JPS62296993A - Steel wire for mag pulse high speed welding - Google Patents

Steel wire for mag pulse high speed welding

Info

Publication number
JPS62296993A
JPS62296993A JP13788086A JP13788086A JPS62296993A JP S62296993 A JPS62296993 A JP S62296993A JP 13788086 A JP13788086 A JP 13788086A JP 13788086 A JP13788086 A JP 13788086A JP S62296993 A JPS62296993 A JP S62296993A
Authority
JP
Japan
Prior art keywords
welding
wire
spatter
amount
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13788086A
Other languages
Japanese (ja)
Other versions
JPH0451276B2 (en
Inventor
Yoshio Kanbe
神戸 良雄
Hitoshi Kawabe
河辺 仁
Hiroshi Koyama
小山 汎司
Yoshito Kawaguchi
川口 宜人
Yoshiro Awano
芳朗 粟野
Hitoshi Matsui
仁志 松井
Hiroshi Suzuki
弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Welding and Engineering Co Ltd, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP13788086A priority Critical patent/JPS62296993A/en
Publication of JPS62296993A publication Critical patent/JPS62296993A/en
Publication of JPH0451276B2 publication Critical patent/JPH0451276B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable welding with the decreased generation of spatters in MAG pulse welding by incorporating specific ratios of C, Si, Mn and S into the titled wire, consisting the balance of iron and impurity elements, incorporating specific ratios of Ti, Al, N and O into the impurity elements and specifying a parameter and Mn/Si ratio within the range of specific values. CONSTITUTION:The compsn. of the wire for MAG pulse high-speed welding is composed of 0.03-0.15wt% C, 0.1-0.75 Si, 0.2-1.5% Mn, 0.005-0.03% S and the balance iron and inevitable impurity elements. The inevitable impurity elements are composed of <=0.05% Ti, <=0.01% Al, <=0.015% N, and <=0.015% O. The parameter K expressed by the relation is so determined as to satisfy the range of 0.04-0.15 and the Mn/Si ratio of 1-10. Defectless beads are obtd. and the welding with the extremely decreased generation of the spatters in executed by using such wire for MAG pulse high speed welding.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、パルス電源を用いる高速MAG溶接に於いて
、スバ・ツタ発生量の少ない鋼ワイヤに関するものであ
る。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a steel wire that generates less splinters and ivy in high-speed MAG welding using a pulsed power source.

(従来の技術) 比較的細径ワイヤを使用するガスメタルアーク)容接は
、電流密度が高く、アーク集中性がよいなどの理由から
、高速溶接に適した溶接法として、特に溶接ロボットと
組み合わせて利用されている。
(Conventional technology) Inductive welding (gas metal arc using a relatively small diameter wire) is a welding method suitable for high-speed welding because of its high current density and good arc concentration, especially in combination with welding robots. It is used.

溶接ロボットの普及に伴なって溶接の高能率化、高速化
の傾向は高まり、安定した高速溶接の実現が強く要求さ
れている。
With the spread of welding robots, there is a growing trend toward higher efficiency and faster welding, and there is a strong demand for stable, high-speed welding.

しかしながら従来、高速溶接にはスパッタの発生とビー
ドの形成性という2つの大きな問題点があった。
However, conventionally, high-speed welding has had two major problems: spatter generation and bead formation.

スパッタは、母材や溶接トーチに付着して能率、シール
ド性を1員なう等のほか、ロボットや周辺の装置、治工
具に侵入しその動作の円滑性を阻害するなどの原因とな
る。
Spatter not only adheres to the base metal and welding torch, impairing efficiency and shielding performance, but also invades robots, peripheral equipment, and jigs, and impairs their smooth operation.

このスパッタ発生要因には種々の要素が考えられるが、
最も影響が大きいのは、溶滴が成長し溶融プールに移行
する際に接触短絡しアークが回能する過程でのアーク力
、ピンチ力によって飛散するものである。
There are various factors that can be considered to cause this spatter, but
The greatest influence is caused by contact short-circuiting when droplets grow and transfer to the molten pool, and are scattered by arc force and pinch force during the process of arc recirculation.

したがってスパッタの減少には、短絡が生じない程度に
アークを長く保つことが有効とされている。
Therefore, it is considered effective to reduce spatter by keeping the arc long enough to prevent short circuits.

一方、長いアーク長のままで溶接速度を高めていくと、
アンダーカットが発生し易くなり、さらに高速側ではハ
ンピングビード、アークぎれ等ビード形成が不完全とな
る。
On the other hand, if the welding speed is increased while the arc length remains long,
Undercuts are likely to occur, and bead formation such as humping beads and arc breaks may occur at high speeds.

このようにビード形成性を確保しつつスパッタの発生を
抑えるためには、短絡の発生しない程度にアーク長を出
来る限り小さくすることが必要である。
In order to suppress the occurrence of spatter while ensuring bead forming properties as described above, it is necessary to make the arc length as small as possible to the extent that short circuits do not occur.

非短絡でのアーク長は、移行粒滴径に依存することから
、溶滴移行回数を増加する手段が講じられており、シー
ルドガスとしてAr−Co□ (一般的には20%程度
のCO□比率)混合ガスでのパルス電源を用いる、MA
Gパルス溶接によってかなりの効果があげられている。
Since the arc length without short circuit depends on the diameter of the transferred droplet, measures are taken to increase the number of droplet transfers, and Ar-Co□ (generally about 20% CO□) is used as a shielding gas. Ratio) MA using pulsed power supply with mixed gas
Considerable effects have been achieved by G-pulse welding.

