JPS62296129A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS62296129A
JPS62296129A JP14054286A JP14054286A JPS62296129A JP S62296129 A JPS62296129 A JP S62296129A JP 14054286 A JP14054286 A JP 14054286A JP 14054286 A JP14054286 A JP 14054286A JP S62296129 A JPS62296129 A JP S62296129A
Authority
JP
Japan
Prior art keywords
layer
refractive index
electric field
change
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14054286A
Other languages
Japanese (ja)
Inventor
Masahiko Fujiwara
雅彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14054286A priority Critical patent/JPS62296129A/en
Publication of JPS62296129A publication Critical patent/JPS62296129A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical switch which is small in size, in which a light source, photoreceptor, etc., are monolithically integrated in circuit and whose loss variation caused when rays of light are switched to another is small, by utilizing the variation of the refractive index following to the disappearance of an exciton absorption peak. CONSTITUTION:A buffer layer 2, clad layer 3, MQW guide layer 4, clad layer 5, and top layer 6 are successively grown on a base plate 1 and, by etching the layers 6 and 5, crossing waveguides are formed by means of channel guides 7a and 7b. Thereafter, Schottky electrodes 8a and 8b are formed in a symmetrical state and a receiving and emitting end faces are finally formed. When a voltage is applied across the electrodes 8a and 8b, an electric field which is parallel with the layers 2-6 is applied to the gap section between the electrodes 8a and 8b and, when the electric field is applied to the layer 4, an exciton absorption peak disappears and a change in refractive index is induced. As a result, the incident light 9a to the channel guide 7a is totally reflected to the channel guide 7b side due to the induction of a negative change in refractive index of the layer 4.

Description

【発明の詳細な説明】 発明の詳細な説明 (産業上の利用分野) 本発明は半導体材料を用いた光スイッチに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an optical switch using a semiconductor material.

(従来の技術) 2つの入出力ボート間の光信号の接続を切り換える光ス
イッチは光伝送、光交換に於ける最も重要な構成要素で
ある。このような光スイッチは光導波路により方向性結
合器、交叉、分岐等を形成し、その部分の屈折率を物理
光学効果を利用して変化させることにより実現できる。
(Prior Art) An optical switch that switches the connection of optical signals between two input/output ports is the most important component in optical transmission and optical switching. Such an optical switch can be realized by forming a directional coupler, crossover, branch, etc. using an optical waveguide and changing the refractive index of the part using physical optics effects.

現在屈折率変化を得るための手段として一次電気光学効
果(ポッケルス効果)が最も広く用いられているが、比
較的電気光学係数の大きなLiNb0q等の強誘電体材
料を用いても実用的に得られる比屈折率変化は10−3
台と小さく、素子の小型化が難しい。
Currently, the primary electro-optic effect (Pockels effect) is most widely used as a means to obtain a change in refractive index, but it can also be practically obtained using a ferroelectric material such as LiNb0q, which has a relatively large electro-optic coefficient. The relative refractive index change is 10-3
The device is small, making it difficult to miniaturize the device.

これに対して近年半導体多重量子井戸(MQW)構造の
層に垂直な方向に電界を印加した際に、吸収端近傍の波
長で大きな屈折率変化が生じることが報告され、これを
利用した光スイッチが提案されている。(電子通信学会
論文誌E、オE68巻737〜739頁、1905年) ここでこのMQW構造の電界による屈折率変化の原理に
ついて説明する。
On the other hand, in recent years, it has been reported that when an electric field is applied perpendicularly to the layers of a semiconductor multiple quantum well (MQW) structure, a large refractive index change occurs at wavelengths near the absorption edge. is proposed. (Transactions of the Institute of Electronics and Communication Engineers E, Vol. 68, pp. 737-739, 1905) Here, the principle of change in refractive index due to an electric field in this MQW structure will be explained.

