JPS622955Y2 - - Google Patents

Info

Publication number
JPS622955Y2
JPS622955Y2 JP11706580U JP11706580U JPS622955Y2 JP S622955 Y2 JPS622955 Y2 JP S622955Y2 JP 11706580 U JP11706580 U JP 11706580U JP 11706580 U JP11706580 U JP 11706580U JP S622955 Y2 JPS622955 Y2 JP S622955Y2
Authority
JP
Japan
Prior art keywords
inductor
magnetic
gap
magnetic pole
excitation coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11706580U
Other languages
Japanese (ja)
Other versions
JPS5742583U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11706580U priority Critical patent/JPS622955Y2/ja
Publication of JPS5742583U publication Critical patent/JPS5742583U/ja
Application granted granted Critical
Publication of JPS622955Y2 publication Critical patent/JPS622955Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Description

【考案の詳細な説明】 本考案は渦電流継手に関する。すなわち、駆動
用電動機に直結されるドラムの周側に、負荷側回
転軸に固定されるインダクタを、さらに該インダ
クタの周側に固定磁極をそれぞれ間隙をおいて配
設し構成する渦電流継手に関するものである。こ
の種装置において、従来は第1図および第2図に
示すように、保持部2aとドラム2bからなる駆
動体2が駆動軸1と一体となり、回転ブラケツト
4aとインダクタ4bからなる被動体4が負荷側
回転軸3と一体となり、凹凸を有するインダクタ
4bの内周側にはブラケツト7に固定して励磁コ
イル5を保持する固定磁極6を配設して構成して
いたから、駆動軸1が回転する状態で、励磁コイ
ル5に外部よりの電源で直流励磁すると発生する
磁束φは第1図において破線で示すように、固定
磁極6→インダクタ4b→ドラム2b→インダク
タ4b→固定磁極6の磁気回路を形成することに
なり、この際、インダクタ4bとドラム2b間で
はインダクタ4bの凹凸によつて磁束密度が粗密
を生じ、インダクタ4bとドラム2bとの間に速
度差があるとドラム2bにこの磁束をよぎること
になり、ドラム2bの内周面には渦電流が誘起さ
れてこの過電流により電磁力が発生し、これが伝
達トルクとなつてインダクタ4bはドラム2bと
同一方向に引つぱられるように回転し、この伝達
トルクの大きさはドラム2bとインダクタ4bの
相対速度と励磁コイル5の励磁電流の大きさによ
つて変化するもので、励磁電流の調整により任意
の伝達トルクあるいは回転速度を得られるもので
あつた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eddy current coupling. That is, the present invention relates to an eddy current joint in which an inductor fixed to a load-side rotating shaft is disposed on the circumferential side of a drum that is directly connected to a driving electric motor, and fixed magnetic poles are disposed on the circumferential side of the inductor with a gap between them. It is something. Conventionally, in this type of device, as shown in FIGS. 1 and 2, a driving body 2 consisting of a holding part 2a and a drum 2b is integrated with a driving shaft 1, and a driven body 4 consisting of a rotating bracket 4a and an inductor 4b is integrated. The drive shaft 1 rotates because the fixed magnetic pole 6 which is fixed to the bracket 7 and holds the excitation coil 5 is disposed on the inner circumferential side of the inductor 4b which is integrated with the load-side rotating shaft 3 and has irregularities. In this state, when the excitation coil 5 is DC-excited by an external power source, the magnetic flux φ generated is as shown by the broken line in FIG. At this time, the magnetic flux density becomes uneven between the inductor 4b and the drum 2b due to the unevenness of the inductor 4b, and if there is a speed difference between the inductor 4b and the drum 2b, this magnetic flux is transferred to the drum 2b. As a result, an eddy current is induced on the inner peripheral surface of the drum 2b, and this overcurrent generates an electromagnetic force, which becomes a transmitted torque and rotates the inductor 4b so as to be pulled in the same direction as the drum 2b. However, the magnitude of this transmitted torque changes depending on the relative speed between the drum 2b and the inductor 4b and the magnitude of the excitation current of the excitation coil 5, and any desired transmitted torque or rotational speed can be obtained by adjusting the excitation current. It was hot.

しかしながら、伝達トルクが大きくて回転軸3
の回転速度の減速率が大きいものにあつては、励
磁コイル5へ供給する励磁電流も増大させる必要
があり、一方、駆動軸1と回転軸3でのトルクの
大きさは変らないので回転軸3での出力は速度差
の分だけ小さくなり、この差はすべてドラム2b
内での渦電流損となつてドラム2bの温度を高
め、励磁コイル5よりの発熱量も非常に大きく、
そのためにこの温度上昇によつてドラム2bの変
形、あるいは熱応力が極めて大きくなるという問
題点があり、また、冷却用にフアンを取付けると
騒音の増大、コストアツプ等の問題点があつた。
However, the transmission torque is large and the rotating shaft 3
If the deceleration rate of the rotational speed of The output at 3 is reduced by the speed difference, and this difference is entirely due to the drum 2b.
The temperature of the drum 2b increases due to eddy current loss within the drum 2b, and the amount of heat generated from the excitation coil 5 is also very large.
Therefore, there is a problem in that the drum 2b is deformed or the thermal stress becomes extremely large due to this temperature rise.Furthermore, when a fan is attached for cooling, there are problems such as an increase in noise and an increase in cost.