しかしMAGパルス熔接においても非短絡域で良好なビ
ードが得られる溶接速度は50〜80cm/mjn程度
である。
However, even in MAG pulse welding, the welding speed at which a good bead can be obtained in a non-short circuit region is about 50 to 80 cm/mjn.

他方、短絡時のスパッタ発生量対策としては、溶接電源
の二次側インダクタンスを調整する手段が特公昭47−
41659号公報等に記載の技術で講じられているがパ
ルス電源においては、パルス波形の立ち上がり、立ち下
がり時間が大きくなることからインダクタンスの増加に
制限が生ずるため最小限になされているにすぎず、短絡
時には多大のスパッタが発生する。
On the other hand, as a measure against the amount of spatter generated in the event of a short circuit, a means of adjusting the secondary inductance of the welding power source was proposed in the Japanese Patent Publication No. 47-1983.
This has been done in the technology described in Japanese Patent No. 41659, etc., but in pulse power supplies, the rise and fall times of the pulse waveform become long, which limits the increase in inductance, so this is only done to a minimum. A large amount of spatter is generated during a short circuit.

以上詳述したように、高速溶接における2大問題である
ビード形成性とスパッタに関しては、個々に対策はなさ
れているもののいずれも不充分であり、ましてや両者を
同時に解決する手段はなされていなかった。
As detailed above, although individual measures have been taken to address the two major problems in high-speed welding, bead formation and spatter, none of them are sufficient, and even more so, no means have been taken to solve both at the same time. .

(発明が解決しようとする問題点) 本発明はこうした現状に鑑み、高速溶接におけるビード
形成性とスパッタの低減とを同時に達成するために、M
AGパルス電源による短絡移行溶接における短絡現象に
着目し、短絡特性とワイヤ成分の関連について詳細な検
討を加えた結果、ワイヤ成分を調整し、かつ該成分に依
存する制御パラメータとパルス電源の周波数特性とをマ
ツチングさせることによって、短絡時に発生するスパッ
タ量を抑えると共に高速溶接性も同時に満足するMAG
パルス畜速溶接用鋼ワイヤを提供するものである。
(Problems to be Solved by the Invention) In view of the current situation, the present invention aims to achieve bead formation properties and spatter reduction in high-speed welding at the same time.
Focusing on the short-circuit phenomenon in short-circuit transition welding using an AG pulsed power source, we conducted a detailed study on the relationship between short-circuit characteristics and wire components.As a result, we adjusted the wire components and determined the control parameters and frequency characteristics of the pulsed power source that depend on these components. MAG which suppresses the amount of spatter generated during short circuit and also satisfies high-speed welding performance by matching
The present invention provides a steel wire for pulsed speed welding.

(問題点を解決するための手段) 本発明の要旨とするところは、ワイヤ中の元素として重
量(%)で、C:0.03〜0.15%、Si:Q、1
〜0.7%、Mn:0.2〜1.5%、S : 0.0
05〜0.03%、残部鉄および不可避不純物元素から
なり、かつ不可避不純物元素中、Ti:0.05%以下
、Ar:0.01%以下、N : O,015%以下、
0: 0.015%以下でかつ次式で示されるパラメー
タ(K)が0.04〜0.15の範囲であると共にMn
/Si比が1〜10であることを特徴とするM A G
パルス高速溶接用鋼ワイヤにある。
(Means for Solving the Problems) The gist of the present invention is that the elements in the wire are: C: 0.03 to 0.15%, Si: Q, 1
~0.7%, Mn: 0.2-1.5%, S: 0.0
05 to 0.03%, balance consisting of iron and unavoidable impurity elements, and among the unavoidable impurity elements, Ti: 0.05% or less, Ar: 0.01% or less, N: O, 0.015% or less,
0: 0.015% or less, the parameter (K) shown by the following formula is in the range of 0.04 to 0.15, and Mn
/Si ratio is 1 to 10.
In steel wire for pulsed high speed welding.

K=C−0,06X5i−0、O7XMn+4×S+3
x N −0,2x O 但し元素記号は、元素の含有量(重量%)を示す。
K=C-0,06X5i-0,O7XMn+4xS+3
x N -0,2x O However, the element symbol indicates the content (weight %) of the element.

以下、本発明について詳述する。The present invention will be explained in detail below.

(作 用) 第1図はJIS Z3312 YGW15系のワイヤ(
直径1、2n+φ、C: 0.10%、Si:0.80
%、Mn:1.20%、P : 0.010%、S :
 0.003%、Cu:0.20%、A i : 0.
005 %、Ti:0.10%)とパルス電源ヲ用いて
、シールドガスΔr−20%CO□、溶接電流:i6o
、25OA、溶接速度:150〜200 cm/min
 、パルス周波数:110,22011zの各条件で下
向溶接(Bead on plate )を行い、溶接
電圧を18〜28Vに変化させることによりアーク長を
変化させ、採取したスパッタ量を短絡回数(回/5ea
)との関係で示した図である。
(Function) Figure 1 shows JIS Z3312 YGW15 series wire (
Diameter 1, 2n+φ, C: 0.10%, Si: 0.80
%, Mn: 1.20%, P: 0.010%, S:
0.003%, Cu: 0.20%, A i: 0.
005%, Ti: 0.10%) and a pulse power supply, shielding gas Δr-20%CO□, welding current: i6o
, 25OA, welding speed: 150-200 cm/min
, Pulse frequency: 110, 22011z, downward welding (Bead on plate) was performed, the arc length was changed by changing the welding voltage from 18 to 28V, and the amount of spatter sampled was calculated by the number of short circuits (times/5ea).
).

