JPS62296584A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS62296584A
JPS62296584A JP14069286A JP14069286A JPS62296584A JP S62296584 A JPS62296584 A JP S62296584A JP 14069286 A JP14069286 A JP 14069286A JP 14069286 A JP14069286 A JP 14069286A JP S62296584 A JPS62296584 A JP S62296584A
Authority
JP
Japan
Prior art keywords
layer
gaalas
substrate
gaas
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14069286A
Other languages
Japanese (ja)
Inventor
Masahiro Kume
雅博 粂
Kunio Ito
国雄 伊藤
Takao Shibuya
隆夫 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14069286A priority Critical patent/JPS62296584A/en
Publication of JPS62296584A publication Critical patent/JPS62296584A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the energy gap of an active layer in a region in a laser, to remove light absorption at an end surface section and to enable laser oscillation having long life by selectively increasing an impurity in a layer separated from the active layer only by one layer and partially doping the impurity to the active layer during crystal growth. CONSTITUTION:An N GaAs layer 2 is grown on a P-type GaAs substrate 1 through liquid phase epitaxial growth, a region within 30mum from sections as resonator end-surfaces is coated with an Si3N4 film 9, Zn is implanted through ion implantation, a groove 8 is formed through etching, and the nose of the groove is intruded into the substrate 1. A P-GaAlAs layer 3, a GaAlAs layer 4, an N-GaAlAs layer 5 and an N-GaAs layer 6 are grown in succession through liquid growth again. Zn implanted to the layer 2 enters the layers 3, 4 by a diffusion at that time. An AuGeNi electrode 11 is evaporated and alloyed on the layer 6 side and an AuZn electrode 10 on the substrate side.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明はレーザ光線を利用した光情報処理機器等に用い
られる半導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a semiconductor laser device used in optical information processing equipment and the like that utilizes laser beams.

従来の技術 2ベーノ 半導体し〜ザ装置は小型軽量のため、光ディスクのピッ
クアップを構成する部品として非常に重要であり、近年
益々その需要は増大している。
BACKGROUND OF THE INVENTION Because semiconductor devices are small and lightweight, they are very important as components of optical disc pickups, and the demand for them has been increasing in recent years.

ところで光ディスクは磁気ディスクに比べ記録密度が大
きいため、大容量のディジタルメモリとしてコンピュー
タの記憶装置に使われようとしている。この場合、光デ
ィスクへの情報の記録は半導体レーザ光を集光した時の
熱によっているため、高速記録等の要請より必然的に半
導体レーザ光の光出力の増大が要求される。
By the way, since optical disks have a higher recording density than magnetic disks, they are being used as large-capacity digital memories in computer storage devices. In this case, since information is recorded on the optical disk using heat generated when the semiconductor laser beam is focused, the demand for high-speed recording inevitably requires an increase in the optical output of the semiconductor laser beam.

発明が解決しようとする問題点 半導体レーザの光出力としては、素子構造の最適化によ
り4o〜somW級のものが得られているが、実用的に
は連続動作において寿命が短いという問題がある。半導
体レーザの寿命を短くする要因は、過大な光出力による
共振器端面の損傷である。つ捷り、共振器端面近傍の結
晶内においては、レーザ光密度が高いため、端面部での
晃の吸収によって温度が上昇し、結晶の酸化・溶融が起
こるのである。
Problems to be Solved by the Invention Although the optical output of semiconductor lasers has been achieved in the 4o to somW class by optimizing the device structure, there is a problem in practical use that the lifetime is short in continuous operation. A factor that shortens the life of a semiconductor laser is damage to the resonator end face due to excessive optical output. Since the laser light density is high in the crystal near the resonator end face, the temperature rises due to the absorption of light at the end face, causing oxidation and melting of the crystal.

