JPS62295793A - Device for following-up scheduled route - Google Patents

Device for following-up scheduled route

Info

Publication number
JPS62295793A
JPS62295793A JP13863886A JP13863886A JPS62295793A JP S62295793 A JPS62295793 A JP S62295793A JP 13863886 A JP13863886 A JP 13863886A JP 13863886 A JP13863886 A JP 13863886A JP S62295793 A JPS62295793 A JP S62295793A
Authority
JP
Japan
Prior art keywords
route
main engine
scheduled
optimum
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13863886A
Other languages
Japanese (ja)
Other versions
JPH0578476B2 (en
Inventor
Shinji Hashiguchi
橋口 真治
Masafumi Miyamoto
雅史 宮本
Hisayuki Kimata
木全 久幸
Taneyasu Nodoko
野床 種保
Tetsuo Nitta
新田 哲郎
Tadao Yoshida
吉田 忠男
Hiroshi Murase
村瀬 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIPBUILD RES ASSOC JAPAN
IHI Corp
Kawasaki Heavy Industries Ltd
Hitachi Zosen Corp
Sumitomo Heavy Industries Ltd
Original Assignee
SHIPBUILD RES ASSOC JAPAN
IHI Corp
Kawasaki Heavy Industries Ltd
Hitachi Zosen Corp
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIPBUILD RES ASSOC JAPAN, IHI Corp, Kawasaki Heavy Industries Ltd, Hitachi Zosen Corp, Sumitomo Heavy Industries Ltd filed Critical SHIPBUILD RES ASSOC JAPAN
Priority to JP13863886A priority Critical patent/JPS62295793A/en
Publication of JPS62295793A publication Critical patent/JPS62295793A/en
Publication of JPH0578476B2 publication Critical patent/JPH0578476B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible for a vessel to navigate automatically on a safe scheduled route and avoid striking a rock, colliding with a stationary-matter mark/another vessel by controlling in such a way as to have the optimum steering angle and the optimum main engine revolution-number so that a slippage between a position on the proposed route at the present time and the present position by means of a detecting signal becomes below a predetermined value. CONSTITUTION:On the basis of the navigation information of other ships' speeds, bearings, courses, or the like and the location information of stationary-matter marks of reefs, stationary buoys, or the like, the shortest scheduled route and a scheduled passing time at each point on a scheduled route from the starting point to a target point are led out by means of a scheduled route leading-out means 1. And such optimum steering angle and optimum main engine revolution-number as make a slippage between the present position detected by a position detecting means 5 on the basis of signals from a gyro compass 2, a log 3 or the like and the position on the scheduled route at the present time less than a predetermined value are led out respectively by means of an operating means 6. And a steering engine and a main engine are so controlled as to have the optimum steering angle and the optimum main engine revolution-number thus computed, when a vessel navigates each point on the proposed route with a minimum of slippage without colliding with another ship.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は、船舶に搭載され、狭水域などにおいて、船
舶が座礁、固定物標や他船との衝突を回避して安全な予
定航路上を忠実に航行するように舵取機、主機を制御す
る予定航路追従装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Industrial Application Field] This invention is installed on a ship and helps the ship avoid running aground or colliding with fixed targets or other ships in narrow waters. The present invention relates to a scheduled route following device that controls a steering gear and a main engine so as to faithfully navigate on a safe scheduled route.

〔従来の技術〕[Conventional technology]

一般に、狭水域など幅の狭い海域を船舶が航行する場合
、座礁、固定物標との衝突などの危険が多く、これらの
危険を避けるために、予め定められた安全航路上を忠実
に航行するように操船することが不可欠である。
In general, when a ship navigates narrow waters such as narrow waters, there are many dangers such as running aground or colliding with fixed targets.In order to avoid these dangers, ships must sail faithfully along predetermined safe routes. It is essential to maneuver the ship accordingly.