測定値は同図の2本の直線にはさまれた範囲に含まれて
いる。なおこの場合の短絡回数は、溶接電圧の変化をデ
ータレコーダに記録し、電圧の瞬時値が10v以下のも
のを計数した。
The measured values are included in the range between the two straight lines in the figure. The number of short circuits in this case was determined by recording changes in welding voltage on a data recorder, and counting the number of short circuits when the instantaneous value of the voltage was 10 V or less.

スパッタ量の増加は短絡回数と直線的関係にあり、スパ
ッタ発生の主因が短絡にあることを示している。
The increase in spatter amount has a linear relationship with the number of short circuits, indicating that the main cause of spatter generation is short circuits.

第2図は板厚’l msの横向重ねすみ肉溶接を第1図
と同じパルス電源、ワイヤ、シールドガスを用いて行っ
た場合のビード外観、ビード断面形状が良好な範囲を溶
接電流(1)と溶接速度(U)との関係で示したもので
ある。可能な限り電圧を低く保ちアーク長を短くした場
合の範囲イに比べ、短絡回数を100回/秒以下程度ま
でにアーク長を長くした場合の良好な条件範囲口は著し
く狭く低電流、低速度側になっている。
Figure 2 shows the welding current (1 ) and welding speed (U). Compared to range A when the voltage is kept as low as possible and the arc length is shortened, the favorable condition range when the arc length is increased to 100 times/second or less is significantly narrower, resulting in lower current and lower speed. It's on the side.

このようにパルス電源を用いたMAG溶接においても、
高速でのビード形成性を確保するためには、充分アーク
長が短かくスパッタの発生する条件を選定せざるを得な
い。
In this way, even in MAG welding using a pulsed power source,
In order to ensure bead formation at high speed, it is necessary to select conditions where the arc length is sufficiently short and spatter occurs.

ところで第1図において、同一短絡回数でも発生ずるス
パッタ量に大きな差のあることに本発明者等は着目した
Incidentally, in FIG. 1, the inventors of the present invention have noticed that there is a large difference in the amount of spatter generated even when the number of short circuits is the same.

いずれも短絡回数とスパッタ量とがほぼ直線的比例関係
を示すことから短絡毎のスパッタ発生量に大きなバラツ
キは無く、その発生パターンが異なると考えられ詳細な
短絡機構の検討を行った。
In both cases, the number of short circuits and the amount of spatter show a nearly linear proportional relationship, so there is no large variation in the amount of spatter generated for each short circuit, and it is thought that the generation patterns are different, so a detailed study of the short circuit mechanism was conducted.

第3図は、同一ワイヤ送給速度において、はぼ周波数が
固定されている従来電源に比べて広範囲に周波数調整が
可能なインバータ制御パルス電源を用いて、第1図と同
じワイヤ、シールドガスと組合わせて、周波数とスパッ
タ量の検討結果の一例を示したものである。
Figure 3 shows the same wire and shielding gas as in Figure 1, using an inverter-controlled pulse power supply that allows frequency adjustment over a wider range than conventional power supplies with fixed frequencies at the same wire feeding speed. In combination, this shows an example of the results of examining the frequency and amount of sputtering.

なおこの場合、ワイヤ送給速度は7m/min、溶接速
度は150 cm/min 、 Ext  (チップ−
母材間距離)は18鶴、下向溶接電流は210〜220
A1電圧は22〜23Vである。
In this case, the wire feeding speed was 7 m/min, the welding speed was 150 cm/min, and Ext (chip-
Distance between base metals) is 18 Tsuru, downward welding current is 210-220
A1 voltage is 22-23V.

スパッタ量はA点より周波数を上げていくと急激に減少
し、0点(今後適正周波数と呼ぶ)で最小となり、これ
以上ではまた増加する関係が得られた。そこで、このよ
うに周波数によって同じ短絡でもスパッタ発生量に違い
がある理由について検討したところ、適正周波数(0点
)では、パルス周期中のベース電流期間で短絡が終了し
アークが再発生する(ベース短絡)が、はぼ各パルス毎
に安定して行われているのに対し、低周波数側B点では
ピーク電流の立下がり期間でアーク再発生(立下がり短
絡)の顔度が高く、高周波側のD点ではピーク立上がり
短絡の傾向を示した。
A relationship was obtained in which the amount of sputtering rapidly decreased as the frequency was increased from point A, reached a minimum at point 0 (hereinafter referred to as the appropriate frequency), and increased again above this point. Therefore, we investigated the reason why the amount of spatter generated by the same short circuit differs depending on the frequency, and found that at the appropriate frequency (0 point), the short circuit ends during the base current period of the pulse cycle and the arc regenerates (base On the other hand, at point B on the low frequency side, arc re-occurrence (falling short circuit) is more likely to occur during the falling period of the peak current, and on the high frequency side At point D, there was a tendency for a peak rise short circuit.