MQ−構造とは、電子波動の波長(ド・ブロイ波長)程
度の厚みの半導体層をそれよりバンドギャップの広い半
導体ではさんだ量子井戸(Q−)を層厚方向に多重に形
成したもので電子、正孔波動の二次元化によりバルク材
料とは大きく異なる物性分示すことから注目されている
The MQ-structure is made by forming multiple quantum wells (Q-) in the layer thickness direction, in which a semiconductor layer with a thickness of approximately the wavelength of electron waves (de Broglie wavelength) is sandwiched between semiconductors with a wider band gap. , has attracted attention because it exhibits physical properties that are significantly different from those of bulk materials due to the two-dimensionality of hole waves.

第2図<a>、(b)はMQW構造に層に垂直な方向に
光を伝搬させた際の吸収端近傍の光の吸収係数及び屈折
率スペクトラムの電界による変化の様子を示すものであ
る。層に垂直の電界Eがない場合には吸収係数スペクト
ラムには重い正孔(hh)、軽い正孔1th)と電子の
準位間の遷移に対応したエキシトン吸収ピークが見られ
、これに対応して屈折率スペクトラムには大きな段差が
見られる。電界Eを印加していくと、電子、正孔準位の
シフトが生じ吸収端の長波長側への移動がおこる。この
際エキシトン吸収ピークは多少のブロードニングを生ず
るものの1o5V/cm程度の強電界に於いても安定に
存在する。
Figures 2 <a> and (b) show how the absorption coefficient and refractive index spectrum of light near the absorption edge change due to the electric field when light propagates in the direction perpendicular to the layers of the MQW structure. . When there is no electric field E perpendicular to the layer, the absorption coefficient spectrum shows an exciton absorption peak corresponding to the transition between the heavy hole (hh), light hole 1th) and electron levels; Large steps can be seen in the refractive index spectrum. As the electric field E is applied, the electron and hole levels shift, causing the absorption edge to move toward the longer wavelength side. At this time, although some broadening occurs, the exciton absorption peak exists stably even in a strong electric field of about 105 V/cm.

電界Eの印加による吸収端シフトに対応して、屈折率ス
ペクトラム上の段差も長波長側に移動する。このなめ屈
折率変化が生じる訳でその絶対値は1 :X: 10’
V/ cm程度の電界で10−2のオーダに及ぶことが
報告されており、この現象を利用した交叉導波路全反射
型光スイッチの設計結果ではスイッチ部長数100μm
以下の小型光スイッチが可能であることが報告されてい
る。この光スイッチは半導体材料を用いているため光源
、受光器とのモノリシック集積化も可能である。
Corresponding to the absorption edge shift caused by the application of the electric field E, the step on the refractive index spectrum also moves toward the longer wavelength side. This smooth refractive index change occurs, and its absolute value is 1:X: 10'
It has been reported that the electric field is on the order of 10-2 in an electric field of about V/cm, and the results of designing a cross-waveguide total internal reflection type optical switch using this phenomenon show that the length of the switch length is 100 μm.
It has been reported that the following compact optical switch is possible. Since this optical switch uses a semiconductor material, monolithic integration with a light source and a light receiver is also possible.

(発明が解決しようとする問題点) ここで説明したMQWの層に垂直な方向の電界印加によ
る屈折率変化は本質的に吸収係数の変化をともなう。従
ってこの現象を利用した光スイッチでは光の切換と共に
大きな光損失が生じてしまう。また屈折率変化の符号は
第2図(b)よりわかるように短波長側から順に■、θ
、■となる領域が生じ、電界強度と共にその領域の幅が
変化するため、デバイス設計の際にこの点を考慮に入れ
なくてはならない。
(Problems to be Solved by the Invention) The change in refractive index due to the application of an electric field in the direction perpendicular to the MQW layer described here essentially accompanies a change in absorption coefficient. Therefore, in an optical switch that utilizes this phenomenon, a large optical loss occurs when switching light. Also, as can be seen from Figure 2 (b), the signs of the refractive index changes are from the short wavelength side to ■, θ.
, ■, and the width of this region changes with the electric field strength, so this must be taken into consideration when designing the device.

