JPS62298748A - Icp analysis - Google Patents

Icp analysis

Info

Publication number
JPS62298748A
JPS62298748A JP14164786A JP14164786A JPS62298748A JP S62298748 A JPS62298748 A JP S62298748A JP 14164786 A JP14164786 A JP 14164786A JP 14164786 A JP14164786 A JP 14164786A JP S62298748 A JPS62298748 A JP S62298748A
Authority
JP
Japan
Prior art keywords
sample
chamber
plasma
gas
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14164786A
Other languages
Japanese (ja)
Inventor
Koji Okada
幸治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP14164786A priority Critical patent/JPS62298748A/en
Publication of JPS62298748A publication Critical patent/JPS62298748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To reduce analysis time significantly, by turning a changeover valve to a sample discharge position when a sample is to be changed and the flow rate of a gas supplied into a chamber is increased. CONSTITUTION:When one sample is to be analyzed, a control signal is provided from a controller 34 to supply power to an induction coil 10 through a matching box 12 from a high frequency power source 14 and a cooling gas and a plasma gas are supplied to a plasma torch 2 to maintain a plasma. Consequently, a sample 16 sucked up by a pump 18 is atomized into a chamber 24 and introduced into the torch 2 through a changeover valve 4 to cause light emission. Then, when different samples are to be analyzed, a signal is provided to a motor 30 from a controller 32 to turn the valve 4 to the sample discharge position and the flow rate of a carrier gas supplied to the chamber 24 is increased by a controller 28 to match the timing thereof.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (イ)産業上の利用分野 本発明は、I CP(高周波誘導結合プラズマ)分析方
法に係り、特には種類の異なる複数試料の分析時間の短
縮化の方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (a) Industrial Application Field The present invention relates to an ICP (high frequency inductively coupled plasma) analysis method, and in particular to a method for reducing analysis time for multiple samples of different types. Regarding shortening methods.

(ロ)従来技術とその問題点 一般に、ICP分析装置は、溶液試i」の分析を行なう
ものであり、固体試料を分析するスパーク法やアーク法
の発光分光分析装置に比較してプラズマが定常安定して
いて分析精度が高いなとの利点を有する。
(b) Prior art and its problems In general, ICP analyzers analyze liquid samples, and compared to spark and arc emission spectrometers that analyze solid samples, plasma is stationary. It has the advantages of being stable and having high analytical accuracy.

ところで、このようなICP分析装置においては、互い
に種類の異なる複数の試料を連続して分析することが必
要となる場合がある。このような場合、従来は試料の導
入系が大きな時定数をもつため、一つの試料の分析に数
分間を要していた。
By the way, in such an ICP analyzer, it may be necessary to continuously analyze a plurality of samples of different types. In such cases, conventional sample introduction systems have a large time constant, so it took several minutes to analyze one sample.

すなわち、試料をプラズマトーチで発光させるに要する
時間は、実質lO〜20秒程度と短時間であるが、プラ
ズマトーチに試料を導入する試ネ1導入系が前回分析の
試料から新たに導入される今回の試料に完全に置換され
るまでに時間がかかっていた。その内訳は、試料吸い上
げ管の中の試ネ゛1を置換するに要する時間と、チェン
バ内の試料を置換するに要する時間とである。
In other words, the time required to cause the sample to emit light with the plasma torch is actually a short time of about 10 to 20 seconds, but the test 1 introduction system that introduces the sample into the plasma torch is newly introduced from the sample analyzed previously. It took some time for the sample to be completely replaced. This includes the time required to replace the sample 1 in the sample suction tube and the time required to replace the sample in the chamber.

このように、従来は、試料をプラズマ発光させる時間に
比へて試料導入系を安定化させろためのクリーニング時
間が極端に長いために、全体として分析効率を低下させ
ていた。
As described above, in the past, the cleaning time required to stabilize the sample introduction system was extremely long compared to the time required to cause the sample to emit plasma, reducing the analysis efficiency as a whole.

