JPS62299093A - Manufacture of laminate type piezoelectric substance - Google Patents

Manufacture of laminate type piezoelectric substance

Info

Publication number
JPS62299093A
JPS62299093A JP61142087A JP14208786A JPS62299093A JP S62299093 A JPS62299093 A JP S62299093A JP 61142087 A JP61142087 A JP 61142087A JP 14208786 A JP14208786 A JP 14208786A JP S62299093 A JPS62299093 A JP S62299093A
Authority
JP
Japan
Prior art keywords
metal
piezoelectric element
metal electrodes
laminate type
piezoelectric body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61142087A
Other languages
Japanese (ja)
Inventor
Masahiro Tomita
正弘 富田
Jun Niwa
丹羽 準
Tetsushi Hayashi
哲史 林
Akira Fujii
章 藤井
Hirokatsu Mukai
向井 寛克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61142087A priority Critical patent/JPS62299093A/en
Publication of JPS62299093A publication Critical patent/JPS62299093A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/871Single-layered electrodes of multilayer piezoelectric or electrostrictive devices, e.g. internal electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/057Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by stacking bulk piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • H10N30/503Piezoelectric or electrostrictive devices having a stacked or multilayer structure with non-rectangular cross-section orthogonal to the stacking direction, e.g. polygonal, circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To obtain a laminate type piezoelectric substance having correct expansion quantity by a method wherein metal electrodes are compressed previously by making pressure to act to the surface and the rear surface of a piezoelectric element being used as a spill valve to be arranged facing to compression space of a Diesel injection pump. CONSTITUTION:Screen printing of an electrode material consisting of silver paste, etc.,is performed to the surface and the rear surface of a piezoelectric element 101, and drying and printing are performed. At this time, load of the degree of the maximum 1500kg is made to act to the edge surface of a laminate type piezoelectric substance 100, and load of the degree of 3000kg, which is pressure of double of the maximum load thereof, is applied for l-l0sec to metal electrodes 103 completed with drying and printing. The metal electrodes 103 are formed on both the surfaces of the piezoelectric element 101 in such a way, and by laminating the plural number of sheets of the piezoelectric elements 101 thereof, a laminate type piezoelectric substance 100 is formed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、圧電素子を複数枚積層することによって形成
され、印加される電圧に応じて伸縮する積層型圧電体の
製造方法に関するもので、製造された圧電体は種々のア
クチュエータとして用いることができる。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a laminated piezoelectric material that is formed by laminating a plurality of piezoelectric elements and that expands and contracts in response to applied voltage. This invention relates to a manufacturing method, and the manufactured piezoelectric body can be used as various actuators.

〔従来の技術〕[Conventional technology]

従来の積層型圧電体を示すものとして、例えば特開昭5
9−135784号公報がある。
As an example of a conventional laminated piezoelectric material, for example, Japanese Patent Laid-Open No. 5
There is a publication No. 9-135784.

この公報に示される積層型圧電体では、PZTセラミッ
ク等よりなる板状の圧電素子を複数枚積層し、それぞれ
の圧電素子の表面及び裏面には、恨ペーストを印刷する
ことにより金属電極が形成されている。
In the laminated piezoelectric material disclosed in this publication, a plurality of plate-shaped piezoelectric elements made of PZT ceramic or the like are laminated, and metal electrodes are formed on the front and back surfaces of each piezoelectric element by printing a paste. ing.

さらに、各圧電素子の間には金属板が配されており、こ
の金属板は一つおきに位置するもの同志が電気的に接続
されている。
Further, a metal plate is arranged between each piezoelectric element, and every other metal plate is electrically connected to each other.

このような積層型圧電体は、互いに接続されて二連とな
った金属板にプラスの電圧及びマイナの電圧を供給する
ことにより、積層方向に伸縮するものである。そして、
この積層型圧電体は、ディーゼル噴射ポンプの圧縮室に
面して配されるスピル弁として用いることができる。
Such a laminated piezoelectric body expands and contracts in the lamination direction by supplying a positive voltage and a minor voltage to two metal plates connected to each other. and,
This laminated piezoelectric body can be used as a spill valve placed facing the compression chamber of a diesel injection pump.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような積層型圧電体では、上述した
ようなスピル弁として用いた場合などでは、その積層端
面に高圧力を受け、この圧力によって積層方向の長さが
縮んでしまうという問題がある。
However, when such a laminated piezoelectric body is used as a spill valve as described above, high pressure is applied to the end face of the lamination, and this pressure causes a problem in that the length in the lamination direction is shortened.