短絡の発生の無い程度に充分アーク長を保った通常パル
スMAG溶接では、パルス電流時にワイヤが溶融され生
じた溶接と固体ワイヤとの接触界面近傍にピンチ力が作
用し急速なくびれの成長と共に、軸方向の力を受けて溶
滴が離脱飛行して母材に移行するサイクルを各パルス毎
に安定して行っている。しかしアーク長の短い条件では
上記サイクルのいづれ力・でン容摘と?容融ブー/しが
短絡するため、短絡時の溶滴の形状および電流値、さら
にはアーク再生時の電流値によって溶滴に様々な影響を
与える事になる。電流の充分大きい時期にアーク再生が
あれば、ワイヤ先端の溶融部およびプールには大きな力
が作用しビード形成性を著しく損なうと共にスパッタの
要因となり、また短絡時の電流が大きく、かつプールと
溶滴先端接触部の面積が溶滴の最小断面積より小さい場
合にはこの接触部にはピンチ力が集中しスパッタを増加
させる。
In normal pulsed MAG welding, in which the arc length is maintained sufficiently to prevent short circuits, a pinch force acts near the contact interface between the weld and the solid wire, which is generated by melting the wire during pulsed current, resulting in rapid constriction growth. A cycle in which the droplet detaches and flies due to the axial force and transfers to the base material is performed stably with each pulse. However, under short arc length conditions, what is the power/density effect of the above cycle? Since the melting tube is short-circuited, the shape and current value of the droplet at the time of the short-circuit, as well as the current value during arc regeneration, will have various effects on the droplet. If arc regeneration occurs when the current is sufficiently large, a large force will act on the molten part and pool at the tip of the wire, significantly impairing bead formation and causing spatter. If the area of the droplet tip contact area is smaller than the minimum cross-sectional area of the droplet, pinch force will concentrate on this contact area, increasing spatter.

したがってスパッタを最小限にする短絡の条件としてi
)出来る限り小電流での短絡とアーク再生を行わせる。
Therefore, as a short circuit condition to minimize spatter, i
) Perform short circuit and arc regeneration with as small a current as possible.

こと、ii)短絡時の溶滴最小径部分が接触部以外、す
なわち溶滴−ワイヤ固体部になることが必要であり、第
3図の0点は、この2つの条件を満足する点と考えられ
る。
ii) The minimum diameter part of the droplet at the time of short circuit must be other than the contact area, that is, the droplet-wire solid part, and the 0 point in Figure 3 is considered to be the point that satisfies these two conditions. It will be done.

ところで、この0点において、パルス周波数と同期して
安定したベース短絡が行われているとすれば、適正周波
数は溶滴の物性(界面張力、粘性等)が関与し、ワイヤ
成分に依存しており、周波数を高めることは、溶滴を細
粒化させ、アーク長をより短くし安定した短絡移行に導
き、ひいてはスパッタの小粒化、減少につながると考え
た。
By the way, if a stable base short circuit is performed at this 0 point in synchronization with the pulse frequency, the appropriate frequency will depend on the physical properties of the droplet (interfacial tension, viscosity, etc.) and will depend on the wire components. Therefore, we thought that increasing the frequency would make the droplets finer, shorten the arc length, lead to stable short-circuit transition, and eventually lead to smaller particles and less spatter.

そこで種々成分系のワイヤを用い、第3図の場合と同じ
溶接条件により適正周波数を求め、適正周波数に於ける
スパッタ量に及ぼすワイヤ成分の影響をCとの当量で置
き換えたパラメータ(K)、すなわち K=C−0,0
6xSi  o、o 7 XMn+ 4×S+3XN−
0,2X○(但し元素記号は、元素の含有重量%)で示
し、スパッタ量の少ない範囲をこのに値で限定すること
が可能となった。K値とスパッタ量の関係は、第4図に
斜線で示すとおりである。
Therefore, using wires of various compositions, the appropriate frequency was determined under the same welding conditions as in the case of Fig. 3, and the influence of the wire component on the amount of spatter at the appropriate frequency was replaced by the equivalent of C, which was the parameter (K). That is, K=C-0,0
6xSi o, o 7 XMn+ 4xS+3XN-
It is indicated by 0.2X○ (however, the element symbol is the weight percent content of the element), and it has become possible to limit the range in which the amount of sputtering is small to this value. The relationship between the K value and the amount of sputtering is as shown by diagonal lines in FIG.

すなわち、K値が0.04以下ではスパッタ量が増加し
、これ以上ではKの増加に伴ってスパッタは少しづつ減
少の傾向を示すが0.15以上ではまた増加する、した
がってに値は0.04〜0.15の範囲に限定するもの
である。0.04以下でスパッタ量が増加するのは、l
パルスで移行させる溶滴径が大きくなるため溶滴の成長
過程で溶融プールと接触する機会が増加し、前述した最
適短絡の条件を満足できなくなると考えられ、また、0
,15以上ではパルスベース時間が短かくなりベース期
間内で短絡を終了できない頻度が斉くなるためと考えら
れる。
That is, when the K value is 0.04 or less, the amount of sputtering increases, and when the K value is higher than this, the sputtering tends to decrease little by little as K increases, but when it is 0.15 or higher, it increases again, so the value is 0. It is limited to a range of 0.04 to 0.15. The amount of sputtering increases below 0.04 because l
As the diameter of the droplet transferred by the pulse increases, the chance of contact with the molten pool increases during the growth process of the droplet, and it is thought that the conditions for optimal short circuit described above cannot be satisfied.
, 15 or more, the pulse base time becomes short and the frequency of not being able to complete the short circuit within the base period becomes uniform.