本発明は、このような事情に鑑みてなされたものであっ
て、種類の異なる複数の試オ′」を分析する場合に、そ
の分析時間を大幅に短縮できろようにすることを目的と
する。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to significantly shorten the analysis time when analyzing multiple samples of different types. .

(ハ)問題点を解決するための手段 本発明は、」1記の目的を達成するために、試1!1霧
化チェンバとプラズマトーチとの間に試料流路の切り換
えバルブが設けられたICP分析装置を適用し、 試1’4分析時には、前記切り換えバルブをプラズマト
ーチ側に切り換えてヂエンバ内で霧化された試料をプラ
ズマトーチに導入する一方、試It交換時には、切り換
えバルブを試料排出側に切り換えろとともに、その切り
換えタイミングに合ね且でチェンバ内に供給さイ1ろガ
ス流量を試料分析時よりも増加させろようにしている。
(c) Means for Solving the Problems In order to achieve the object described in 1, the present invention provides a sample flow path switching valve provided between the atomization chamber and the plasma torch. Applying the ICP analyzer, during trial 1'4 analysis, the switching valve was switched to the plasma torch side to introduce the sample atomized in the diember into the plasma torch, while when replacing the trial it, the switching valve was switched to the plasma torch side to discharge the sample. At the same time as switching to the side, the flow rate of gas supplied into the chamber is increased at the same timing as when the sample is analyzed.

(ニ)実施例 第1図は、本発明方法を適用するためのT CP分析装
置の要部を示す概略構成図である。
(D) Embodiment FIG. 1 is a schematic diagram showing the main parts of a TCP analyzer to which the method of the present invention is applied.

同図において、符号1はrcr)分(j↑装置全体を示
し、2はプラズマトーチヂて、ごのプラズマトーチ千2
には、切り換えバルブ4、(・−予冷却用の冷却カス導
入管路〔1およびプラズマを維持4゛ろためのプラズマ
ガス導入管路8がそれぞれ接続さA1ている。
In the same figure, numeral 1 indicates the entire device (rcr), and 2 indicates the plasma torch.
A switching valve 4, a cooling waste introduction pipe 1 for pre-cooling, and a plasma gas introduction pipe 8 for maintaining plasma 4 are connected to A1, respectively.

また、IOは歯周θU磁界を発生さ且ろ誘導コイル、1
2は誘導コイルIOに供給ざイ1ろ旨周波電力と負荷と
のインピーダンスを整合させろためのマッチンクボック
ス、14は誘導コイル10に高周波電力を供給するため
の高周波電源である。また、16は溶液試料、18は溶
液試11. + 6を吸い」1げる定量ポンプ、20は
吸い上げ管、22は溶液試料16を霧化するネプライザ
、24(」ネプライザ22で霧化された試ネ−1を安定
化させるためのチェンバ、26はギヤリアカスの導入管
路、28はプラズマトーチ2への導入ガス量およびネプ
ライザ22へ供給するギヤリアカスのガス流用とを制御
するガスコント「ノーラ、30は切り換えバルブ26を
回転駆動さ什るモータ、32は切り換えバルブ26の切
り換え動作を制御オろチェンバコントローラ、34け−
1−記高周波電源I4、定宿ポンプ18、ガスコン)・
ローラ28およびチェンバコンI・「1−ラ32のシー
ケンスを制御オろシーケンスコント「1−ラである。
In addition, IO generates a periodontal θU magnetic field and an induction coil, 1
Reference numeral 2 represents a match box for matching the impedance between the main frequency power supplied to the induction coil IO and the load, and 14 represents a high frequency power source for supplying high frequency power to the induction coil 10. Also, 16 is a solution sample, 18 is a solution sample 11. 20 is a suction tube; 22 is a nebulizer for atomizing the solution sample 16; 24 is a chamber for stabilizing the sample 1 atomized by the nebulizer 22; Reference numeral 28 denotes a gas control line for controlling the amount of gas introduced into the plasma torch 2 and the gas flow from the gear rear gas to be supplied to the nebulizer 22. Reference numeral 30 denotes a motor that rotationally drives the switching valve 26; A 34-key chamber controller controls the switching operation of the switching valve 26.
1- High frequency power supply I4, stationary pump 18, gas conditioner)・
The sequence of the roller 28 and the chamber controller 32 is controlled by the sequence controller 1-ra.