本発明の目的はこのような問題を除き、小型で光源、受
光器等とのモノリシック集積化が可能でかつ光の切換に
伴う損失変化が小さい光スイッチ登提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such problems and to provide an optical switch that is compact, can be monolithically integrated with a light source, a light receiver, etc., and has a small change in loss due to switching of light.

(問題を解決するための手段) 本発明による光スイッチは複数の光導波路により形成さ
れた方向性結合器若しくは交叉、分岐と前記方向性結合
器、交叉、分岐、部分の一部の屈折率変化を生じさせる
手段とから成る光スイッチに於て、前記方向性結合器、
交叉、分岐のうち少なくとも屈折率変化を生じさせるべ
き部分が、ド・ブロイ波長程度の厚みの第1の半導体層
をそれよりバンドギャップの広い第2の半導体層により
はさんだ量子井戸を少なくとも層厚方向に1つ含む構造
と前記構造の前記量子井戸に量子井戸の各層に水平な方
向に電界を印加する手段とから成ることを特徴とするも
のである。
(Means for Solving the Problem) The optical switch according to the present invention includes a directional coupler, crossover, or branch formed by a plurality of optical waveguides, and a change in the refractive index of a part of the directional coupler, crossover, branch, or portion. In the optical switch comprising means for producing the directional coupler,
Of the crossover and branching, at least the part that should cause a change in refractive index has at least a layer thickness of a quantum well in which a first semiconductor layer with a thickness of about the de Broglie wavelength is sandwiched between a second semiconductor layer with a wider band gap. and means for applying an electric field to the quantum wells of the structure in a horizontal direction to each layer of the quantum wells.

(作用) 本発明は多重量子井戸(MQW)構造に特有な室温エキ
シトンによる共鳴吸収の消失にともなう屈折率変化を利
用したものである。まずこの屈折率変化の原理について
説明する。
(Function) The present invention utilizes the change in refractive index caused by the disappearance of resonance absorption due to room temperature excitons, which is unique to a multiple quantum well (MQW) structure. First, the principle of this refractive index change will be explained.