ところで、前記したように暗礁、固定ブイなどの固定物
標を対象にした安全航路を航行する場合、対象物標が固
定であるため、最終目標点に目標時刻に到達すればよい
ことになり、予定航路上の途中の各点の通過時刻は何ら
考慮する必要がない。
By the way, as mentioned above, when navigating a safe route with a fixed target such as a reef or a fixed buoy, since the target target is fixed, it is only necessary to reach the final destination point at the target time. There is no need to consider the passing time of each point on the scheduled route.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし実際には、固定物標以外に他船との■突回避も含
めて航行しなければならず、そのために他船の船速、方
位、針路等の他船の航行情報にもとづき前記した予定航
路上の各点の通過時刻を求め、求めた予定通過時刻に予
定航路上の各点を通過するように操船する必要があり、
従来は操船者の経験と勘により舵角、船速等を選定して
操船しているが、時々刻々変化する他船の航行情報にも
とづいて舵角、船速等を定めるには卓越した経験と勘を
要するうえ、予定航路からのずれが多くなり、安全面で
の確実性に欠けるという問題点がある。
However, in reality, in addition to fixed targets, navigation must also include collision avoidance with other ships, and for this purpose, the schedule described above is based on other ships' navigation information such as their speed, direction, and course. It is necessary to determine the passing time of each point on the route and maneuver the ship so that it passes each point on the scheduled route at the calculated estimated time of passage.
Conventionally, the rudder angle, ship speed, etc. are selected based on the experience and intuition of the ship operator, but it takes outstanding experience to determine the rudder angle, ship speed, etc. based on the navigation information of other ships, which changes from time to time. In addition to requiring intuition, there are problems in that there are many deviations from the planned route, and there is a lack of certainty in terms of safety.

そこで、この発明では、船舶が座礁、固定物標や他船と
の衝突を回避して安全な予定航路上を忠実に、かつ自動
的に航行できるようにすることを技術的課題とする。
Therefore, the technical problem of the present invention is to enable a ship to faithfully and automatically navigate along a safe planned route while avoiding grounding and collisions with fixed targets and other ships.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意してなされたものであり、
他船の航行情報等にもとづき出発点から目標点までの最
短の予定航路および該航路上の各点の通過予定時刻を導
出する予定航路導出手段と、ジャイロコンパス、ログ等
からの信号にもとづき自船の現在位置を検出して検出信
号を出力する位置検出手段と、現在時刻の前記予定航路
上の位置と前記検出信号による現在位置とのずれを算出
し。
This invention was made with the above points in mind,
Scheduled route derivation means that derives the shortest scheduled route from the departure point to the target point and the scheduled passage time of each point on the route based on navigation information of other ships, etc.; a position detecting means for detecting the current position of the ship and outputting a detection signal; and calculating a deviation between a position on the scheduled route at the current time and the current position according to the detection signal.

前記ずれが所定値以下になるような最適舵角および最適
主機回転数をそれぞれ導出する演算手段と、導出された
前記最適舵角および最適主機回転数に舵取機および主機
をそれぞれ制御する舵取機制御手段および主機制御手段
とを備えたことを特徴とする予定航路追従装置である。
a calculation means for respectively deriving an optimal steering angle and an optimal main engine rotation speed such that the deviation is equal to or less than a predetermined value; and a steering controller for controlling a steering gear and a main engine, respectively, to the derived optimal steering angle and optimal main engine rotation speed. This is a scheduled route following device characterized by comprising an aircraft control means and a main engine control means.

〔作 用〕[For production]

したがって、この発明によると、他船の船速。 Therefore, according to this invention, the speed of the other ship.

方位、針路等の航行情報や暗礁、固定ブイ等の固定物標
の位置情報にもとづき、予定航路導出手段により出発点
から目標点までの最短予定航路および該予定航路上の各
点の通過予定時刻が導出され、ジャイロコンパス、ログ
等からの信号にもとづき位置検出手段により検出される
自船の現在位置と、現在時刻の前記予定航路上の位置と
のずれが所定手段および主機制御手段により、舵取機お
よび主機が算出された最適舵角および最適主機回転数に
制御される。
Based on navigation information such as direction and course, and position information of fixed targets such as reefs and fixed buoys, the planned route derivation means determines the shortest scheduled route from the departure point to the target point and the scheduled passage time of each point on the scheduled route. is derived, and the deviation between the current position of the ship detected by the position detection means based on signals from a gyro compass, logs, etc. and the position on the scheduled route at the current time is determined by the predetermined means and the main engine control means. The taker and the main engine are controlled to the calculated optimum steering angle and optimum main engine rotation speed.