例えば、上述のスピル弁として用いた場合には、圧縮室
に面する端面に最大1500 kgの荷重が作用し、圧
電体の全長が約0.3〜0.5mm(全長40mmの場
合)短くなっている。その結果、圧縮室のデッドボリュ
ームが増大し噴射量の制御が正確に行えないという問題
が生じる。
For example, when used as the spill valve mentioned above, a maximum load of 1500 kg acts on the end face facing the compression chamber, and the total length of the piezoelectric body is shortened by approximately 0.3 to 0.5 mm (in the case of a total length of 40 mm). ing. As a result, a problem arises in that the dead volume of the compression chamber increases and the injection amount cannot be controlled accurately.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、積層型圧電体の積層端面に高荷重が作用し
た場合であっても、その積層方向に縮みが生じない積層
型圧電体の製造方法を得ることを目的としている。
An object of the present invention is to provide a method for manufacturing a laminated piezoelectric material in which no shrinkage occurs in the lamination direction even when a high load is applied to the end faces of the laminated piezoelectric materials.

この目的を達するため、本発明では次のような製造方法
とした。すなわち、 所定厚さを有する板状の圧電素子を複数枚形成する第1
工程と、 前記圧電素子のそれぞれの表面及び裏面に金属電極を形
成する第2工程と、 前記金属電極が形成された圧電素子の表面及び裏面に圧
力を作用させ、前記金属電極を圧縮する第3工程と、 前記圧電素子と略同一平面形状を有する金属板を複数枚
形成する第4工程と、 前記金属電極が形成された圧電素子と前記金属板とを所
定枚数交互に積層する第5工程と、前記金属板のうち、
一枚おきに位置する金属板同志を電気的に接続する第6
工程とからなる積層型圧電体の製造方法とした。
In order to achieve this objective, the present invention employs the following manufacturing method. That is, the first step is to form a plurality of plate-shaped piezoelectric elements having a predetermined thickness.
a second step of forming metal electrodes on the front and back surfaces of each of the piezoelectric elements; and a third step of compressing the metal electrodes by applying pressure to the front and back surfaces of the piezoelectric element on which the metal electrodes are formed. a fourth step of forming a plurality of metal plates having substantially the same planar shape as the piezoelectric element; and a fifth step of alternately stacking a predetermined number of piezoelectric elements on which the metal electrodes are formed and the metal plates. , among the metal plates,
The sixth electrically connects the metal plates located every other metal plate.
The method of manufacturing a laminated piezoelectric body consists of the following steps.

〔発明の作用及び効果〕[Operation and effect of the invention]

本発明の製造方法を用いれば、金属電極が形成された圧
電素子の表面及び裏面に圧力を作用させ、予め金属電極
を圧縮しているので、積層型圧電体の積層端面に高圧力
が作用したとしても、その圧力によって積層型圧電体の
積層方向に縮みが生じるといった問題はない。
If the manufacturing method of the present invention is used, pressure is applied to the front and back surfaces of the piezoelectric element on which the metal electrodes are formed, and the metal electrodes are compressed in advance, so that high pressure is not applied to the stacked end faces of the stacked piezoelectric body. Even so, there is no problem that the pressure causes shrinkage in the lamination direction of the laminated piezoelectric body.

よって、正確な伸縮量を有する積層型圧電体を得ること
ができる。
Therefore, a laminated piezoelectric material having an accurate amount of expansion and contraction can be obtained.

〔実施例〕〔Example〕

次に本発明の実施例を図に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は本実施例積層型圧電体の組付状態を示す斜視図
、第2図、第3図は圧電素子単体を示す平面図及び正面
図である。
FIG. 1 is a perspective view showing the assembled state of the laminated piezoelectric body of this embodiment, and FIGS. 2 and 3 are a plan view and a front view showing the piezoelectric element alone.

PZTセラミック等よりなる圧電素子101は、直径約
151.厚さ約0.5 mmの円板形状をなしている。
The piezoelectric element 101 made of PZT ceramic or the like has a diameter of about 151 mm. It has a disk shape with a thickness of approximately 0.5 mm.

この円板状の圧電素子101の表面及び裏面には、根ペ
ーストを各面に印刷することにより金属電極103が形
成されている。この金属電極103は、直径約131、
厚さ5μmの円形薄膜形状をなしている。
Metal electrodes 103 are formed on the front and back surfaces of this disc-shaped piezoelectric element 101 by printing root paste on each surface. This metal electrode 103 has a diameter of about 131 mm,
It has a circular thin film shape with a thickness of 5 μm.