第3図(a)、 (b)はMQW IlI造の各層に水
平な電界による層に垂直に伝搬する光に対する吸収係数
、屈折率の変化の傾向を示す図である。層に水平な電界
E11が印加されていない際には吸収端近くの吸収係数
スペク1−ラムには基低準位の重い正孔(hh)、軽い
正孔(Qh)と電子との間の遷移に関係した2つのエキ
シトン吸収ピークが明瞭に見られる。屈折率スペクトラ
ムにはエキシトン吸収ピークに対応して大きな段差が生
じる。これに対しEllを印加した際には量子井戸(Q
W)層内でエキシトンのイオン化が生じ吸収係数スペク
トラム上ではエキシトン共鳴による吸収ピークが消失し
、バンドギヤ’7ブのrenormalization
が生じる。この際重要なことは吸収端の位置の変化は電
界が層に垂直な場合(E2〉に比べ大幅に小さいことで
ある。一方圧折率スペクトラム上に生じていた段差はエ
キシトン吸収の存在によるものであった訳であるから、
Ellの印加によりエキシトン吸収ピーりが消滅すれば
、屈折率スペクトラム上の段差も消える。従って吸収端
近傍の波長に於て大きな屈折率変化が得られる。しがち
第3図(b)から明らかなように、この屈折率変化の符
号は吸収端の長波長側では負、短波長側では正という単
純な変化をする。吸収端の長波長側では電界が層に垂直
な場合のように吸収端の移動をともなわないため大きな
損失変化は生じない。このようにエキシトン吸収ピーク
の消失にともなう屈折率変化は光スイッチの実現に極め
て好適なものである。エキシトン吸収ピークの消失がこ
こで述べたように層に水平な方向の電界によるエキシト
ンのイオン化により生じることは雑誌「フィジカル・レ
ビュー B(1’hysical Review B)
 J 、第32巻、1043〜1060頁(1985年
)に述べられているがこの他に、バンドギャップより高
エネルギーな光の照射、及びフリーキャリア注入によっ
てもおこすことができる。
FIGS. 3(a) and 3(b) are diagrams showing trends in changes in absorption coefficient and refractive index for light propagating perpendicularly to the layers due to an electric field horizontal to each layer of the MQW II structure. When a horizontal electric field E11 is not applied to the layer, the absorption coefficient spectrum near the absorption edge shows the difference between the heavy hole (hh) at the reference low level, the light hole (Qh) and the electron. Two exciton absorption peaks related to the transition are clearly visible. A large step occurs in the refractive index spectrum corresponding to the exciton absorption peak. On the other hand, when Ell is applied, the quantum well (Q
W) Exciton ionization occurs within the layer, and the absorption peak due to exciton resonance disappears on the absorption coefficient spectrum, resulting in the renormalization of the band gear '7.
occurs. What is important here is that the change in the position of the absorption edge is much smaller than when the electric field is perpendicular to the layer (E2).On the other hand, the step that appears on the piezoelectric index spectrum is due to the presence of exciton absorption. Therefore,
If the exciton absorption peak disappears by applying Ell, the step difference on the refractive index spectrum also disappears. Therefore, a large change in refractive index can be obtained at wavelengths near the absorption edge. As is clear from FIG. 3(b), the sign of this refractive index change is simply negative on the long wavelength side of the absorption edge and positive on the short wavelength side. On the longer wavelength side of the absorption edge, unlike when the electric field is perpendicular to the layer, the absorption edge does not move, so no large loss change occurs. In this way, the change in refractive index caused by the disappearance of the exciton absorption peak is extremely suitable for realizing an optical switch. It is reported in the magazine "Physical Review B (1'Physical Review B)" that the disappearance of the exciton absorption peak is caused by the ionization of excitons due to the electric field in the direction horizontal to the layer, as described here.
J, Vol. 32, pp. 1043-1060 (1985), but it can also be caused by irradiation with light with higher energy than the band gap and by injection of free carriers.

(雑誌「ジャーナル・オブ・オプティカル・ソサエティ
・オブ・アメリカA (Journal of 0pt
icalSociety of America A 
)J第2巻、1135〜1142頁(1905年)) 本発明はこのようなエキシトン吸収ピークの消失にとも
なう屈折率変化を光スイッチに応用したものである。以
下本発明につき実施例により詳細に説明する。
(Magazine “Journal of Optical Society of America A (Journal of 0pt)
icalSociety of AmericaA
) J Vol. 2, pp. 1135-1142 (1905)) The present invention applies the refractive index change caused by the disappearance of the exciton absorption peak to an optical switch. The present invention will be explained in detail below using examples.

(実施例) 第1図は本発明による光スイッチの第1の実施例を示す
図でこの実施例は本発明を交叉導波路全反射型スイッチ
に適したものである。材料系としてはGaAs/A Q
 GaAs系材料を用いた場合につき説明するがInG
aAsP/InP、 InGaAs/InA Q As
系等室温で安定なエキシトン吸収ピークが観測できるM
QW 構造が製作できる材料系であれば、本発明が適用
可能なことは言う迄もない。実施例の斜視図第1図(a
)を参照しまず本実施例の製作方法について説明する。
(Embodiment) FIG. 1 shows a first embodiment of an optical switch according to the present invention, and this embodiment is suitable for a crossed waveguide total reflection type switch. As for the material system, GaAs/A Q
Although we will explain the case using GaAs-based materials, InG
aAsP/InP, InGaAs/InA Q As
M where stable exciton absorption peaks can be observed at room temperature, such as system
It goes without saying that the present invention is applicable to any material system that can produce a QW structure. Perspective view of the embodiment Fig. 1 (a
), the manufacturing method of this embodiment will be explained first.