本考案は、そのような問題点を解決したもの
で、固定磁極側の励磁コイルへの供給電力を少な
くすることができるとともに、温度上昇も低減さ
せることができ、簡単にして信頼性および寿命を
向上させうるよう提供するものである。
The present invention solves these problems and can reduce the power supplied to the excitation coil on the fixed magnetic pole side, as well as reduce temperature rise, making it simple to improve reliability and service life. It is provided so that it can be improved.

次に、第3図ないし第6図に示す本考案の実施
例について説明する。
Next, an embodiment of the present invention shown in FIGS. 3 to 6 will be described.

第3図は第1図に示す従来例と同一符号で示す
ように略同様に構成した要部の断面図を示すが、
インダクタ4bと固定磁極6との間隙内に磁性流
体8を充満する。磁性流体8は第6図aに示すよ
うにフエライト等の直径100Å程度の大きさの強
磁性粒子8aを溶媒に懸濁させたコロイド溶液で
あることは周知の通りである。強磁性粒子8aの
表面には、疎水基を外に向けた界面活性剤の吸着
層があるので、強磁性粒子8aは第6図bに示す
ように溶媒中に一様に分散することになる。又、
コロイド溶液は強磁性粒子8aが懸濁しているの
で、空気中の透磁率に比べて極めて大きい透磁率
を有する。この磁性流体8はインダクタ4bとは
非接触状態となつて固定磁極6に固設した円輪形
の各シールリング9によりシールされる。シール
リング9は第4図に示すように永久磁石により形
成されており、その磁場により磁性流体8を保持
し、磁性流体8が空隙から流出するのを防止す
る。
FIG. 3 shows a cross-sectional view of the main parts constructed almost in the same way as the conventional example shown in FIG. 1, as indicated by the same reference numerals.
The gap between the inductor 4b and the fixed magnetic pole 6 is filled with magnetic fluid 8. As is well known, the magnetic fluid 8 is a colloidal solution in which ferromagnetic particles 8a, such as ferrite, having a diameter of about 100 Å are suspended in a solvent, as shown in FIG. 6a. On the surface of the ferromagnetic particles 8a, there is an adsorption layer of surfactant with the hydrophobic groups facing outward, so the ferromagnetic particles 8a are uniformly dispersed in the solvent as shown in FIG. 6b. . or,
Since the ferromagnetic particles 8a are suspended in the colloidal solution, the colloidal solution has extremely high magnetic permeability compared to the magnetic permeability of air. The magnetic fluid 8 is sealed by circular seal rings 9 fixedly attached to the fixed magnetic pole 6 without contacting the inductor 4b. As shown in FIG. 4, the seal ring 9 is formed of a permanent magnet, and its magnetic field holds the magnetic fluid 8 and prevents the magnetic fluid 8 from flowing out from the gap.

シールリング9は励磁コイル5の磁力の影響が
殆ど及ばない位置が設けられているので、励磁コ
イル5の磁束がシールリング9としての永久磁石
の磁束より大きくても、磁性流体8を保持するこ
とになる。したがつて磁性流体8の透磁率が空気
中の透磁率に比べて極めて大きいため、間隙の磁
気抵抗は空気と磁性流体の透磁率の比の割合で低
下し、励磁コイル5の励磁により形成される磁気
回路においては励磁コイル5の起磁力の大部分は
固手磁極6とインダクタ4b、ドラム2bとイン
ダクタ4bそれぞれの間隙の磁気抵抗に費される
ことになる。なお、第3図に示した磁束φは励磁
コイル5の起磁力によつて形成されるものであ
る。又、シールリング9によつて形成される磁気
回路における磁束φ′は第4図に示すようにシー
ルリング9とインダクタ4bとの閉ループ磁気回
路となる。このインダクタ4bと固定磁極6との
間隙に磁性流体を充満させると、磁性流体8は磁
性を有するので、シールリング9とインダクタ4
bとの間で形成される磁場により吸引保持され、
間隙の外に流出しない。さらに、磁性流体8の透
磁率が大きいので、空隙の磁気抵抗を低下させる
ことができる。
Since the seal ring 9 is provided at a position where it is hardly affected by the magnetic force of the excitation coil 5, the magnetic fluid 8 can be retained even if the magnetic flux of the excitation coil 5 is larger than the magnetic flux of the permanent magnet as the seal ring 9. become. Therefore, since the magnetic permeability of the magnetic fluid 8 is extremely large compared to the magnetic permeability of air, the magnetic resistance of the gap decreases in proportion to the ratio of the magnetic permeability of the air and the magnetic fluid, and the gap is formed by the excitation of the excitation coil 5. In the magnetic circuit, most of the magnetomotive force of the excitation coil 5 is spent on magnetic resistance in the gaps between the solid magnetic pole 6 and the inductor 4b, and between the drum 2b and the inductor 4b. Note that the magnetic flux φ shown in FIG. 3 is formed by the magnetomotive force of the exciting coil 5. Further, the magnetic flux φ' in the magnetic circuit formed by the seal ring 9 becomes a closed loop magnetic circuit between the seal ring 9 and the inductor 4b as shown in FIG. When the gap between the inductor 4b and the fixed magnetic pole 6 is filled with magnetic fluid, the magnetic fluid 8 has magnetism, so the seal ring 9 and the inductor 4
It is attracted and held by the magnetic field formed between b.
Do not leak out of the gap. Furthermore, since the magnetic fluid 8 has a high magnetic permeability, the magnetic resistance of the air gap can be reduced.