なお、K値とワイヤ物性との関連づけの試みとして、使
用ワイヤの数種について溶融ワイヤの界面張力(γ)を
測定したところ、Si、 Mn、 S、 0はγを減少
させる元素で、C,Tiは増加させる元素であり、K値
を構成する元素の大半であるC1Si+ Mn、 Oに
ついてはに値に対する各元素の増減傾向が一致していた
。(界面張力測定法SessilSe55ileDro
p (静滴法〕、雰囲気: Ar、温度1515〜16
00℃) 本発明では前述の制限のほかにMn/Si比を限定して
いる。第5図は、C25i+ Mn+  S、T+、八
lN、Oが各々本発明の限定範囲内であって、K値も本
発明の範囲内にあるワイヤのMn/Si比とスパッタ発
’JEffiとの関係を示したものである。(溶接条件
は第3図の場合に同じ。)Mn/Si比が1〜10を超
えると著しくスパッタ量が増加する現象が認められる。
In addition, as an attempt to correlate the K value with the physical properties of the wire, we measured the interfacial tension (γ) of the molten wire for several types of wires used, and found that Si, Mn, S, and 0 are elements that reduce γ, while C, Ti is an element that increases the K value, and for C1Si+Mn and O, which are the majority of the elements constituting the K value, the tendency of increase and decrease of each element with respect to the value was consistent. (Interfacial tension measurement method SessilSe55ileDro
p (sessile drop method), atmosphere: Ar, temperature 1515-16
00° C.) In the present invention, in addition to the above-mentioned limitations, the Mn/Si ratio is limited. FIG. 5 shows the relationship between the Mn/Si ratio and the sputter-generated 'Jeffi' of a wire in which C25i+ Mn+ S, T+, 81N, and O are each within the limited range of the present invention, and the K value is also within the range of the present invention. This shows the relationship. (The welding conditions are the same as in FIG. 3.) When the Mn/Si ratio exceeds 1 to 10, a phenomenon in which the amount of spatter increases significantly is observed.

したがって本発明ではMn/Sz比1〜10を限定の範
囲とした。この範囲内では、4〜6の程度でわずかであ
るが上限のスパッタ量が低い傾向を示しており最も好ま
しい範囲である。
Therefore, in the present invention, the Mn/Sz ratio is limited to a range of 1 to 10. Within this range, the upper limit of the amount of sputtering tends to be low, although it is small at about 4 to 6, which is the most preferable range.

このような現象の理由については、必ずしも明らかでな
いが、溶融メタルの粘性およびアーク安定性が相互に関
与しているものと考えられる。即ち、Sfの添加は、鋼
溶重金属の粘性係数を高めることが知られており、粘性
の増力旧鱈容滴移行に際してその離脱に要する時間が長
くなる方向に作用する。一方Mnは、アーク中での金属
蒸気圧の高い元素である。したがってMn/Si比の小
さくなるにつれて溶滴の離脱移行に要する時間は長くな
りパルスベース期間を超える頻度が高くなるためと考え
られ、本発明でのワイヤ組成範囲内ではその限度がMn
/Si比が1近傍である。またMn/Si比が大きくな
ると、短絡からアーク再生の過程で蒸気圧によりアーク
の安定性が1員なわれるためにアーク長の変動が増加し
、溶滴の移行時間のバラツキが増加すると考えられる。
Although the reason for this phenomenon is not necessarily clear, it is thought that the viscosity of the molten metal and the arc stability are mutually involved. That is, the addition of Sf is known to increase the viscosity coefficient of the molten steel heavy metal, and acts in the direction of lengthening the time required for separation when the viscosity increases and transfers to the former droplets. On the other hand, Mn is an element with high metal vapor pressure in the arc. Therefore, it is thought that as the Mn/Si ratio decreases, the time required for droplet separation and migration increases and the frequency of exceeding the pulse base period increases, and within the wire composition range of the present invention, the limit is Mn
/Si ratio is close to 1. In addition, as the Mn/Si ratio increases, arc stability is affected by vapor pressure during the process of arc regeneration from short circuit, which increases arc length fluctuations and is thought to increase variation in droplet migration time. .

これらの現象はアーク電圧を記録したオシログラフから
も読み取れた。
These phenomena were also read from the oscillograph that recorded the arc voltage.

次に本発明ワイヤ成分の限定理由を述べる。Next, the reasons for limiting the wire components of the present invention will be described.

Cは溶滴を細粒化し適正周波数を高周波側へ移行させる
作用のため、スパッタを低減させる効果的な元素である
が、一方ン容接金属を硬化させる作用もあり、高速溶接
の条件のもとでは0.15%を超えるとワレ発生の危険
性も生ずるため上限とした。また0、03%以下ではス
パッタの減少の効果が生じないばかりでなく脱酸効果も
期待できない。
C is an effective element for reducing spatter because it makes the droplets finer and shifts the appropriate frequency to the higher frequency side, but it also has the effect of hardening the welding metal, making it difficult to meet the conditions of high-speed welding. If it exceeds 0.15%, there is a risk of cracking, so the upper limit was set. Moreover, if it is less than 0.03%, not only will the effect of reducing spatter not occur, but also the deoxidizing effect cannot be expected.

Siは通常溶接においては、脱酸性元素として溶接金属
のしん性確保のため適当量添加されるが、本発明では前
述のとおり、溶滴の粘性を高めスパッタを増加させる作
用があり低い方が望ましいが、0.1%未満では高速溶
接においても脱酸不足となり溶接金属中に気泡が生ずる
ようになる。また0、7%を超えるとスパッタ低減に対
しては悪影響を及ぼずため上限とした。
In normal welding, Si is added in an appropriate amount as a deoxidizing element to ensure the toughness of the weld metal, but in the present invention, as mentioned above, it has the effect of increasing the viscosity of the droplet and increasing spatter, so a lower amount is preferable. However, if it is less than 0.1%, deoxidation will be insufficient even during high-speed welding, and bubbles will occur in the weld metal. Moreover, if it exceeds 0.7%, it will not have an adverse effect on spatter reduction, so it was set as the upper limit.