半絶縁性(S、 1. )GaAs基板1上にずべてノ
ンドープでGaAsバッファ層2(厚みO,lμ m 
 )  。
A non-doped GaAs buffer layer 2 (thickness O, lμm) is formed on a semi-insulating (S, 1.) GaAs substrate 1.
).

A Q O,35caO,65Asクラツド層3(1μ
m)。
A Q O, 35caO, 65As cladding layer 3 (1μ
m).

GaAs/八Q +へ、 35Ga0.65As MQ
Wガイド層4 <0.4u m )。
GaAs/8Q + to 35Ga0.65As MQ
W guide layer 4 <0.4um).

A Q 0.35GaQ、 65ASクラッド層5 (
0,5μm ) 、 GaAsトップ層6 (0,1μ
m)をMBE法により連続成長する。 GaAs/A 
Q 0.35Ga(1,65As MQW ・ガイド層
4は厚み100AのGaAs、A Q g、 35ca
O,65As層を20周期交互に積層したものである。
A Q 0.35GaQ, 65AS cladding layer 5 (
0.5 μm), GaAs top layer 6 (0.1 μm
m) is continuously grown using the MBE method. GaAs/A
Q 0.35Ga (1,65As MQW ・Guide layer 4 is GaAs with a thickness of 100A, A Q g, 35ca
O,65As layers are alternately laminated in 20 periods.

(以下では簡単のためAllのモル比を略して記述する
)次にフォトリングラフィ法により幅10μm、交叉角
5〜10°の交叉パターンのマスクをエビ層側に形成し
、反応性イオン・ビームエツチング法によりマスク以外
のGaAsトップ層6及びA Q GaAsクラッド層
5をエツチングする。この際エツチングはA Q Ga
Asクラ・ソド層5の途中で止めるように制御した。こ
の工・ソチングにより2本の装荷型チャンネルガイド7
a、7bによる交叉導波路が形成される。次に浅い交叉
角の2等分線A−A”に沿ってA−A’の両側に対称に
ギャップ2μmをおいて^Uによるショットキー電極8
a、8bを形成する。最後に直線A−A’に垂直に入出
射端面をへき開により形成した。
(In the following, the molar ratio of All will be omitted for simplicity.) Next, a mask with a cross pattern of 10 μm in width and a cross angle of 5 to 10 degrees is formed on the shrimp layer side by photolithography, and a reactive ion beam is applied. The GaAs top layer 6 and the AQ GaAs cladding layer 5 other than the mask are etched by an etching method. At this time, etching is A Q Ga
I controlled it so that it stopped in the middle of Askra Sodo layer 5. By this machining and sowing, two loaded channel guides 7
A crossing waveguide is formed by a and 7b. Next, along the bisector A-A'' of the shallow intersecting angle, a 2 μm gap is placed symmetrically on both sides of A-A', and Schottky electrodes 8 are formed using ^U.
Form a and 8b. Finally, entrance and exit end faces were formed by cleaving perpendicular to the straight line AA'.

第1図(b)はデバイスの上面図を示すものである。シ
ョットキ電極8a、8bは交叉チャンネルガイド7a、
7bの小さい方の交叉角の2等分線A−A′に平行に直
線A−A′に対して対称な位置にギャップをちって形成
しである。尚実際にはボンディングのためのパッド及び
引き出し線も形成しているが図では省略した。
FIG. 1(b) shows a top view of the device. Schottky electrodes 8a, 8b are crossed channel guides 7a,
A gap is formed at a position parallel to the bisector AA' of the smaller intersection angle 7b and symmetrical to the straight line AA'. Although pads and lead lines for bonding are actually formed, they are omitted from the drawings.

第1図(c)は大きい方の交叉角の2等分線B−B′を
含みデバイスの各層に垂直な面での断面図を示すもので
ある。この図を用いて本実施例の動作機構について説明
する。2つのショットキー電極8a 、 Bb間に電圧
を印加した場合を考える。
FIG. 1(c) shows a cross-sectional view taken along a plane including the bisector BB' of the larger intersecting angle and perpendicular to each layer of the device. The operating mechanism of this embodiment will be explained using this figure. Consider a case where a voltage is applied between two Schottky electrodes 8a and Bb.