このとき、他船と衝突することなく予定航路上の各点を
通過し得る通過予定時刻に、前記各点を最小のずれで船
舶が通過し、出発点から目標点までの最短で安全な予定
航路を忠実に自動的に航行できることになる。
At this time, the ship passes each point on the scheduled route with the minimum deviation at the scheduled passage time when it can pass through each point on the scheduled route without colliding with other ships, and the shortest and safest route from the departure point to the destination point is achieved. This means that the ship will be able to navigate the route faithfully and automatically.

〔実施例〕〔Example〕

つぎに、この発明を、その1実施例を示した図面ととも
に詳細に説明する。
Next, the present invention will be described in detail with reference to drawings showing one embodiment thereof.

装置の構成を示す第1図において、(1)はレーダ等に
よる他船の船速、方位、針路等の航行情報や暗礁、固定
ブイなどの固定物標の位置情報にもとづき出発点から目
標点までの最短の予定航路および該航路上の各点の通過
予定時刻を導出する予定航路導出手段、(2)は自船の
方位を検出するジャイロコンパス、(3)は自船の船速
を検出するログ、(4)は自船の船位を検出するアメリ
カ海軍航行衛星システム(以下NN5SというL(5)
はジャイロコンパス(2)、ログ(3) 、 NN5S
 (4)からの信号にもとづき自船の現在位置を検出し
て検出信号を出力する位置検出手段、(6)はコンピュ
ータからなる演算手段であり、現在時刻における導出手
段(1)による予定航路上の位置と、前記検出信号によ
る現在位置とのずれを算出し、前記ずれが所定値以下に
なるような最適舵角および最適主機回転数をそれぞれ導
出する。
In Figure 1, which shows the configuration of the device, (1) is a system that moves from the starting point to the target point based on navigation information such as speed, direction, and course of other ships from radar, etc., and position information of fixed targets such as reefs and fixed buoys. (2) is a gyro compass that detects the direction of the own ship; (3) detects the speed of the own ship; The log (4) is the U.S. Navy Navigation Satellite System (hereinafter referred to as NN5S) that detects the ship's position.
Gyro compass (2), log (3), NN5S
(4) is a position detecting means that detects the current position of the own ship based on the signal from and outputs a detection signal; (6) is a calculation means consisting of a computer, and and the current position according to the detection signal, and derive the optimum steering angle and the optimum main engine rotation speed such that the deviation is equal to or less than a predetermined value.

(7)はレーダ画像および該レーダ画像上に導出手段(
1)による予定航路を重畳表示するとともに、自船の位
置、船速等の自船情報、他船の航行情報。
(7) The radar image and the deriving means (
In addition to superimposing the scheduled route according to 1), own ship information such as own ship's position and ship speed, and navigation information of other ships are displayed.

演算手段(6)による導出結果等を表示するCRT等か
らなる表示手段、(8) 、 (9)は舵取機制御手段
および主機制御手段であり、それぞれ演算手段(6)に
より導出された最適舵角および最適主機回転数に、舵取
機αOおよび主機αυを制御する。
Display means (8) and (9) are steering gear control means and main engine control means, respectively, which display the optimum results derived by the calculation means (6). The steering gear αO and the main engine αυ are controlled to the steering angle and the optimum main engine rotation speed.

つぎに、導出手段(1)により、たとえば第2図中の実
線に示すような出発点Oから目標点F−4での予定航路
Rが導出されるとともに、該予定航路R上の各点の通過
予定時刻が導出されたときに、同図中の1点鎖線に示す
ように自船がとる実際の航路Wとのずれが最小になるよ
うな舵角および主機回転数を求める手順について説明す
る。
Next, the derivation means (1) derives a planned route R from the starting point O to the target point F-4 as shown, for example, by the solid line in FIG. We will explain the procedure for determining the rudder angle and main engine rotation speed that will minimize the deviation from the actual route W taken by the own ship, as shown by the dashed-dotted line in the figure, when the estimated passage time is derived. .

いま、船舶のX−Y平面における運動を考えだときに、
X軸方向への速度をu、Y軸方向への速度を72回頭角
をr、船舶の位置を表わすX座標。
Now, when considering the movement of a ship in the X-Y plane,
The speed in the X-axis direction is u, the speed in the Y-axis direction is 72, the head angle is r, and the X coordinate represents the position of the ship.