金属板105は導電性の良い材料、例えばステンレス等
よりなり、直径約131−1厚さ約20μmの円板形状
をなしている。そして、さらに、その外周縁部には、裏
面方向に約90’折り曲がった舌状片部107が、12
0°おきに3ケ所形成されている。
The metal plate 105 is made of a material with good conductivity, such as stainless steel, and has a disk shape with a diameter of about 131-1 and a thickness of about 20 μm. Further, on the outer peripheral edge thereof, a tongue-shaped piece 107 bent about 90' toward the back side is provided at 12
Three locations are formed at 0° intervals.

積層型圧電体100は、上述した様な圧電素子101と
金属板105とを交互に積層することによって形成され
る。この時、圧電素子101を挟んで互いに隣り合う金
属板105は、垂直軸周りに位相が約60°ずれて配さ
れている。すなわち、ある一つの金属板105の3つの
舌状片部107が、隣り合う他の金属板105の3つの
舌状片部107のそれぞれの間に位置している。
The laminated piezoelectric body 100 is formed by alternately laminating piezoelectric elements 101 and metal plates 105 as described above. At this time, the metal plates 105 adjacent to each other with the piezoelectric element 101 in between are arranged with a phase shift of about 60° around the vertical axis. That is, the three tongue-like pieces 107 of one metal plate 105 are located between the three tongue-like pieces 107 of other adjacent metal plates 105.

そして、この金属板105のうち同位相にある金属板1
05、すなわち一つおきに位置している金属板105の
舌状片部107は、帯状金属109を溶接又は半田付す
る等して互いに電気的接続されている、この帯状金属1
09のうち、一連の金属板105に接続されている任意
の1つは、その長さが延長され、電極端子111を構成
しており、また、他連の金属板105に接続されている
任意の1つも、同じく電極端子113を構成している。
Among these metal plates 105, metal plate 1 in the same phase
05, that is, the tongue-like pieces 107 of every other metal plate 105 are electrically connected to each other by welding or soldering the metal strip 109.
09, an arbitrary one connected to a series of metal plates 105 has its length extended and constitutes an electrode terminal 111, and an arbitrary one connected to the other series of metal plates 105 has an extended length and constitutes an electrode terminal 111. Similarly, one of the electrode terminals 113 also constitutes the electrode terminal 113.

この電極端子111,113にリード線等を介して高電
圧源が接続されており、各圧電素子101に約1000
ボルトの電圧が供給される。
A high voltage source is connected to these electrode terminals 111 and 113 via lead wires, etc., and each piezoelectric element 101 has approximately 1000
A voltage of volts is supplied.

以上の様にして構成された積層型圧電体100は、第4
図に示すように分配型ポンプ400のパイロット弁とし
て用いられている。この積層型圧電体100の一端側に
はコンブ形状をなすピストン415が嵌着されている。
The laminated piezoelectric body 100 configured as described above has a fourth
As shown in the figure, it is used as a pilot valve of a distribution pump 400. A convex-shaped piston 415 is fitted into one end of the laminated piezoelectric body 100.

そして、このピストン415はプランジャ414で加圧
される加圧室416に対面しており加圧室416内の高
圧力を受圧している。
This piston 415 faces a pressurizing chamber 416 that is pressurized by a plunger 414, and receives high pressure within the pressurizing chamber 416.

尚、第4図中符号411はドライブシャフト、412は
ローラ、413はフェイスカム、414はプランジャ、
417は噴射ノズルである。
In addition, in FIG. 4, reference numeral 411 is a drive shaft, 412 is a roller, 413 is a face cam, 414 is a plunger,
417 is an injection nozzle.

このような分配型ポンプ400では、積層型圧電体10
0より構成されたバイロフト弁により、噴射ノズル41
7より噴射される燃料噴射量が、第5図に示すようにパ
イロット噴射Pとメイン噴射Mとの2段噴射となる。
In such a distribution pump 400, the laminated piezoelectric body 10
The injection nozzle 41 is
The amount of fuel injected from step 7 is a two-stage injection of pilot injection P and main injection M, as shown in FIG.

また、加圧室416に対面して配されている積層型圧電
体100は、加圧室41.6より最大1500kg程度
の高荷重を受けている。
Furthermore, the laminated piezoelectric body 100 disposed facing the pressurizing chamber 416 receives a high load of about 1500 kg at maximum from the pressurizing chamber 41.6.