ここで例えばショツトキー電極8aj則をプラス、8b
側をマイナスにバイアスしたとするとショッ)へキー電
極8aは順バイアス8bは逆バイアスとなり、8bから
8aに向がって空欠層が延びていく。従ってショットキ
ー電極Ba、8bの間のギャップ部分では成長層2,3
,4,5.6に平行な電界に印加される。MQvガイド
層4に層に平行な電界が印加された際には先に説明した
ようにエキシトンのイオン化によるエキシトン吸収ピー
クの消滅が生じ屈折率変化が誘起される。電界分布の計
算結果にょればMQWガイド層4には印加電圧をV、シ
ョットキー電i8a、8b間のギャップ長をdとすると
E・0 、6V/d程度の電界が印加される。今d≧0
.2μ■ηテあるからV=10Vで3XlO’V/cI
Il程度の強電界が印加でき、充分エキシトンのイオン
化をおこすことができる。従ってxqwガイド層4のう
ちショットキー電i8a、8bの間のギャップ直下の部
分4aでは屈折率の変化が生じ、特に吸収端の長波長側
の波長では屈折率の低下が生じるため交叉チャンネル導
波路7a、7bの交叉部中央に屈折率の低下部分を作る
ことができ、全反射を起こすことができる。
Here, for example, add Schottky electrode 8aj rule, 8b
If the side is negatively biased, the key electrode 8a will be forward biased and the key electrode 8b will be reverse biased, and the void layer will extend from 8b to 8a. Therefore, in the gap between the Schottky electrodes Ba and 8b, the growth layers 2 and 3
, 4, 5.6. When an electric field parallel to the layer is applied to the MQv guide layer 4, the exciton absorption peak disappears due to exciton ionization, as described above, and a refractive index change is induced. According to the calculation results of the electric field distribution, an electric field of about E·0, 6 V/d is applied to the MQW guide layer 4, where the applied voltage is V and the gap length between the Schottky electrodes i8a and 8b is d. Now d≧0
.. Since there is 2μ■ηte, 3XlO'V/cI at V=10V
A strong electric field on the order of Il can be applied to sufficiently ionize excitons. Therefore, the refractive index changes in the portion 4a of the xqw guide layer 4 directly under the gap between the Schottky electrons i8a and 8b, and the refractive index decreases particularly at wavelengths on the long wavelength side of the absorption edge, so that the cross channel waveguide A portion with a decreased refractive index can be created at the center of the intersection of 7a and 7b, and total reflection can occur.

第1図<b)を用いて実際のスイッチ動作について説明
する。ここでは切換える光の波長としてMQW  ・ガ
イド層4の吸収端(バンドギャップ波長λg・0.B5
μrn )より長波長側を考え0.875μmを選んだ
。チャンネルガイド7aに入射した光りaはシヨ・ソト
キー電極[1a、Bb間に電圧を印加しない時にはその
まま直進し出射光9bとして出射される。この際チャン
イ・ルガイド7a、7bの交叉角が5〜lO。
The actual switch operation will be explained using FIG. 1<b). Here, the wavelength of the light to be switched is MQW ・The absorption edge of the guide layer 4 (band gap wavelength λg・0.B5
0.875 μm was selected considering the wavelength on the longer wavelength side. When no voltage is applied between the horizontal and vertical electrodes [1a and Bb, the light a incident on the channel guide 7a travels straight as it is and is emitted as an emitted light 9b. At this time, the crossing angle of the channel guides 7a and 7b is 5 to 10.

と大きいためチャンネルガイド7bへのクロストークは
一30d[]以下である。ショットキー電極13a、B
b間に電圧を印加した際にはショットキー電極8a。
Since the crosstalk to the channel guide 7b is large, the crosstalk to the channel guide 7b is less than -30d[]. Schottky electrodes 13a, B
When a voltage is applied between the Schottky electrode 8a and the Schottky electrode 8a.