3ページ 半導体レーザにおいて、端面の光による損傷を防ぐには
、端面近傍の結晶内においてレーザ光が吸収されないよ
うにするとよい。すなわち、端面近傍の半導体結晶のエ
ネルギーギャップを大きくしてやる、あるいは逆に内部
の領域においてエネルギーギャップを小さくしてやると
よい。このようにするとレーザ光の端面部における吸収
をなくすことができる。
In a three-page semiconductor laser, in order to prevent the end facets from being damaged by light, it is preferable to prevent the laser light from being absorbed within the crystal near the end facets. That is, it is better to increase the energy gap of the semiconductor crystal near the end face, or conversely to decrease the energy gap in the internal region. In this way, absorption of the laser beam at the end face portion can be eliminated.

問題点を解決するための手段 G a A QA s 系半導体レーザでは、レーザ発
振を起こさせる活性層はG a A (2A s混晶で
できており、そのエネルギーギャップはAeの混晶比で
きする。
Means for solving the problem In the Ga A QA s semiconductor laser, the active layer that causes laser oscillation is made of a Ga A (2A s mixed crystal), and its energy gap is determined by the Ae mixed crystal ratio. .

従って端面近傍と内部でAl混晶比を変化させればよい
。しかし〒般にこの様な構造を作製することは困難であ
る。
Therefore, it is only necessary to change the Al mixed crystal ratio near the end face and inside. However, it is generally difficult to fabricate such a structure.

エネルギーギヤノブを変える方法は、不純物のドーピン
グによっても行なえる。すなわち、不純物を高濃度にド
ーピングするとエネルギーギヤノブが小さくなる。従っ
てレーザ内部の領域のみに不純物を高濃度に入れるとよ
い。これも一般に困難であるが、p型不純物の拡散を利
用すると可能である。
Another way to change the energy gear knob is by doping with impurities. That is, doping with impurities at a high concentration reduces the energy gear knob. Therefore, it is preferable to introduce impurities at a high concentration only in the region inside the laser. Although this is generally difficult, it is possible by using diffusion of p-type impurities.

本発明では、活性層と一つ隔てた層に選択的に不純物を
多くしておき、活性層を結晶成長中に、不純物の拡散に
より活性層に部分的にドーピングさせることによって、
レーザ内部の領域の活性層のエネルギーギャップを小さ
くし、端面部での光の吸収をなくしている。
In the present invention, impurities are selectively added to a layer one space apart from the active layer, and the active layer is partially doped by diffusion of impurities during crystal growth of the active layer.
The energy gap of the active layer inside the laser is reduced to eliminate light absorption at the end facets.

作  用 レーザ共振器の端面部では、光密度が高くなるが、エネ
ルギーギヤノブが発振波長のレーザ光に対して大きいの
で端面部でのレーザ光の吸収が起こらなく、従って発熱
が抑えられるので端面の劣化(酸化・溶融)がなく、長
寿命のレーザ発振が可能となる。
The optical density is high at the end face of the laser resonator, but since the energy gear knob is large relative to the laser beam at the oscillation wavelength, absorption of the laser light does not occur at the end face, and therefore heat generation is suppressed. There is no deterioration (oxidation or melting) of the laser, and long-life laser oscillation is possible.