Y座標をそれぞれxo >’ r舵角をδ、主機回転数
をnとすると、船の運動方程式は一般に、となり、ここ
でa+、 …、as 、 b+、 …、be 、 c+
、 …csは定数、M、v、r、i、yはそれぞれu、
v、r。
If the Y coordinate is xo >' r, the rudder angle is δ, and the main engine rotational speed is n, then the equation of motion of the ship is generally as follows, where a+, ..., as, b+, ..., be, c+
, ...cs is a constant, M, v, r, i, y are u, respectively.
v, r.

x、yの時間tによる1階微分を示す。The first differential of x and y with respect to time t is shown.

そして、前記0式で与えられる船の運動軌跡が、求めれ
ばよく、そのために次式で表わされる評価関数Jを導入
し、当該Jがゼロになるようなδ。
Then, it is sufficient to find the motion trajectory of the ship given by the above equation 0. For this purpose, an evaluation function J expressed by the following equation is introduced, and δ is set such that the J becomes zero.

nを求める。Find n.

ただし、X*、どけ前記予定航路R上の各慨のX。However, X*, each X on the planned route R above.

Y座標を示し、to、tfはそれぞれ出発点、到達点に
おける時刻であり、初期値、すなわち出発点OのX、Y
座標をxo 、yoとする。
Indicates the Y coordinate, to and tf are the times at the starting point and the destination point, respectively, and the initial value, that is, the X, Y of the starting point O
Let the coordinates be xo and yo.

ところが、前記した評価関数Jは予定航路Rと実際の航
路Rとのずれ量の2乗の積分煩を表わすが、実際に航行
する船舶がとり得る舵角、主機回転数は連続的に変化せ
ず、離散的になるため、前記0式の評価関数Jはゼロに
なり得ず、従ってJが最も小さくなるような舵角、主機
回転数を、求めるべき船舶の操船データとする。
However, although the above-mentioned evaluation function J represents the integral function of the square of the amount of deviation between the planned route R and the actual route R, the rudder angle and main engine rotation speed that can be taken by a ship actually sailing do not change continuously. Since the evaluation function J of the above-mentioned 0 formula cannot become zero, the rudder angle and main engine rotational speed at which J becomes the smallest are set as the ship maneuvering data to be determined.

そこで、ハミルトニアンHを、 H=(”−x)!+(’j’  7)”+Puu+Pv
v+Prr十Pxx+Pyy  ・”■とおき、前記■
、■式に変分法を適用すると、と表わされる共有方程式
が得られ、前記■、■式が与えられたときに、次式を満
足すれば、最急勾配法より前記評価関数Jが最小になる
ことがわかる。
Therefore, the Hamiltonian H is expressed as H=("-x)!+('j'7)"+Puu+Pv
v+Prr10Pxx+Pyy ・"■, the above ■
When the variational method is applied to the equations , , and , a shared equation expressed as It turns out that it becomes.

aH −(蓼(tl  、   +u(も) 、   口p(
t) 、* )=o              ・・
・ ■a+U を次のようなアルゴリズムにより求める。
aH −(蓼(tl, +u(also), 口p(
t), *)=o...
- Find a+U using the following algorithm.

(1m)  導出手段(1)により、出発点から目標点
までの予定航路Rを導出、設定する。このとき予’+#
!aRrr−+[8聞(7”+W%?$、h−mJtl
=(x”jtly″’(t))  として導出されるも
のとする。(ただし、tε(to 、 tf)とする。
(1m) The planned route R from the starting point to the target point is derived and set by the deriving means (1). At this time,
! aRrr-+ [8 hearing (7”+W%? $, h-mJtl
= (x"jtly"'(t)). (However, it is assumed that tε(to, tf).

)(b)  つぎ如、演算手段(6)Kよシ出発点近辺
でのδ(1) 仮の制御則1u(tl=   に対する近似値を初期n
(t) 設定して前記0式の運動方程式を解く。
)(b) Next, calculation means (6) K is approximated to the initial control law 1u(tl= δ(1) near the starting point by initial n
(t) Set and solve the equation of motion of equation 0 above.

