この場合第4図の回路は(7),(8),(9)式
を満たすものとする。第6図は第5図の増幅器40の可
変抵抗器47で置きかえ、又増幅器41及び42は中点
が接地された可変抵抗器48と固定抵抗49によつて置
き換え、上記増幅器の増幅度に相当する値を各可変抵抗
器によつて容易に設定出来るようにしたものである。こ
こでバッファアンプ45及び46は各可変抵抗器の抵抗
値が相互に影響み合うのをさける為挿入されている。な
おバッファアンプ45の増幅度は1になされる。又バッ
ファアンプ46の増幅度は、抵抗49と可変抵抗器48
からなる分圧器の最大設定位置での減衰を補償して、バ
ッファアンプ46との総合増幅度が1となる様に設定さ
れる。又入力端子31,32,36及び37に対する加
算係数は第5図と異なり 11夫々−BO,−ー
,一及びAOになされる 9Q09Q0! 0 従つて可変抵抗器48を加算器38の側に設定すれば上
記係数−八によつて共振周波数W。
Of course, in this case, it is assumed that the circuit shown in FIG. 4 satisfies equations (7), (8), and (9). In FIG. 6, the amplifier 40 in FIG. 5 is replaced by a variable resistor 47, and the amplifiers 41 and 42 are replaced by a variable resistor 48 whose midpoint is grounded and a fixed resistor 49, which corresponds to the amplification degree of the above amplifier. This allows the value to be easily set using each variable resistor. Buffer amplifiers 45 and 46 are inserted here to prevent the resistance values of the variable resistors from influencing each other. Note that the amplification degree of the buffer amplifier 45 is set to 1. Also, the amplification degree of the buffer amplifier 46 is determined by the resistor 49 and the variable resistor 48.
The attenuation at the maximum setting position of the voltage divider is compensated for, and the total amplification degree with the buffer amplifier 46 is set to be 1. Also, the addition coefficients for input terminals 31, 32, 36, and 37 are different from those in FIG. 5, and are applied to 11 -BO, -, 1, and AO, respectively. 9Q09Q0! 0 Therefore, if the variable resistor 48 is set on the adder 38 side, the resonant frequency W is determined by the above coefficient -8.

の点 1における減衰度が最大?である
様なディップー 1+八特性が得られ、
又加算器39の側に設定すれば加算係数〜によつて中心
周波数W。
Is the degree of attenuation maximum at point 1? You can get dip 1+8 characteristics like that,
Also, if set on the adder 39 side, the center frequency W is determined by the addition coefficient .

における増幅度が最大1+んである様なピーク特性が得
られる。又前記加算係数一山及びよによつてQの最小値
がαとなる。上述における増幅度(減衰度)の最大値あ
るいはQの最小値は可変抵抗器47及び48の接地点よ
りも遠い側にすることによつて得られ、各可変抵抗器を
任意に可変することにより任意の増幅度(減衰度)、Q
の値を得ることが出来る。
A peak characteristic with a maximum amplification of 1+ can be obtained. Also, depending on the addition coefficient, the minimum value of Q becomes α. The maximum value of the amplification degree (attenuation degree) or the minimum value of Q mentioned above can be obtained by setting the variable resistors 47 and 48 on the side farther from the ground point, and by arbitrarily varying each variable resistor. Arbitrary amplification (attenuation), Q
You can get the value of

なお以上において加算器38及び39は各入力端子に印
加された信号に対し、それぞれ前記加算係数を乗じたの
ち加算される様になされているものとする。
In the above description, it is assumed that the adders 38 and 39 are configured to multiply the signals applied to each input terminal by the respective addition coefficients and then add the signals.

この様な加算器は、例えばオペアンプと各加算係数に対
応する種々の入力抵抗器と帰還用抵抗器とを用いること
により容易に得られ発明の詳細な説明は省略する。
Such an adder can be easily obtained by using, for example, an operational amplifier and various input resistors and feedback resistors corresponding to each addition coefficient, and a detailed description of the invention will be omitted.