次に上述した金属型ti103の成形手順について述べ
る。まず、所定寸法を有する円板状の圧電素子101を
用意する。そして、この圧電素子101の表面・裏面に
周知の方法により銀ペースト等よりなる電極材料をスク
リーン印刷する。
Next, the procedure for forming the metal mold ti103 described above will be described. First, a disc-shaped piezoelectric element 101 having predetermined dimensions is prepared. Then, electrode material made of silver paste or the like is screen printed on the front and back surfaces of this piezoelectric element 101 by a well-known method.

その後、印刷した銀ペーストを乾燥させ、焼付を行う0
本実施例では上述した如く、積層型圧電体100の端面
に最大1500kg程度の荷重が作用しているので、こ
の最大荷重の倍の圧力である3 000 kg程度の荷
重を、乾燥、焼付が完了した金属電極103に1〜10
秒加えている。この3000 kgの荷重作用により、
銀ペーストよりなる金属電極103の圧縮を行っている
After that, the printed silver paste is dried and baked.
In this embodiment, as described above, a maximum load of about 1,500 kg is applied to the end face of the laminated piezoelectric body 100, so drying and baking are completed under a load of about 3,000 kg, which is twice the maximum load. 1 to 10 on the metal electrode 103
Adding seconds. Due to this 3000 kg load action,
A metal electrode 103 made of silver paste is compressed.

このようにして、圧電素子101の両面に金属電極10
3を形成し、この圧電素子101を複数枚積層すること
によって積層型圧電体100が形成されているのである
In this way, metal electrodes 10 are placed on both sides of the piezoelectric element 101.
The laminated piezoelectric body 100 is formed by forming a plurality of piezoelectric elements 101 and laminating a plurality of piezoelectric elements 101.

尚、本発明者等の実験・検討によれば、金属電極103
の圧縮を行なわずして形成した積層型圧電体100を分
配型ポンプのパイロット弁として用いると、加圧室41
6内の圧力を受けて金属電極103が圧縮され、積層型
圧電体100の軸方向長さが、取付当初より約200〜
500μm短くなることが確かめられている。取付当初
、適当な取付位置で配されているにもかかわらず、分配
型ポンプの運転中に積層型圧電体100の軸方向長さが
短くなってしまうと、加圧室416のデッドボリューム
が増大し前述のパイロット噴射Pを行うことができなく
なるのみならず、最大噴射量の減少、噴射期間の増大と
いった問題があるのである。
According to experiments and studies by the inventors, the metal electrode 103
When the laminated piezoelectric body 100 formed without compression is used as a pilot valve of a distribution pump, the pressurizing chamber 41
6, the metal electrode 103 is compressed, and the axial length of the laminated piezoelectric body 100 is reduced to about 200 mm from the time of installation.
It has been confirmed that the length is 500 μm shorter. If the axial length of the laminated piezoelectric body 100 is shortened during operation of the distribution pump, the dead volume of the pressurizing chamber 416 increases even though it is placed at an appropriate mounting position at the time of installation. However, this not only makes it impossible to carry out the pilot injection P described above, but also causes problems such as a decrease in the maximum injection amount and an increase in the injection period.

これに対し、本実施例では、金属電極103の成形時に
圧縮荷重を加え、予め金属電極103の圧縮を行ってい
るので、分配型ポンプ400の運転中に積層型圧電体1
00の軸方向長さが減少ししてしまうといった問題はな
い。
In contrast, in this embodiment, a compressive load is applied during molding of the metal electrode 103 to compress the metal electrode 103 in advance.
There is no problem that the axial length of 00 is reduced.

第6図は加圧室416のデッドボリューム増加量、及び
積層型圧電体100の寸法変化と、分配型ポンプ400
の最大噴射量との関係を示す図である。この図からもわ
かるように、積層型圧電体100の寸法変化、すなわち
縮み量が150μm以上になると、最大噴射量が許容値
以下になり、エンジン性能の劣化をきたすこととなる。
FIG. 6 shows the dead volume increase of the pressurizing chamber 416, the dimensional change of the laminated piezoelectric body 100, and the distribution pump 400.
It is a figure which shows the relationship with the maximum injection amount. As can be seen from this figure, when the dimensional change, that is, the amount of shrinkage, of the laminated piezoelectric body 100 becomes 150 μm or more, the maximum injection amount becomes less than the allowable value, resulting in deterioration of engine performance.