固定磁極6とインダクタ4b間の間隙の磁気抵
抗が低減されると、励磁コイル5の起磁力が費さ
れる個所はドラム2bとインダクタ4bとの磁気
抵抗のみとなり、その結果、この間隙の所定の磁
束密度を得るための励磁コイル5に必要とされる
励磁電流は少なくてすむことになり、従来例に比
して励磁コイル5への供給電力が節約できるとと
もに、励磁コイル5からの発熱を大幅に低減する
ことができ、また、磁性流体の熱伝導率は空気に
比べて10倍以上、大きいためにインダクタ4bか
らの熱を効果的に伝達してインダクタ4bの温度
を低減させることができる。
When the magnetic resistance in the gap between the fixed magnetic pole 6 and the inductor 4b is reduced, the magnetomotive force of the excitation coil 5 is used only in the magnetic resistance between the drum 2b and the inductor 4b, and as a result, the predetermined value of the gap is reduced. The excitation current required for the excitation coil 5 to obtain the magnetic flux density is small, so the power supplied to the excitation coil 5 can be saved compared to the conventional example, and the heat generated from the excitation coil 5 can be significantly reduced. Furthermore, since the thermal conductivity of the magnetic fluid is more than 10 times greater than that of air, the heat from the inductor 4b can be effectively transferred to reduce the temperature of the inductor 4b.

なお、第5図は本考案に係る渦電流継手の他の
実施例を示し、前記シールリング9に代えてゴ
ム、プラスチツク等の弾性体を用いたリツプシー
ル10を装設するが、前記同様に作用するもので
ある。
FIG. 5 shows another embodiment of the eddy current joint according to the present invention, in which a lip seal 10 made of an elastic material such as rubber or plastic is installed in place of the seal ring 9, but it functions in the same manner as described above. It is something to do.

このように本考案は固定磁極とインダクタとの
間隙内に磁性流体を密封して介装し、磁気抵抗を
低減させうるようにしたから、固定磁極側の励磁
コイルへの供給電力を大幅に低減できて、省エネ
ルギー効果を奏することができるとともに、温度
上昇をも低減することができ、頭記のような従来
の問題点を解決できて電磁誘導連結装置そのもの
の信頼性、寿命を向上させることができ、簡単な
構造にして好適に実施できる特長を有する。
In this way, the present invention seals and interposes magnetic fluid in the gap between the fixed magnetic pole and the inductor to reduce magnetic resistance, which significantly reduces the power supplied to the excitation coil on the fixed magnetic pole side. It is possible to save energy, reduce temperature rise, solve the conventional problems mentioned above, and improve the reliability and life of the electromagnetic induction coupling device itself. It has the advantage of being able to be implemented conveniently with a simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2図は第1図のA
−A線における断面図、第3図は本考案の実施例
である要部の断面図、第4図は第3図の一部の拡
大図、第5図は他の実施例を示す図、第6図は磁
性流体の説明図である。 2b……ドラム、3……回転軸、4b……イン
ダクタ、6……固定磁極、8……磁性流体。
Figure 1 is a sectional view of the conventional example, and Figure 2 is A of Figure 1.
- A sectional view taken along line A, FIG. 3 is a sectional view of the main part of an embodiment of the present invention, FIG. 4 is an enlarged view of a part of FIG. 3, and FIG. 5 is a diagram showing another embodiment. FIG. 6 is an explanatory diagram of the magnetic fluid. 2b...Drum, 3...Rotating shaft, 4b...Inductor, 6...Fixed magnetic pole, 8...Magnetic fluid.