以上の様に本発明によればフィードバック回路とフイー
ドホワード回路を用いた極めて簡単な構成により2次型
の周波数特性調整回路が実現出来しかも、フィードバッ
ク回路とフイードホワード回路の伝達係数を特定の関係
に設定することにより、同調周波数、ピーク、ディップ
及びQの各特・性にそれぞれ関係する各係数を容易に回
路的に分離させることが出来るので、これら各特性を互
いに他から影響を受けることなく独立に調整出来る様に
することが出来るという優れた効果を生ずる。
As described above, according to the present invention, a quadratic frequency characteristic adjustment circuit can be realized with an extremely simple configuration using a feedback circuit and a feedforward circuit, and the transfer coefficients of the feedback circuit and the feedforward circuit can be set in a specific relationship. By doing this, it is possible to easily separate the coefficients related to the tuning frequency, peak, dip, and Q characteristics in a circuit, so each of these characteristics can be adjusted independently without being influenced by the other. It produces an excellent effect of being able to make it possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周波数特性調整回路の周波数特性図、第2図は
従来の周波数特性調整回路のブロック図、第3図は第2
図において用いられるバンドパスフィルタの詳細を示す
ブロック図、第4図、第J5図、第6図はそれぞれ本発
明の一実施例を示すブロック図である。 11及び19はそれぞれ第1及び第2の加算器、16は
フィードバック回路、22はフイードフオワード回路、
17は入力端子、18は出力端・子である。
Figure 1 is a frequency characteristic diagram of a frequency characteristic adjustment circuit, Figure 2 is a block diagram of a conventional frequency characteristic adjustment circuit, and Figure 3 is a diagram of a conventional frequency characteristic adjustment circuit.
FIG. 4, FIG. J5, and FIG. 6 are block diagrams each showing an embodiment of the present invention. 11 and 19 are first and second adders, respectively, 16 is a feedback circuit, 22 is a feed forward circuit,
17 is an input terminal, and 18 is an output terminal/child.

Claims (1)

【特許請求の範囲】[Claims] 1 入力信号とフィードバック信号とを加算する第1の
加算器と、該第1の加算器の出力とフイードフオワード
信号とを加算する第2の加算器と、該第1の加算器の出
力端子と接地間に第1の抵抗及びコンデンサからなる直
列回路と第2の抵抗及びコンデンサからなる並列回路と
を直列接続する手段と、上記直列回路の第1の抵抗及び
コンデンサの積と上記並列回路の第2の抵抗及びコンデ
ンサの積とを互いに同一値として連動可変にする同調周
波数調整手段と、少くとも一方がゼロである2つの定数
をA及びBとし帯域幅をΔωとして同調周波数をω_0
として、伝達係数が上記第1の加算器の出力に対する上
記第2の加算器の加算係数の{(1+A)Δω/ω_0
−3}倍に設定された伝達係数回路であつて上記直列回
路と並列回路との直列接続点より上記フイードフオワー
ド信号を得る第1の伝達係数回路と、伝達係数が上記入
力信号に対する第1の加算器の加算係数の{3−(1+
B)Δω/ω_0}倍に設定された伝達係数回路であつ
て上記直列回路と並列回路との直列接続点より上記フィ
ードバック信号を得る第2の伝達係数回路とを有する周
波数特性調整回路。
1. A first adder that adds an input signal and a feedback signal, a second adder that adds the output of the first adder and the feedforward signal, and an output of the first adder. means for serially connecting a series circuit comprising a first resistor and a capacitor and a parallel circuit comprising a second resistor and capacitor between a terminal and ground, the product of the first resistor and capacitor of the series circuit and the parallel circuit; a tuning frequency adjusting means that makes the product of the second resistor and the capacitor the same value and variable in conjunction with each other; and two constants, at least one of which is zero, are A and B, the bandwidth is Δω, and the tuning frequency is ω_0.
, the transfer coefficient is the addition coefficient of the second adder to the output of the first adder {(1+A)Δω/ω_0
-3} times the transmission coefficient circuit, which obtains the feedforward signal from the series connection point of the series circuit and the parallel circuit; The addition coefficient of the adder of 1 is {3-(1+
B) A frequency characteristic adjustment circuit comprising a second transfer coefficient circuit whose transfer coefficient is set to Δω/ω_0} times and which obtains the feedback signal from a series connection point between the series circuit and the parallel circuit.
JP12129978A 1978-09-26 1978-10-02 Frequency characteristic adjustment circuit Expired JPS6056012B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12129978A JPS6056012B2 (en) 1978-10-02 1978-10-02 Frequency characteristic adjustment circuit
US06/076,765 US4336501A (en) 1978-09-26 1979-09-18 Frequency characteristic adjusting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12129978A JPS6056012B2 (en) 1978-10-02 1978-10-02 Frequency characteristic adjustment circuit