Mnについては前述のような作用であり、低い方が望ま
しいが、0.2%未満では耐気孔性の劣化やビード形状
不良になるので下限を0.2%とした。
Regarding Mn, the effect is as described above, and the lower the content, the better, but if it is less than 0.2%, the pore resistance will deteriorate and the bead shape will be poor, so the lower limit was set at 0.2%.

また、1.5%をこえるとビードの硬さが急激に増加す
るためにMnの上限は1.5%とした。
Moreover, since the hardness of the bead increases rapidly when Mn exceeds 1.5%, the upper limit of Mn was set at 1.5%.

Sは適正周波数を高周波側に移行させスパソタ低減に有
効であるばかりでなく、ビード形状を良好にする作用が
あり多めの添加が望ましいが、高温ワレ誘起元素でもあ
り、Mn添加量とのかねあいから上限を0.03%とし
た。下限値の0.005%未満ではスパックおよびビー
ト形状の改善効果は全く認められない。
S is not only effective in shifting the appropriate frequency to the high frequency side and reducing spattering, but also has the effect of improving the bead shape, so it is desirable to add a large amount, but it is also an element that induces high temperature cracking, and there is a conflict with the amount of Mn added. The upper limit was set at 0.03%. If the content is less than the lower limit of 0.005%, no improvement effect on spuck and bead shapes will be observed at all.

Tiは強脱酸性元素であり溶滴表面に薄いスラグが生成
するため、アークの発生点を限定し、溶滴移行時間のバ
ラツキを大きくして著しくスパッタを増加させるが、0
.05%以下ではこのような影響も少なく、不純物中の
上限をここに限定した。
Ti is a strong deoxidizing element and forms a thin slag on the surface of the droplet, which limits the arc generation point, increases the variation in droplet transfer time, and significantly increases spatter.
.. If the content is less than 0.05%, this effect is small, so the upper limit of the impurities was set here.

AβもTiと同効作用を及ぼし微量でスパッタを増加さ
せるため0.01%以下とした。
Since Aβ also has the same effect as Ti and increases sputtering even in a small amount, the content was set to 0.01% or less.

ワイヤ中の不純物としてのNは、その溶解方法等の条件
によってレベルが異なり例えば電炉溶解法では0.02
0%程度まで混入する場合がある。本発明におけるNの
スパッタへの効果は高めのレベルの方が好ましいが、高
速溶接では溶接金属のブローホール発生の主因となるた
め上限を0.015%とした。
The level of N as an impurity in the wire varies depending on the melting method and other conditions. For example, in the electric furnace melting method, the level of N is 0.02
It may be mixed up to about 0%. In the present invention, the effect of N on spatter is preferably at a higher level, but in high-speed welding, N is the main cause of blowholes in the weld metal, so the upper limit is set at 0.015%.

0はワイヤ中にSt、 Mn+ Tit A1等の酸化
物介在物として、あるいはワイヤ表面のスケール層や塗
布油脂類中に不純物として含む場合には0.03〜0.
04%程度まで存在する。しかし高速溶接性、スパック
に対しては有害作用を及ぼすが、その程度は小さいため
、通常レベルである0、015%以下とした。
0 is 0.03 to 0.0 when it is contained in the wire as oxide inclusions such as St, Mn+ Tit A1, etc., or as impurities in the scale layer on the wire surface or coating oils and fats.
It exists up to about 0.04%. However, although it does have a detrimental effect on high-speed weldability and spatter, the extent of this is small, so it was set at the normal level of 0.015% or less.

以上、本発明ワイヤノ成分限定理由について詳述したが
、これ以外の成分でNi、 Cr、 Mo等はスパッタ
に及ぼす影響の程度は少なく、特に添加する必要はない
が、不純物として混入する0、1%程度までは各々許容
される。またCuについても添加量に制限をもうけてい
ないが、通常鋼ワイヤは銅メッキを施される場合が多い
が、この程度の量は充分許容されるものである。
The reasons for limiting the wire components of the present invention have been explained in detail above, but other components such as Ni, Cr, and Mo have little effect on sputtering and do not need to be added in particular. % is permissible. Further, there is no restriction on the amount of Cu added, but although steel wires are usually plated with copper in many cases, this amount is sufficiently permissible.

以下に実施例によって本発明の効果をさらに具体的に説
明する。
The effects of the present invention will be explained in more detail below using Examples.

(実施例) 溶解によって得た鋼塊を鍛造、圧延、線引、メッキ(C
u)の各工程を経て、1.2 n+φのワイヤに仕上げ
た第1表に示す31種類のワイヤを用い、第2表に示す
鋼板を第3表に示す溶接条件にて高速溶接を行い、捕集
したスパッタ量およびビード外観、X線性能、アーク安
定性および適性周波数について調査した結果を第4表に
示した。
(Example) A steel ingot obtained by melting is forged, rolled, wire-drawn, and plated (C
Using the 31 types of wires shown in Table 1 that were finished into wires of 1.2 n + φ through each step of u), high-speed welding was performed on the steel plates shown in Table 2 under the welding conditions shown in Table 3. Table 4 shows the results of an investigation regarding the amount of spatter collected, bead appearance, X-ray performance, arc stability, and appropriate frequency.

ビード外観はアンダーカット、ビード不揃の無いもの、
X線性能はブロホール、ビットの認められないもの、ア
ーク安定性については、アーク切れ、アーク不安定の認
められないものを良好とした。
The bead appearance should be free of undercuts and bead irregularities.
For X-ray performance, those with no blowholes or bits were considered good, and for arc stability, those with no arc breakage or arc instability were evaluated as good.