Claims (1)

【実用新案登録請求の範囲】 (1) 駆動用電動機の駆動軸に連結される磁性ドラ
ムの周側に配設された負荷側回転軸に固定され
ているインダクタと、略中央部分に励磁コイル
を有し、前記インダクタの周側に該インダクタ
と所定の間隙をもつて配設された固定磁極とを
備えた渦電流継手において、前記インダクタと
前記固定磁極との間隙に介装された磁性流体
と、前記固定磁極の両側であつて、前記励磁コ
イルの磁気の影響が殆んど及ばない位置及び該
励磁コイルの両側に、それぞれ前記インダクタ
とは僅かの隙間を空けた状態で設けられ、該イ
ンダクタと該固定磁極との空隙から該磁性流体
が流出するのを防止するシールリングとを備え
たことを特徴とする渦電流継手。 (2) シールリングは、永久磁石により形成されて
おり、該永久磁石の磁場により前記磁性流体を
保持して、前記インダクタと前記固定磁極との
空隙から該磁性流体が流出するのを防止する実
用新案登録請求の範囲第1項記載の渦電流継
手。 (3) シールリングは、リツプシールにより形成さ
れている実用新案登録請求の範囲第1項記載の
渦電流継手。
[Claims for Utility Model Registration] (1) An inductor fixed to a load-side rotating shaft disposed around the circumference of a magnetic drum connected to a drive shaft of a drive motor, and an excitation coil located approximately in the center. and a fixed magnetic pole disposed on the circumferential side of the inductor with a predetermined gap from the inductor, the magnetic fluid interposed in the gap between the inductor and the fixed magnetic pole; , provided on both sides of the fixed magnetic pole at a position hardly affected by the magnetism of the excitation coil and on both sides of the excitation coil with a slight gap from the inductor, respectively, and the inductor. and a seal ring that prevents the magnetic fluid from flowing out from the gap between the fixed magnetic pole and the fixed magnetic pole. (2) The seal ring is formed of a permanent magnet, and has a practical function of holding the magnetic fluid by the magnetic field of the permanent magnet and preventing the magnetic fluid from flowing out from the gap between the inductor and the fixed magnetic pole. An eddy current joint according to claim 1 of the patent registration claim. (3) The eddy current joint according to claim 1, wherein the seal ring is formed of a lip seal.
JP11706580U 1980-08-19 1980-08-19 Expired JPS622955Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11706580U JPS622955Y2 (en) 1980-08-19 1980-08-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11706580U JPS622955Y2 (en) 1980-08-19 1980-08-19

Publications (2)

Publication Number Publication Date
JPS5742583U JPS5742583U (en) 1982-03-08
JPS622955Y2 true JPS622955Y2 (en) 1987-01-23

Family

ID=29477863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11706580U Expired JPS622955Y2 (en) 1980-08-19 1980-08-19

Country Status (1)

Country Link
JP (1) JPS622955Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5432111B2 (en) * 2010-11-11 2014-03-05 株式会社京三製作所 Electric turning machine
JP7132764B2 (en) * 2018-06-21 2022-09-07 株式会社京三製作所 electric point machine

Also Published As

Publication number Publication date
JPS5742583U (en) 1982-03-08

Similar Documents

Publication Publication Date Title
US2575360A (en) Magnetic fluid torque and force transmitting device
SE431781B (en) MAGNETICALLY MANOVERED FRICTION CONNECTION OR BRAKE
JPH05153744A (en) Permanent magnet field type rotor
JPH0386060A (en) Eddy current type reduction gear
JPH0386063A (en) Eddy current type retarder
KR100518492B1 (en) Magnet type clutch device or magnet type fan clutch device
JPS622955Y2 (en)
JPS60130106A (en) Permanent electromagnetic attracting device
JPH0236980Y2 (en)
JPS6289313A (en) Method of magnetization for permanent magnet
US4138618A (en) Spread pole eddy current coupling
US3845337A (en) Electromagnetic coupling having an end mounted field
JP4010279B2 (en) Eddy current reducer
JPH065368U (en) Motor with built-in electromagnetic brake
JPH0511394Y2 (en)
JPH083194Y2 (en) Electromagnetic coupling device
JPS6138392Y2 (en)
JP2019140818A (en) motor
JPS6334457Y2 (en)
RU2119709C1 (en) Electric motor with closed magnetizing circuit including butt-end members of its frame
KR20000027079A (en) Magnetic particle type electric connection unit
JP2583624Y2 (en) Electromagnetic powder clutch or electromagnetic powder brake
JP2021035107A (en) motor
JPS6112133B2 (en)
JPS60149532U (en) Magnetic powder electromagnetic clutch