実施例 第1図に本発明の実施例における半導体し〜ザ装置の構
造図を示す。第1図aは端面部の構造であり、bは内部
の構造を示している。即ち第1図Cにおいて、B−B’
に沿った断面図である。第5ページ 1図Cは第1図aにおいてA=A’に沿って分断して内
部がわかるようにした構造図である。本半導体レーザの
特徴は、レーザ内のn −GaAs層2の土部と、p−
GaAlAs層3及びG a A (2A s層4に高
Znドープ領域7があることである。レーザ発振は溝8
上の層4内で起こるのであるが、共振器端面近傍の30
μmの領域はZn濃度が低くエネルギーギャップが大き
いので、レーザ光の吸収を受けなくなる。この様に、レ
ーザ内部で部分的にZn濃度を高くするために、イオン
注入と熱拡散を用いる。
Embodiment FIG. 1 shows a structural diagram of a semiconductor device in an embodiment of the present invention. Fig. 1a shows the structure of the end face, and Fig. 1b shows the internal structure. That is, in FIG. 1C, BB'
FIG. FIG. 1C on page 5 is a structural diagram of FIG. 1A divided along A=A' so that the inside can be seen. The features of this semiconductor laser are that the soil part of the n-GaAs layer 2 in the laser and the p-
The GaAlAs layer 3 and the GaAlAs layer 4 have a highly Zn-doped region 7. Laser oscillation is caused by the groove 8.
This occurs in the upper layer 4, but in the vicinity of the resonator end face 30
Since the Zn concentration is low and the energy gap is large in the μm region, laser light is not absorbed. In this way, ion implantation and thermal diffusion are used to partially increase the Zn concentration inside the laser.

第2図で作製プロセスを順を追って説明する。The manufacturing process will be explained step by step with reference to FIG.

(a)  p 型G a A B基板1上に液相エピタ
キシャル成長でn  GaAs層2を成長する。膜厚は
1.3μmとする。
(a) An n GaAs layer 2 is grown on a p-type Ga AB substrate 1 by liquid phase epitaxial growth. The film thickness is 1.3 μm.

(b)  共振器端面となる部分から30μm内部の領
域をSi3N4膜で覆って、イオン注入によりZnを6
×10 (7) 注入する。注入深さは0.31tmと
する。
(b) A region within 30 μm from the part that will become the cavity end face is covered with a Si3N4 film, and Zn is added to it by ion implantation.
×10 (7) Inject. The implantation depth is 0.31 tm.

(c)  エツチングで溝8を作る。溝の深さは1.5
6ペーノ μmとし、先端が基板1内に入ぢ込む様にする。
(c) Create groove 8 by etching. The depth of the groove is 1.5
The thickness is 6 μm, and the tip is made to penetrate into the substrate 1.

(d)  再び液相成長により、860℃で3から6の
各層を成長する。この時、層2に注入したZnは拡散に
より層3と4に入り込む。
(d) Grow each layer from 3 to 6 at 860° C. again by liquid phase growth. At this time, the Zn implanted into layer 2 diffuses into layers 3 and 4.

(e)  層6側にAuGeNi  電極11、基板側
にAuZn電極1oを蒸着、アロイして完成する。
(e) AuGeNi electrode 11 is deposited on the layer 6 side, and AuZn electrode 1o is deposited on the substrate side to complete the process.

第3図に本発明のレーザの電流−光出力特性を示す。比
較のため同一構造で、Zn注入を行なわないものも示し
た。素子の破壊レベルは著しく向上しており、端面部で
の吸収をなくすことによる効果が大であることがわかる
。捷だ第4図に、高温通電試験の結果を示す。注入なし
のものより、寿命が大きく延びており信頼性が大幅に改
善されているのがわかる。
FIG. 3 shows the current-light output characteristics of the laser of the present invention. For comparison, a device with the same structure but without Zn implantation is also shown. The level of destruction of the element was significantly improved, and it can be seen that the effect of eliminating absorption at the end face is significant. Figure 4 shows the results of the high temperature current test. It can be seen that the lifespan is greatly extended and the reliability is significantly improved compared to the one without injection.