ワイヤ魚1〜阻20は本発明ワイヤ、隘21〜隘31は
比較例を示す。Nf121.N124ワイヤは、C,S
ll I’In、 T+、 AJ N、 O等の化学成
分およびMn/Siは本発明の範囲にあるものの、K値
がそれぞれ範囲外にあるため、ビード外観、X線性能、
アーク安定性等は良好であるがスパッタ量が多い。
Wires 1 to 20 show wires of the present invention, and numbers 21 to 31 show comparative examples. Nf121. N124 wire is C,S
Although chemical components such as I'In, T+, AJ N, and O, and Mn/Si are within the scope of the present invention, their K values are outside the range, so the bead appearance, X-ray performance,
Arc stability etc. are good, but the amount of spatter is large.

11k1221127ワイヤはMn/Si範囲が外れて
いるため、ビード外観等のビード形成性は良好のものの
、スパッタ量は多くなっている。胤23ワイヤはC量が
下限値以下のもので、スパッタ量は本発明ワイヤに比べ
やや多い程度であるが、ブロホールが多発し、ビード外
観も劣化した。阻25ワイヤは、N量が範囲上限を越え
ているもので、X線透過試験でブロホールが多く認めら
れた。隘26゜階28ワイヤはそれぞれSiが範囲外の
ものであるが、患26ではビード外観、X線性能、アー
ク安定性は良好であるがスパッタが多発している。隘2
8では脱酸不足のためブロホールが認められたばかりで
なく、ビード外観、アーク安定性も不良でビード形成性
は著しく劣化している。寛29ワイヤはTi量が多すぎ
るためスパッタ量が増加している。黒30,31ワイヤ
はMn/Siが1以下で、かつに値が範囲外のものであ
るので、いずれもスパッタ量が著しく増加している。
Since the 11k1221127 wire is out of the Mn/Si range, the bead formation properties such as bead appearance are good, but the amount of sputtering is large. Wire No. 23 had a carbon content below the lower limit, and the amount of spatter was slightly larger than the wire of the present invention, but many blowholes occurred and the bead appearance deteriorated. The N25 wire had an N content exceeding the upper limit of the range, and many blowholes were observed in the X-ray transmission test. Each of the 28 wires on the 26° floor had Si outside the range, but the bead appearance, X-ray performance, and arc stability were good in wire 26, but spatter occurred frequently. Room 2
In No. 8, not only blowholes were observed due to insufficient deoxidation, but also the bead appearance and arc stability were poor, and the bead forming property was significantly deteriorated. Since the Hiroshi 29 wire contains too much Ti, the amount of sputtering increases. Since the black wires 30 and 31 have an Mn/Si ratio of 1 or less and are outside the range, the amount of sputtering is significantly increased in both cases.

このように本発明の範囲外にあるワイヤは、いずれもス
パッタ楢、ビード形成性を同時に満足することは出来な
いものである。
As described above, wires that are outside the scope of the present invention are unable to simultaneously satisfy sputtering properties and bead forming properties.

第 4 表  溶  接  結  果 (発明の効果) 以上のように本発明に従えば、MAGパルス高速溶接に
用いて、健全なビード形成性が得られることは勿論、ス
バフタ発生量の極めて少ない溶接を可能とするMAGパ
ルス高速溶接用鋼ワイヤを提供することができるので、
本発明は産業上稗益するところが極めて大である。
Table 4 Welding Results (Effects of the Invention) As described above, according to the present invention, when used in MAG pulse high speed welding, not only can healthy bead formation be obtained, but also welding with an extremely small amount of buffing can be achieved. We can provide steel wire for MAG pulsed high-speed welding that enables
The present invention has enormous industrial benefits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は短絡回数とスパッタ量の関係を示すグラフ、第
2図は横向重ね隅肉溶接における溶接速度と溶接電流の
関係を示す図、第3図はパルス周波数とスパッタ量の関
係を示すグラフ、第4図はに値とスパッタ量の関係を示
すグラフ、第5図はMn/Siとスパッタ量の関係を示
すグラフである。 第1図 党4各四数(ヨ乃ecつ 第2図 ;g投電、九Z (A) 岡浪壊’l:、 <Hz) 第5図
Figure 1 is a graph showing the relationship between the number of short circuits and the amount of spatter, Figure 2 is a graph showing the relationship between welding speed and welding current in horizontal lap fillet welding, and Figure 3 is a graph showing the relationship between pulse frequency and amount of spatter. , FIG. 4 is a graph showing the relationship between the value and the amount of sputtering, and FIG. 5 is a graph showing the relationship between Mn/Si and the amount of sputtering. Figure 1 Party 4 each four numbers (Yonoectsu Figure 2; g power, 9 Z (A) Okayama break'l:, <Hz) Figure 5

Claims (1)

【特許請求の範囲】 C:0.03〜0.15%(重量%、以下同じ)、Si
:0.1〜0.7%、 Mn:0.2〜1.5%、 S:0.005〜0.03%、 残部が鉄および不可避不純物元素からなり、不可避不純
物元素中、 Ti:0.05%以下、 Al:0.01%以下、 N:0.015%以下、 O:0.015%以下で かつ次式で示されるパラメータ(K)が0.04〜0.
15の範囲であると共にMn/Si比が1〜10である
ことを特徴とするMAGパルス高速溶接用ワイヤ。 K=C−0.06×Si−0.07×Mn+4×S+3
×N−0.2×O 但し元素記号は、元素の含有量(重量%)を示す。
[Claims] C: 0.03 to 0.15% (weight %, same hereinafter), Si
: 0.1 to 0.7%, Mn: 0.2 to 1.5%, S: 0.005 to 0.03%, the balance consists of iron and inevitable impurity elements, and among the inevitable impurity elements, Ti: 0 .05% or less, Al: 0.01% or less, N: 0.015% or less, O: 0.015% or less, and the parameter (K) represented by the following formula is 0.04 to 0.05%.
15 and a Mn/Si ratio of 1 to 10. K=C-0.06×Si-0.07×Mn+4×S+3
×N−0.2×O However, the element symbol indicates the content (weight %) of the element.
JP13788086A 1986-06-13 1986-06-13 Steel wire for mag pulse high speed welding Granted JPS62296993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13788086A JPS62296993A (en) 1986-06-13 1986-06-13 Steel wire for mag pulse high speed welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13788086A JPS62296993A (en) 1986-06-13 1986-06-13 Steel wire for mag pulse high speed welding