8bのギヤツブ部面下のMQWガイド層4にマイナスの
屈折率変化が誘起されそれにより入射光9aはチャンネ
ルガイド71)側へ全反射され出射光9cとなる。この
屈折率変化の大きさは相対変化△n/nとして10−3
〜10−2のオーダである。全反射角θとΔn/nの間
にはsinθ:(1−△n/n)の関係があるため、Δ
ロ/n=10−3〜10−2の屈折率変化により5°〜
16°の交叉角の光導波路で全反射型スイッチを得るこ
とができる。実際今回試作した素子では電圧10V以下
で交叉角10°以下のスイッチでスイッチ動作を確認し
、スイッチ時のクロストークは一20dB程度以下であ
った。スイッチ素子長は光ファイバ等との結合を考えス
イッチ端面で導波路間隔を離すための部分を含めても1
龍以下と小型なものが得られた。また切換による得失の
変化は数%であった。
A negative refractive index change is induced in the MQW guide layer 4 under the surface of the gear part 8b, whereby the incident light 9a is totally reflected toward the channel guide 71) and becomes an output light 9c. The magnitude of this refractive index change is 10-3 as a relative change △n/n.
It is on the order of ~10-2. Since there is a relationship of sin θ: (1-△n/n) between the total reflection angle θ and Δn/n, Δ
5°~ due to refractive index change of b/n=10-3~10-2
A total internal reflection switch can be obtained using an optical waveguide with a crossing angle of 16°. In fact, with the element we prototyped this time, we confirmed the switching operation with a voltage of 10 V or less and a switch with a cross angle of 10 degrees or less, and the crosstalk during switching was about -20 dB or less. The length of the switch element is 1, including the part for separating the waveguides at the end of the switch in consideration of coupling with optical fibers, etc.
A small one, smaller than a dragon, was obtained. Also, the change in benefits and losses due to switching was only a few percent.

ここで述べたように屈折率変化は先にも述べたようにM
Q−の層に水平な方向の電界の池、光照射、電流注入に
よっても起こすことができるが光照射、電流注入では自
由キャリアの緩和過程が含まれるため応答スピードが数
m secに制限される。これに対し層に平行な電界の
効果はエキシトンのポテンシャル変形を生じさせること
であるため応答速度は素子容量Cと抵抗分Rで決まるC
R時定数で決まり数psec程度も可能である。
As mentioned here, the change in refractive index is caused by M
It can also be caused by an electric field parallel to the Q- layer, light irradiation, or current injection, but the response speed is limited to several msec because light irradiation or current injection involves a relaxation process of free carriers. . On the other hand, the effect of an electric field parallel to the layer is to cause potential deformation of excitons, so the response speed is determined by the element capacitance C and resistance R.
A number of psec determined by the R time constant is also possible.

本実施例では交叉導波路全反射型光スイッチに本発明を
適用した例を示したが、本発明のポインj・はMQWの
層に水平な電界印加により得られる屈折率変化を利用す
ることにあり、スイッチの構造として方向性結合器型、
Y分岐型等既に知られている種々の構造に適用可能なこ
とは明らかである。
This example shows an example in which the present invention is applied to a cross-waveguide total reflection type optical switch, but the point of the present invention is to utilize the refractive index change obtained by applying a horizontal electric field to the MQW layer. Yes, the switch structure is a directional coupler type,
It is clear that the present invention can be applied to various already known structures such as Y-branch type.