第7図は金属電極103成形時に作用させる圧縮荷重と
、分配型ポンプ400を2200回転/分、10時間運
転させた時の積層型圧電体100の寸法変化との関係を
示す図である。この図からもわかるように、少なくとも
分配型ポンプ400運転時の最大荷重1500ksrの
1.5倍以上の圧縮荷重を作用させておけば、寸法変化
は零であることがわかる。
FIG. 7 is a diagram showing the relationship between the compressive load applied during molding of the metal electrode 103 and the dimensional change of the laminated piezoelectric body 100 when the distribution pump 400 is operated at 2200 rpm for 10 hours. As can be seen from this figure, if a compressive load of at least 1.5 times the maximum load of 1500 ksr during operation of the distribution pump 400 is applied, the dimensional change is zero.

上述の実施例では圧電素子101の両面にスクリーン印
刷により金属電極103を形成したが、本実施例ではア
ルミニウム蒸着により金属電極103を形成してもよい
、このような圧電素子101を上述の実施例と同様に3
000kgで加圧した後積層して積層型圧電体100を
得た。このような積層型圧電体100について上述実施
例と同様に実機試験したところ積層型圧電体100の寸
法変化もなく、良好なエンジン性能が維持できた。
In the above embodiment, the metal electrodes 103 were formed on both sides of the piezoelectric element 101 by screen printing, but in this embodiment, the metal electrodes 103 may be formed by aluminum vapor deposition. Similarly, 3
After applying a pressure of 1,000 kg, they were laminated to obtain a laminated piezoelectric body 100. When such a laminated piezoelectric body 100 was tested on an actual machine in the same manner as in the above embodiment, there was no dimensional change in the laminated piezoelectric body 100, and good engine performance was maintained.

、  アルミニウム蒸着により金属電極103を形成し
た積層型圧電体100の実機による寸法変化量を第8図
に示す。図より明らかなように蒸着のように比較的密に
形成された金属電極103においても、使用条件が厳し
い時には寸法変化を起こすため、予め加圧することが必
要である。尚、アルミニウム蒸着以外に他の物質の蒸着
、さらには、蒸着以外にスパッタ、メッキ等により金属
電極103を形成しても良く、この場合にも、予め金属
電極103を加圧する。
FIG. 8 shows the amount of dimensional change in an actual device of the laminated piezoelectric body 100 in which the metal electrode 103 was formed by aluminum vapor deposition. As is clear from the figure, even in the metal electrode 103 formed relatively densely by vapor deposition, dimensional changes occur under severe usage conditions, so it is necessary to apply pressure in advance. Note that the metal electrode 103 may be formed by vapor deposition of another substance other than aluminum vapor deposition, and further, by sputtering, plating, etc. other than vapor deposition, and in this case as well, the metal electrode 103 is pressurized in advance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す組立斜視図、第2図、第
3図は圧電素子の平面図及び側面図、第4図は実施例の
組付状態を示す断面図、第5図は第4図図示実施例の噴
射ポンプの噴射量を示す図、第6図は積層型圧電体の寸
法変化と最大噴射量の関係を示す図、第7図、第8図は
圧縮荷重と寸法変化との関係を示す図である。 100・・・積層型圧電体、101・・・圧電素子、1
03・・・金属電極、105・・・金属板。 代理人弁理士 岡  部   隆 第3図 第4図 呼量 第5図 7”? sK’)z−4,ii 770 t (mm3
)t 須 交 イこ(μm) 第6図
FIG. 1 is an assembled perspective view showing an embodiment of the present invention, FIGS. 2 and 3 are a plan view and side view of a piezoelectric element, FIG. 4 is a sectional view showing an assembled state of the embodiment, and FIG. 5 FIG. 4 shows the injection amount of the injection pump of the illustrated embodiment, FIG. 6 shows the relationship between the dimensional change of the laminated piezoelectric body and the maximum injection amount, and FIGS. 7 and 8 show the compressive load and dimensions. It is a figure showing the relationship with change. 100... Laminated piezoelectric body, 101... Piezoelectric element, 1
03...Metal electrode, 105...Metal plate. Representative Patent Attorney Takashi Okabe Fig. 3 Fig. 4 Call volume Fig. 5 7”?sK')z-4,ii 770 t (mm3
) t Suko Iko (μm) Fig. 6

Claims (1)