Publications (2)

Publication Number Publication Date
JPS62296993A true JPS62296993A (en) 1987-12-24
JPH0451276B2 JPH0451276B2 (en) 1992-08-18

Family

ID=15208846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13788086A Granted JPS62296993A (en) 1986-06-13 1986-06-13 Steel wire for mag pulse high speed welding

Country Status (1)

Country Link
JP (1) JPS62296993A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127193A (en) * 1987-11-11 1989-05-19 Toyota Motor Corp Wire for gas shielded arc welding
JPH035096A (en) * 1989-05-31 1991-01-10 Mitsubishi Heavy Ind Ltd Gas metal arc welding wire
JPH03285791A (en) * 1990-03-30 1991-12-16 Kobe Steel Ltd Low spattering solid wire for carbon dioxide arc welding
JPH04147789A (en) * 1990-10-12 1992-05-21 Kobe Steel Ltd Solid wire for pulse mag welding
JP2009255168A (en) * 2008-03-28 2009-11-05 Nippon Steel Corp Flux-cored wire for welding high-strength steel, and its manufacturing method
JP2009255169A (en) * 2008-03-28 2009-11-05 Nippon Steel Corp Flux-cored wire for extra-low hydrogen welding, and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140343A (en) * 1974-04-28 1975-11-11
JPS55109592A (en) * 1979-02-14 1980-08-23 Daido Steel Co Ltd Steel wire for ar-co2 gas shielded arc welding and welding method
JPS55149797A (en) * 1979-05-10 1980-11-21 Daido Steel Co Ltd Steel wire for welding
JPS5950992A (en) * 1982-09-16 1984-03-24 Daido Steel Co Ltd Welding wire
JPS6167594A (en) * 1984-09-12 1986-04-07 Kawasaki Steel Corp Carbon dioxide gas arc welding wire which is excellent in arc stability, and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140343A (en) * 1974-04-28 1975-11-11
JPS55109592A (en) * 1979-02-14 1980-08-23 Daido Steel Co Ltd Steel wire for ar-co2 gas shielded arc welding and welding method
JPS55149797A (en) * 1979-05-10 1980-11-21 Daido Steel Co Ltd Steel wire for welding
JPS5950992A (en) * 1982-09-16 1984-03-24 Daido Steel Co Ltd Welding wire
JPS6167594A (en) * 1984-09-12 1986-04-07 Kawasaki Steel Corp Carbon dioxide gas arc welding wire which is excellent in arc stability, and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127193A (en) * 1987-11-11 1989-05-19 Toyota Motor Corp Wire for gas shielded arc welding
JPH0575518B2 (en) * 1987-11-11 1993-10-20 Toyota Motor Co Ltd
JPH035096A (en) * 1989-05-31 1991-01-10 Mitsubishi Heavy Ind Ltd Gas metal arc welding wire
JPH03285791A (en) * 1990-03-30 1991-12-16 Kobe Steel Ltd Low spattering solid wire for carbon dioxide arc welding
JPH04147789A (en) * 1990-10-12 1992-05-21 Kobe Steel Ltd Solid wire for pulse mag welding
JPH0692032B2 (en) * 1990-10-12 1994-11-16 株式会社神戸製鋼所 Solid wire for pulse mag welding
JP2009255168A (en) * 2008-03-28 2009-11-05 Nippon Steel Corp Flux-cored wire for welding high-strength steel, and its manufacturing method
JP2009255169A (en) * 2008-03-28 2009-11-05 Nippon Steel Corp Flux-cored wire for extra-low hydrogen welding, and method for producing the same

Also Published As

Publication number Publication date
JPH0451276B2 (en) 1992-08-18

Similar Documents

Publication Publication Date Title
JP3476125B2 (en) Flux-cored wire for duplex stainless steel welding
US20040140303A1 (en) Steel wire for carbon dioxide shielded arc welding and welding process using the same
KR20010105218A (en) Weld wire with enhanced slag removal
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
CN110753597A (en) Arc welding method and solid wire
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP2008302406A (en) Solid wire for carbon dioxide gas-shielded arc welding
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JPS62296993A (en) Steel wire for mag pulse high speed welding
JP2000225465A (en) Gas shield pulse arc welding method
JP3465647B2 (en) Pulsed CO2 welding steel wire
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
JP3386224B2 (en) Solid wire for pulse mag welding for high strength steel
JP2007118069A (en) Gas-shielded arc welding method
JPS5843195B2 (en) Electrode steel wire for gas shield arc welding
JP3945396B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP2005169414A (en) Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JPH09239583A (en) Steel wire for pulse arc welding having excellent continuous weldability
JP2528341B2 (en) Solid wire for gas shield arc welding
JP2801161B2 (en) Solid wire for pulse MAG welding
JP4529482B2 (en) Fillet welding method
JP2005219062A (en) Yag-laser and arc hybrid welding method
JPH0521677B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term