(発明の効果) 以上詳細に説明したように本発明によれば小型でモノリ
シック集積が可能でかつ光の切換にともなう損失変化が
小さい光スイッチが得られる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to obtain an optical switch that is small in size, can be monolithically integrated, and has a small change in loss due to switching of light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は従来の光
スイッチの動作原理となるMQ′IJの屈折率変化を説
明する図、第3図は本発明に利用する層に水平な方向の
電界によるMQWの屈折辛亥1ヒを説明するための図で
ある。 図に於て 1.2.3,4.4a、5.6は半導体、7
a、 7bはチャンネルガイド、Ba、13bはンヨッ
トキー電極、9a、9b、9cは光である。 を
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram explaining the refractive index change of MQ'IJ, which is the operating principle of a conventional optical switch, and FIG. 3 is a diagram showing the layers used in the present invention. FIG. 3 is a diagram for explaining the refraction of MQW due to an electric field in a horizontal direction. In the figure, 1.2.3, 4.4a, 5.6 are semiconductors, 7
a, 7b are channel guides, Ba, 13b are yacht key electrodes, and 9a, 9b, 9c are lights. of

Claims (1)

【特許請求の範囲】[Claims] 複数の光導波路により形成された方向性結合器若しくは
交叉または分岐と、前記方向性結合器、もしくは交叉、
または分岐部分の一部の屈折率変化を生じさせる手段と
から成る光スイッチに於て、前記方向性結合器、もしく
は交叉または分岐のうち少なくとも屈折率変化を生じさ
せるべき部分がド・ブロイ波長程度の厚みの第1の半導
体層をそれよりバンドギャップの広い第2の半導体層に
よりはさんだ量子井戸を層厚方向に少なくとも1つ含む
構造と前記構造の前記量子井戸に量子井戸の各層に平行
な方向に電界を印加する手段から成っていることを特徴
とする光スイッチ。
A directional coupler, crossover or branch formed by a plurality of optical waveguides, and the directional coupler or crossover,
or a means for causing a refractive index change in a part of the branching part, in which at least the part of the directional coupler, or the crossing or the branching, in which the refractive index should be changed is about the de Broglie wavelength. A structure including at least one quantum well in the layer thickness direction in which a first semiconductor layer with a thickness of An optical switch comprising means for applying an electric field in a direction.
JP14054286A 1986-06-16 1986-06-16 Optical switch Pending JPS62296129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14054286A JPS62296129A (en) 1986-06-16 1986-06-16 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14054286A JPS62296129A (en) 1986-06-16 1986-06-16 Optical switch

Publications (1)

Publication Number Publication Date
JPS62296129A true JPS62296129A (en) 1987-12-23

Family

ID=15271095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14054286A Pending JPS62296129A (en) 1986-06-16 1986-06-16 Optical switch

Country Status (1)

Country Link
JP (1) JPS62296129A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252329A (en) * 1984-05-29 1985-12-13 Hitachi Ltd Optical switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252329A (en) * 1984-05-29 1985-12-13 Hitachi Ltd Optical switch

Similar Documents

Publication Publication Date Title
EP0470249B1 (en) Electric field induced quantum well waveguides
US6993216B2 (en) Integrated optical switches using nonlinear optical media
US5159699A (en) 3d integrated guiding structure
US5329601A (en) Semiconductor optical waveguide type switch including light control means
US20020146196A1 (en) Optical switch having photonic crystal structure
JP2007052328A (en) Composite optical waveguide
US5661825A (en) Integrated optical circuit comprising a polarization convertor
JPS63197923A (en) Optical switch for matrix
US5444802A (en) Optical switch
JPH08146365A (en) Semiconductor mach-zehnder modulation device and its production
US5608566A (en) Multi-directional electro-optic switch
JPH0786624B2 (en) Directional coupler type optical switch
JPS62296129A (en) Optical switch
JPH07101270B2 (en) Optical logic element
Laybourn et al. Integrated optics: a tutorial review
JPH0232322A (en) Optical switch
JPH01128046A (en) Optical switch
JPH01178932A (en) Optical switch
JPH01144023A (en) Optical switch
JP2940238B2 (en) Light switch
JPS63280224A (en) Waveguide type optical control element
JPH0695182A (en) Optical switch
JPH025027A (en) Non-linear optical directional coupler
JPH09101491A (en) Semiconductor mach-zehnder modulator and its production
JPH024231A (en) Optical switch and its manufacture