(d)  演算手段(6)により、前記(b) 、 (
C)の過程で得10)より小さいが否かを判定する。こ
こで、であり、 桿=(2a4Sln−+ (bs+ca )買δ−5i
n2J ))u”、 =(as+((b<+c<)v+
(bs+cs)r)u−’)n(e)  そして、11
〜詣11が前記所定値より小さければ、近似的に前記0
式を満足したとして演は、前記(b) において設定し
た制御則1u(t)のa(t)。
(d) The calculation means (6) calculates the above (b), (
In the process of C), it is determined whether the gain is smaller than 10). Here, and rod = (2a4Sln-+ (bs+ca) buy δ-5i
n2J))u”, =(as+((b<+c<)v+
(bs+cs)r)u-')n(e) And 11
~ If 11 is smaller than the predetermined value, approximately 0
Assuming that the formula is satisfied, the performance is a(t) of the control law 1u(t) set in (b) above.

n(t)の値をそれぞれδ(+) 、 n(+)として
を新たに設定し、演算手段(6)により前記(b)。
The values of n(t) are newly set as δ(+) and n(+), respectively, and the arithmetic means (6) performs the calculation described in (b) above.

(C) 、 (d) 、げ)の過程を、■子蒜11が前
記所定値以下になるまで繰り返す。ただしり、λ2は定
がゼロに最も近くなるときの1u(tlのδ(tl、 
n(t)を最適舵角、最適回転数とする。
Repeat the steps (C), (d), and 1) until the amount of garlic 11 becomes less than the predetermined value. However, λ2 is 1u(tl's δ(tl,
Let n(t) be the optimum steering angle and the optimum rotation speed.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の予定航路追従装置によると、
固定物標、他船との衝突や座礁することなく、出発点か
ら目標点までの最短の予定航路上の各点を通過し得る通
過予定時刻に、前記各点を最小のずれで船舶が通過する
ことになり、予定航路を忠実に、かつ自動的に航行する
ことが可能となり、船舶航行における安全性の向上を図
ることができる。
As described above, according to the scheduled route following device of the present invention,
A ship passes each point on the shortest scheduled route from the departure point to the destination point with the minimum deviation at the scheduled passage time that allows the ship to pass through each point on the shortest scheduled route from the departure point to the destination point without colliding with fixed targets, other ships, or running aground. This makes it possible to navigate the planned route faithfully and automatically, thereby improving safety in ship navigation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、この発明の予定航路追従装置の1実施例を示し
、第1図はブロック図、第2図は動作説明図である。 (1)・・・予定航路導出手段、(2)・・・ジャイロ
コンパス、(3)・・・ログ、(5)・・・位置検出手
段、(6)・・・演算手段、(8)・・・舵取機制御手
段、(9)・・・主機制御手段、αO・・・舵取機、0
1)・・・主機。
The drawings show one embodiment of the planned route following device of the present invention, with FIG. 1 being a block diagram and FIG. 2 being an operation explanatory diagram. (1) Planned route deriving means, (2) Gyro compass, (3) Log, (5) Position detection means, (6) Calculation means, (8) ... Steering gear control means, (9)... Main engine control means, αO... Steering gear, 0
1)...Main engine.

Claims (1)

【特許請求の範囲】[Claims] (1)他船の航行情報等にもとづき出発点から目標点ま
での最短の予定航路および該航路上の各点の通過予定時
刻を導出する予定航路導出手段と、ジャイロコンパス、
ログ等からの信号にもとづき自船の現在位置を検出して
検出信号を出力する位置検出手段と、現在時刻の前記予
定航路上の位置と前記検出信号による現在位置とのずれ
を算出し、前記ずれが所定値以下になるような最適舵角
および最適主機回転数をそれぞれ導出する演算手段と、
導出された前記最適舵角および最適主機回転数に舵取機
および主機をそれぞれ制御する舵取機制御手段および主
機制御手段とを備えたことを特徴とする予定航路追従装
置。
(1) Scheduled route derivation means for deriving the shortest scheduled route from a departure point to a target point and the scheduled passage time of each point on the route based on navigation information of other ships, etc., and a gyro compass;
a position detecting means for detecting the current position of the ship based on a signal from a log or the like and outputting a detection signal; calculation means for respectively deriving an optimal steering angle and an optimal main engine rotation speed such that the deviation is equal to or less than a predetermined value;
A planned route following device comprising a steering gear control means and a main engine control means for respectively controlling a steering gear and a main engine to the derived optimum steering angle and optimum main engine rotational speed.
JP13863886A 1986-06-13 1986-06-13 Device for following-up scheduled route Granted JPS62295793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13863886A JPS62295793A (en) 1986-06-13 1986-06-13 Device for following-up scheduled route

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13863886A JPS62295793A (en) 1986-06-13 1986-06-13 Device for following-up scheduled route