−1−記切り換えバルブ4+J:、第2図ないし第4図
に示すように、出口ボート38が形成された第1固定部
祠40と、複rJICこの例では4つ)の入口ボート4
2が形成された第2固定部+1’44とを備える。そI
7て、出口ボート38にプラズマトーチ2が接続され、
人口ボート42の一つにチェンバ24が接続される。残
りの人[1ボート42は試料排出ボートとして使用され
る。さらに、第1、第2固定部+4’40.44は、そ
の各フランジ部がボルト46で固定されて一体化される
ととしに、両固定部祠40.44の間に可動部材48が
配置されている。この可動部材48は、内部に入口ボー
ト42と出「1ボート38とを連通ずる連通路5oが=
4− 設(」られるとともに、その底部には人口ボー1−42
相互間を連通するための(Jターン溝52が、士た、底
部中央部に可動部+)I48を回転させろための回転軸
54が第2固定部材44を貫通1.て直結され、この回
転軸54にモータ30の駆動軸が接続されている。
-1- Switching valve 4+J: As shown in FIGS. 2 to 4, a first fixed part shrine 40 in which an outlet boat 38 is formed, and an inlet boat 4 of multiple rJICs (four in this example)
2 is provided with a second fixing portion +1'44. Part I
7, the plasma torch 2 is connected to the exit boat 38,
A chamber 24 is connected to one of the artificial boats 42 . The remaining person [1 boat 42 is used as a sample discharge boat. Further, assuming that the first and second fixed parts +4'40.44 are integrated by fixing their respective flanges with bolts 46, a movable member 48 is disposed between both fixed part shrines 40.44. has been done. This movable member 48 has a communication path 5o that communicates the inlet boat 42 and the outlet boat 38 inside.
4- At the same time, a population board 1-42 is installed at the bottom.
A rotating shaft 54 for rotating the I48 (with a J-turn groove 52 and a movable part in the center of the bottom) passes through the second fixing member 44. The drive shaft of the motor 30 is connected to the rotary shaft 54.

次に、このICP分析装置を適用1.八本発明方法につ
いて説明する。
Next, apply this ICP analyzer 1. 8. The method of the present invention will be explained.

一つの試料を分析する際には、シーケンスコントローラ
34から高周波電源14とガスコントローラ28とにそ
れぞれシーケンス制御信号を!jえ、高周波電源14か
ら誘導コイルlOへマッヂンクボックス12を介して高
周波電力を供給するととちに、プラズマトーチ2へ冷却
ガスとプラズマガスとを供給してプラズマを随行する。
When analyzing one sample, sequence control signals are sent from the sequence controller 34 to the high frequency power supply 14 and the gas controller 28, respectively! In addition, high frequency power is supplied from the high frequency power supply 14 to the induction coil 10 via the magic box 12, and at the same time, cooling gas and plasma gas are supplied to the plasma torch 2 to accompany the plasma.

また、ギヤリアガスをネプライザ22に供給する。する
と、定宿ポンプ18で吸い−)二げられた試料16が吸
い上げ管20を通りネプライザ22によってチェンバ2
4内に噴霧される。噴霧された試1i1 iJ切り換え
バルブ4を介してプラズマト一千2内に導入され、これ
により、試料がプラズマトーチ2で発光される。
Further, gear gas is supplied to the nebulizer 22. Then, the sample 16 sucked up by the stationary pump 18 passes through the suction tube 20 and is transferred to the chamber 2 by the nebulizer 22.
Sprayed within 4 hours. The atomized sample 1i1iJ is introduced into the plasmat 112 via the switching valve 4, whereby the sample is illuminated by the plasma torch 2.