【特許請求の範囲】 所定厚さを有する板状の圧電素子を複数枚形成する第1
工程と、 前記圧電素子のそれぞれの表面及び裏面に金属電極を形
成する第2工程と、 前記金属電極が形成された圧電素子の表面及び裏面に圧
力を作用させ、前記金属電極を圧縮する第3工程と、 前記圧電素子と略同一平面形状を有する金属板を複数枚
形成する第4工程と、 前記金属電極が形成された圧電素子と前記金属板とを所
定枚数交互に積層する第5工程と、前記金属板のうち、
一枚おきに位置する金属板同志を電気的に接続する第6
工程とからなる積層型圧電体の製造方法。
[Claims] A first method comprising forming a plurality of plate-shaped piezoelectric elements each having a predetermined thickness.
a second step of forming metal electrodes on the front and back surfaces of each of the piezoelectric elements; and a third step of compressing the metal electrodes by applying pressure to the front and back surfaces of the piezoelectric element on which the metal electrodes are formed. a fourth step of forming a plurality of metal plates having substantially the same planar shape as the piezoelectric element; and a fifth step of alternately stacking a predetermined number of piezoelectric elements on which the metal electrodes are formed and the metal plates. , among the metal plates,
The sixth electrically connects the metal plates located every other metal plate.
A method for manufacturing a laminated piezoelectric body, which comprises steps.
JP61142087A 1986-06-18 1986-06-18 Manufacture of laminate type piezoelectric substance Pending JPS62299093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61142087A JPS62299093A (en) 1986-06-18 1986-06-18 Manufacture of laminate type piezoelectric substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61142087A JPS62299093A (en) 1986-06-18 1986-06-18 Manufacture of laminate type piezoelectric substance

Publications (1)

Publication Number Publication Date
JPS62299093A true JPS62299093A (en) 1987-12-26

Family

ID=15307124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142087A Pending JPS62299093A (en) 1986-06-18 1986-06-18 Manufacture of laminate type piezoelectric substance

Country Status (1)

Country Link
JP (1) JPS62299093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644222B2 (en) 2015-12-03 2020-05-05 Seiko Epson Corporation Piezoelectric drive apparatus for motor and method for manufacturing the same, motor, robot, and pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178179A (en) * 1984-09-25 1986-04-21 Nippon Soken Inc Laminating type piezoelectric body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178179A (en) * 1984-09-25 1986-04-21 Nippon Soken Inc Laminating type piezoelectric body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10644222B2 (en) 2015-12-03 2020-05-05 Seiko Epson Corporation Piezoelectric drive apparatus for motor and method for manufacturing the same, motor, robot, and pump

Similar Documents

Publication Publication Date Title
US4570098A (en) Temperature compensated stack of piezoelectric elements
EP1160886B1 (en) Piezoelectric element for injector
JP2002061551A (en) Piezoelectric element for injector
US5614044A (en) Method of manufacturing a laminated ceramic device
JPH01157581A (en) Laminate type displacement element
US20070001031A1 (en) Multilayer piezoelectric element and fuel injector
US6215230B1 (en) Alternately stacked piezoelectric actuator in which each electrode layer leaves an alternately L-shaped stripe of piezoelectric material uncovered
JP3881484B2 (en) Multilayer piezoelectric actuator
JPS62299093A (en) Manufacture of laminate type piezoelectric substance
JP6033441B2 (en) Method for manufacturing electronic components as a stack
US6922005B2 (en) Multilayer actuator with contact surfaces of internal electrodes of the same polarity arranged offset for their external electrodes
EP2259352A1 (en) Laminated piezoelectric actuator
JPS62211974A (en) Laminated piezoelectric element and manufacture thereof
JPS63184374A (en) Manufacture of laminated piezoelectric material
JP3850163B2 (en) Multilayer piezoelectric actuator and manufacturing method thereof
JP2015506580A (en) Piezoelectric stack provided with a passivation part, and passivation method of the piezoelectric stack
JPS6178179A (en) Laminating type piezoelectric body
JPH02237083A (en) Laminated piezoelectric element
JPH09148640A (en) Laminated piezoelectric actuator
JPH04337682A (en) Piezoelectric effect element and electrostrictive effect element
JP4348909B2 (en) Mold for crimping ceramic laminates
JP2017092167A (en) Piezoelectric actuator and method of manufacturing the same
JPH10190081A (en) Multilayer piezo-electric transducer and its manufacture
JPH0416954B2 (en)
JPH0517897Y2 (en)