Publications (2)

Publication Number Publication Date
JPS62295793A true JPS62295793A (en) 1987-12-23
JPH0578476B2 JPH0578476B2 (en) 1993-10-28

Family

ID=15226709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13863886A Granted JPS62295793A (en) 1986-06-13 1986-06-13 Device for following-up scheduled route

Country Status (1)

Country Link
JP (1) JPS62295793A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338591A (en) * 1992-06-10 1993-12-21 Niigata Eng Co Ltd Lookout alarm device and emergency stop device for ship
US6450112B1 (en) * 1999-04-02 2002-09-17 Nautronix, Inc. Vessel control force allocation optimization
JP2013226905A (en) * 2012-04-25 2013-11-07 Universal Tokki Kk Ship course keeping control device and ship
WO2014148168A1 (en) * 2013-03-22 2014-09-25 ヤンマー株式会社 Ship handling system, and ship equipped with same
JP2014184846A (en) * 2013-03-22 2014-10-02 Yanmar Co Ltd Ship operating system and ship having the same
JP2014184845A (en) * 2013-03-22 2014-10-02 Yanmar Co Ltd Ship operating system and ship having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555095A (en) * 1978-10-18 1980-04-22 Mitsubishi Heavy Ind Ltd Automatic route retaining equipment for ship
JPS5617792A (en) * 1979-07-24 1981-02-19 Tokyo Keiki Co Ltd Automatic steering gear for ship

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5555095A (en) * 1978-10-18 1980-04-22 Mitsubishi Heavy Ind Ltd Automatic route retaining equipment for ship
JPS5617792A (en) * 1979-07-24 1981-02-19 Tokyo Keiki Co Ltd Automatic steering gear for ship

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338591A (en) * 1992-06-10 1993-12-21 Niigata Eng Co Ltd Lookout alarm device and emergency stop device for ship
US6450112B1 (en) * 1999-04-02 2002-09-17 Nautronix, Inc. Vessel control force allocation optimization
JP2013226905A (en) * 2012-04-25 2013-11-07 Universal Tokki Kk Ship course keeping control device and ship
WO2014148168A1 (en) * 2013-03-22 2014-09-25 ヤンマー株式会社 Ship handling system, and ship equipped with same
JP2014184846A (en) * 2013-03-22 2014-10-02 Yanmar Co Ltd Ship operating system and ship having the same
JP2014184845A (en) * 2013-03-22 2014-10-02 Yanmar Co Ltd Ship operating system and ship having the same

Also Published As

Publication number Publication date
JPH0578476B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
KR101937439B1 (en) Alternative route generation and rudder angle control support system for collision avoidance of autonomous ship and the other ships
KR101937443B1 (en) Method of controlling/operating of alternative route generation and rudder angle control support system for collision avoidance of autonomous ship and the other ships
EP1365301B1 (en) Method and system for maneuvering a movable object
US4313115A (en) Collision avoidance apparatus
RU2429161C1 (en) Method of ship coordinated maneuvering
US9418558B1 (en) Autonomous collision avoidance navigation system and method
US10460484B2 (en) Systems and associated methods for route generation and modification
WO2018123947A1 (en) Autopilot system for vessel, vessel, and autopilot method for vessel
KR20230011310A (en) Ship&#39;s automatic guidance method, ship&#39;s automatic guidance program, ship&#39;s automatic guidance system and ship
JP6686249B2 (en) Ship automatic control system, ship, and automatic ship control method
JPS62295793A (en) Device for following-up scheduled route
KR102260441B1 (en) Automatic pilot apparatus for ship
JPH11125675A (en) Automatic collision prevention aiding device
JPH07304497A (en) Collision avoidance guiding device
JP7417538B2 (en) Control target generation device and ship maneuvering control device
JPH07304496A (en) Collision avoidance guiding device
JPH068855B2 (en) Methods for directing dangerous movements of opponents who may cause collisions during voyage and coastal navigation
CN114408122B (en) Design method of ship anti-collision control system
RU2207296C2 (en) Method of automatic pilotage of ship
JP2020027343A (en) Sail-avoiding support device
JPH0431439B2 (en)
JPS61233316A (en) Navigation alarm device
JPH04268480A (en) Automatic steering apparatus
KR20240030736A (en) Operating system for ship
Lutz et al. An automatic collision detection and avoidance module for inland navigation