次に、今回分析対象となる試l:tが前回分析した試料
と種類が異なる場合には、定量ポンプ18、吸い」−げ
管20、ネプライザ22およびヂエンバ24を含む試料
導入系を予め今回分析ずろ試料でクリーニングする必要
がある。これには、今回分析する試料16を定量ポンプ
18で吸い」−げて吸い上げ管20からネプライザ22
に供給する一方、チェンバコントローラ32からモータ
30に駆動信号を与えて切り換えバルブ4を試料排出側
に切り換え、かつ、その切り換えタイミングに合イつせ
てガスコントローラ28によってネプライザ22からチ
ェンバ24内に供給されるキャリアガスのガス流量を試
料分析時よりも増加さ什ろ。ずろと、チェンバ24内に
今回分析ずろ試料が多量に噴霧されるので、チェンバ2
4内に曲回分析した試料が残存している場合でも、今回
分析する試料によって押しだされたかたちで短時間の内
に置換される。
Next, if the sample l:t to be analyzed this time is of a different type from the sample analyzed last time, the sample introduction system including the metering pump 18, suction tube 20, nebulizer 22, and embargo 24 should be prepared in advance for this analysis. It is necessary to clean with a ground sample. To do this, the sample 16 to be analyzed this time is sucked up with the metering pump 18 and then passed through the suction tube 20 to the nebulizer 22.
At the same time, a drive signal is given to the motor 30 from the chamber controller 32 to switch the switching valve 4 to the sample discharge side, and at the same time, the gas is supplied from the nebulizer 22 into the chamber 24 by the gas controller 28 in time with the switching timing. Increase the gas flow rate of the carrier gas used during sample analysis. Since a large amount of the analysis sample will be sprayed into the chamber 24, the chamber 2
Even if a sample that has been analyzed multiple times remains in the sample 4, it will be displaced within a short time by being pushed out by the sample that will be analyzed this time.

そして、前回分析の試料は、切り換えバルブ4の一つの
入口ポート42、U字溝52を通って他の入口ボート4
2から排出される。この場合、キャリアガスの流量を増
加させても、ギヤリアガスはプラズマトーチ2に導入さ
れないので、プラズマトーチ2は安定した状態が維持さ
れる。
The sample from the previous analysis is then passed through one inlet port 42 of the switching valve 4 and the U-shaped groove 52 to the other inlet port 4.
It is discharged from 2. In this case, even if the flow rate of the carrier gas is increased, the gear gas is not introduced into the plasma torch 2, so the plasma torch 2 is maintained in a stable state.

試料導入系が今回分析する試料に完全に置換されて安定
化すると、次に、切り換えバルブ4をプラズマトーチ2
側に切り換え、今回の分析試料をプラズマトーチ2内に
導入する。
Once the sample introduction system has been completely replaced with the sample to be analyzed this time and stabilized, the switching valve 4 is switched to the plasma torch 2.
side, and introduce the current analysis sample into the plasma torch 2.

(ホ)効果 以上のように本発明によれば、互いに種類の異なる複数
の試料を分析する際の分析時間を大幅に短縮化でき、し
たがって、分析効率を向−1−させることができる等の
優れた効果が発揮される。
(e) Effects As described above, according to the present invention, the analysis time when analyzing multiple samples of different types can be significantly shortened, and therefore the analysis efficiency can be improved. Excellent effects are demonstrated.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の実施例を示すもので、第1図は本発
明を適用するためのICP分析装置の要部を示す概略構
成図、第2図は切り換えバルブの断面図、第3図および
第4図は同バルブの可動部と固定部の摺動面の平面図で
ある。 1・・・ICP分析装置、2・・プラズマトーチ、4・
・・切り換えバルブ、16・・・試料、24・・・チェ
ンバ。
The drawings show an embodiment of the method of the present invention, and FIG. 1 is a schematic configuration diagram showing the main parts of an ICP analyzer to which the present invention is applied, FIG. 2 is a cross-sectional view of a switching valve, and FIG. FIG. 4 is a plan view of the sliding surfaces of the movable part and fixed part of the same valve. 1... ICP analyzer, 2... plasma torch, 4...
...Switching valve, 16...Sample, 24...Chamber.