Publications (2)

Publication Number Publication Date
JPS5547719A JPS5547719A (en) 1980-04-04
JPS6056012B2 true JPS6056012B2 (en) 1985-12-07

Family

ID=14807810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12129978A Expired JPS6056012B2 (en) 1978-09-26 1978-10-02 Frequency characteristic adjustment circuit

Country Status (1)

Country Link
JP (1) JPS6056012B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616392B2 (en) * 1984-07-19 1994-03-02 富士写真フイルム株式会社 Electron microscope image recording / reproducing method and apparatus
JPS61138441A (en) * 1984-11-29 1986-06-25 Fuji Photo Film Co Ltd Recording and reproducing method for image of electron microscope
EP0184810B1 (en) * 1984-12-10 1994-06-29 Fuji Photo Film Co., Ltd. Method of detecting a focus defect of an electron microscope image
JPS61163549A (en) * 1985-01-16 1986-07-24 Fuji Photo Film Co Ltd Electron microscope image recording and regenerating method
JPH0616399B2 (en) * 1985-04-11 1994-03-02 富士写真フイルム株式会社 Electron microscope image recorder
JPS63164151A (en) * 1986-12-26 1988-07-07 Fuji Photo Film Co Ltd Electron microscope image output method

Also Published As

Publication number Publication date
JPS5547719A (en) 1980-04-04

Similar Documents

Publication Publication Date Title
US7075364B2 (en) Active-RC filter with compensation to reduce Q enhancement
US3755749A (en) Sound reenforcement equalization system
JPS6244443B2 (en)
US4189681A (en) Bandpass filter having low passband phase shift
US4593250A (en) Operational amplifier compensation technique for biquadratic notch active filters
JPS6056012B2 (en) Frequency characteristic adjustment circuit
US4280102A (en) Frequency response characteristic adjustable circuit
US5182522A (en) Polar leapfrog filter
US4078205A (en) Electronic filter circuit
US4229716A (en) Amplitude equalizer circuit
US4012704A (en) Active amplitude equalizers
US4275358A (en) Frequency sensitive amplitude equalization circuit
JPH0683111B2 (en) ▲ √f ▼ Automatic gain control amplifier
US5298813A (en) Polar leapfrog filter
US3955150A (en) Active-R filter
US5293086A (en) Polar leapfrog filter
JP3225260B2 (en) Filter circuit
WO1984001866A1 (en) An active delay equalizer section having independently tunable circuite parameters and a circuit and method for correcting for phase distortion in a digital audio system
US5608349A (en) Circuit arrangement with adjustable amplitude-frequency response
JPS6117370B2 (en)
JPS6219091B2 (en)
US5296763A (en) Polar leapfrog filter
JPH0328587Y2 (en)
JPS6133292B2 (en)
JPS6133293B2 (en)