発明の効果 本発明によれば、高出力半導体レーザの信頼性を実用レ
ベルに1で上げることができ、光ディスク等の応用に大
なる効果を有する。
Effects of the Invention According to the present invention, the reliability of a high-output semiconductor laser can be raised to a practical level by 1, which has a great effect in applications such as optical disks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体レーザの構造図、第27 べ啼 図は作製プロセスを示す斜視図、第3図は電流−光出力
特性を示す特性図、第4図は高温通電寿命試験の結果を
示す特性図である。 1−−−−p−GaAs基板、2−= −n −GaA
s層、3 ・・−p−GaAlAs層、4−−− Ga
AlAs層、5 ・−−−n−GaAlAs層、6・・
・・ n−GaAs層、7・・・・・高Znドープ領域
、8・・・ 溝、9・・・・・・イオン注入領域、1o
・・・・・・AuZn電極、11・・・・AuGeNi
 電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図      f−P−GaAaha2−− n −G
a、As q−一一イ不)χF入今果工応、 第2図
Fig. 1 is a structural diagram of the semiconductor laser of the present invention, Fig. 27 is a perspective view showing the manufacturing process, Fig. 3 is a characteristic diagram showing current-light output characteristics, and Fig. 4 is the result of a high-temperature current life test. FIG. 1----p-GaAs substrate, 2-=-n-GaA
s layer, 3...-p-GaAlAs layer, 4--- Ga
AlAs layer, 5 .---n-GaAlAs layer, 6...
... n-GaAs layer, 7... Highly Zn doped region, 8... Groove, 9... Ion implantation region, 1o
...AuZn electrode, 11...AuGeNi
electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure f-P-GaAaha2--n-G
a, As q-11ifu)

Claims (1)

【特許請求の範囲】[Claims] 一導電型GaAs基板上に前記一導電型とは反対の導電
型のGaAs層があり、前記反対導電型のGaAs層に
前記基板に達する溝があり、その上にダブルヘテロp−
n接合を有するとともに、素子の共振器端面から5μm
から50μm内部の領域で、前記反対導電型のGaAs
層の上部と、その層の上の前記一導電型GaAlAs層
及びGaAlAs活性層に前記一導電型の不純物が、同
じ層内の前記共振器端面部よりも多く含まれていること
を特徴とする半導体レーザ装置。
There is a GaAs layer of a conductivity type opposite to the one conductivity type on a GaAs substrate of one conductivity type, a groove reaching the substrate is provided in the GaAs layer of the opposite conductivity type, and a double hetero p-
It has an n-junction and is 5 μm from the cavity end face of the element.
In a region within 50 μm from
The impurity of the one conductivity type is contained in the upper part of the layer, the GaAlAs layer of the one conductivity type, and the GaAlAs active layer above the layer, than the end face of the resonator in the same layer. Semiconductor laser equipment.
JP14069286A 1986-06-17 1986-06-17 Semiconductor laser device Pending JPS62296584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14069286A JPS62296584A (en) 1986-06-17 1986-06-17 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14069286A JPS62296584A (en) 1986-06-17 1986-06-17 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62296584A true JPS62296584A (en) 1987-12-23

Family

ID=15274534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14069286A Pending JPS62296584A (en) 1986-06-17 1986-06-17 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62296584A (en)

Similar Documents

Publication Publication Date Title
US4883771A (en) Method of making and separating semiconductor lasers
JPS59208889A (en) Semiconductor laser
US4759025A (en) Window structure semiconductor laser
US20040089873A1 (en) Semiconductor laser device and method of fabricating the same
JPS62296584A (en) Semiconductor laser device
JPH0156547B2 (en)
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2561802Y2 (en) Semiconductor laser
JPS6321889A (en) Semiconductor laser
JP2804533B2 (en) Manufacturing method of semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH01218087A (en) Semiconductor laser device
JP2889645B2 (en) Semiconductor laser
JPH07105554B2 (en) Semiconductor laser device
JPS60132381A (en) Semiconductor laser device
KR100287202B1 (en) Semiconductor laser device and manufacturing method thereof
JP3028641B2 (en) Semiconductor laser and manufacturing method thereof
JPH01145884A (en) Semiconductor laser device
JP2880788B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPH0430758B2 (en)
JPS63116483A (en) Semiconductor laser
JPH06112586A (en) Semiconductor laser diode
JPH0239106B2 (en)
JPS6179284A (en) Semiconductor laser
JPS63142886A (en) Semiconductor laser device