Claims (1)

【特許請求の範囲】[Claims] (1)チェンバとプラズマトーチとの間に試料流路の切
り換えバルブが設けられたICP分析装置を適用し、 試料分析時には、前記切り換えバルブをプラズマトーチ
側に切り換えてチェンバ内で霧化された試料をプラズマ
トーチに導入する一方、 試料交換時には、切り換えバルブを試料排出側に切り換
えるとともに、その切り換えタイミングに合わせてチェ
ンバ内に供給されるガス流量を試料分析時よりも増加さ
せることを特徴とするICP分析方法。
(1) An ICP analyzer is used in which a switching valve for the sample flow path is provided between the chamber and the plasma torch, and when analyzing the sample, the switching valve is switched to the plasma torch side and the sample is atomized in the chamber. is introduced into the plasma torch, and at the time of sample exchange, the switching valve is switched to the sample discharge side, and at the same time, the gas flow rate supplied into the chamber is increased compared to that during sample analysis. Analysis method.
JP14164786A 1986-06-18 1986-06-18 Icp analysis Pending JPS62298748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14164786A JPS62298748A (en) 1986-06-18 1986-06-18 Icp analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14164786A JPS62298748A (en) 1986-06-18 1986-06-18 Icp analysis

Publications (1)

Publication Number Publication Date
JPS62298748A true JPS62298748A (en) 1987-12-25

Family

ID=15296909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14164786A Pending JPS62298748A (en) 1986-06-18 1986-06-18 Icp analysis

Country Status (1)

Country Link
JP (1) JPS62298748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253139A (en) * 1989-03-28 1990-10-11 Seiko Instr Inc Sample introducing method for inductively coupled plasma emission spectrophotometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253139A (en) * 1989-03-28 1990-10-11 Seiko Instr Inc Sample introducing method for inductively coupled plasma emission spectrophotometer

Similar Documents

Publication Publication Date Title
US5490913A (en) Magnetic field enhanced sputtering arrangement with vacuum treatment apparatus
JP2001523570A (en) Modular dielectric barrier discharge device for pollution reduction
JPH0646359U (en) Plasma emission source
GB1271170A (en) Device for the spectrochemical determination of the concentration of an element in a sample
JPH0640074B2 (en) ICP analysis method
EP1036404B1 (en) Method and apparatus for determining the rates of reactions in liquids by mass spectrometry
EP0475636A2 (en) Method and apparatus for analysis of gases using plasma
JPS62298748A (en) Icp analysis
JPS6169185A (en) Metal vapor laser device
Tölg Extreme trace analysis of the elements—the state of the art today and tomorrow. Plenary lecture
US5148024A (en) Ion beam processing apparatus and gas gun therefor
JPH06222005A (en) Icp emission spectroscopic analysis
US4771435A (en) Room temperature metal vapor laser
JPH0737945B2 (en) ICP analysis method
JPH0726691Y2 (en) Plasma emission spectroscopy analyzer
JP4235015B2 (en) Spray chamber device for ICP analyzer
JPH07294440A (en) Spectral analyzer
JPH052846Y2 (en)
JPH0886755A (en) Method for using plasma gas
JPH0619084Y2 (en) Inductively coupled plasma optical emission spectrometer
JP2000131280A (en) Atomizer combined with electrophoresis
JPH02253139A (en) Sample introducing method for inductively coupled plasma emission spectrophotometer
JPH06109637A (en) Icp quantometer
RU2123686C1 (en) Method and device for ion-heat sample atomization
JPH07218437A (en) Method and device for emission spectrochemical analysis