JPS62295501A - Vplane antenna - Google Patents

Vplane antenna

Info

Publication number
JPS62295501A
JPS62295501A JP13896786A JP13896786A JPS62295501A JP S62295501 A JPS62295501 A JP S62295501A JP 13896786 A JP13896786 A JP 13896786A JP 13896786 A JP13896786 A JP 13896786A JP S62295501 A JPS62295501 A JP S62295501A
Authority
JP
Japan
Prior art keywords
antenna
dielectric base
ground conductor
dielectric substrate
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13896786A
Other languages
Japanese (ja)
Inventor
Masayuki Matsuo
昌行 松尾
Hiroo Inoue
博夫 井上
Nobuaki Miyaji
伸明 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13896786A priority Critical patent/JPS62295501A/en
Publication of JPS62295501A publication Critical patent/JPS62295501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas

Abstract

PURPOSE:To prevent the generation of a bent of a dielectric base due to the heat of the sun and the deterioration in the characteristic of the dielectric base by providing a ground conductor to the rear side of the dielectric base having an antenna pattern on its front side and providing a heat sink to the ground conductor. CONSTITUTION:A microstrip line conductor 2 as the antenna pattern is provided to the front side of a rectangular dielectric base 1, the ground conductor 3 is provided to the rear side of the dielectric base 1 to form the microstrip line plane antenna. The heat radiation fin 4 being the heat sink is formed along the peripheral of the dielectric base 1 in one direction. Even if the plane antenna is heated by the sun rays, the temperature rise is suppressed by the presence of the heat radiation fin 4 to prevent the dielectric base 1 from being bent or the characteristic of the base 1 from being deteriorated. As a result, the reduction in the antenna gain is prevented.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [技術分野1 本発明は、放送衛星から送信されるマイクロ波を受信す
る平面アンテナに関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field 1] The present invention relates to a flat antenna that receives microwaves transmitted from a broadcasting satellite.

[背景技術1 最近では赤道−F空36000Ka+付近の静止衛星を
利用してS HF帯の電波による衛星放送が実用化され
ており、日本においては放送衛星から送Mされる右旋円
偏波となっている。この円偏波を受信するには、アンテ
ナを赤道方向、すなわち、日本においては南西方向に向
けて設置する必要があるから、太陽熱によりアンテナが
加熱されることになる。特に、設置の容易さなどの理由
から最近では平面アンテナが用いられるようになってき
ているが、平面アンテナはケーシング内に納装すること
があり、この場合にはアンテナが着しく加熱されること
になる。このような平面アンテナでは、基板と基板に設
けた導体との熱膨張率の差により、基板に反りが生じ、
アンテナゲインが低下するという問題が生じる。また、
ポリエチレンのような軟化温度の低い誘電体を基板に用
いでいる場合には、誘電体自身の特性が劣化し、アンテ
ナゲインが低下するという問題が生じる。
[Background technology 1] Recently, satellite broadcasting using SHF band radio waves has been put into practical use using geostationary satellites near the equator-F sky of 36,000 Ka+, and in Japan, right-handed circularly polarized waves and It has become. In order to receive this circularly polarized wave, it is necessary to install the antenna toward the equator, that is, toward the southwest in Japan, so the antenna will be heated by solar heat. In particular, flat antennas have recently come into use for reasons such as ease of installation, but flat antennas are sometimes housed inside a casing, and in this case, the antenna may be heated too much. become. In such a planar antenna, the substrate warps due to the difference in thermal expansion coefficient between the substrate and the conductor provided on the substrate.
A problem arises in that the antenna gain decreases. Also,
When a dielectric material with a low softening temperature such as polyethylene is used for the substrate, a problem arises in that the characteristics of the dielectric material itself deteriorates and the antenna gain decreases.

[発明の目的] 本発明は上述の点に鑑みて為されたものであって、その
目的とするところは、加熱による誘電体基板の反りや特
性劣化をできるだけ防止し、もってアンテナゲインの低
下を防止した平面アンテナを提供することにある。
[Object of the Invention] The present invention has been made in view of the above points, and its purpose is to prevent as much as possible the warpage and characteristic deterioration of the dielectric substrate due to heating, thereby reducing the decrease in antenna gain. An object of the present invention is to provide a planar antenna that prevents the above-mentioned problems.

[発明の開示1 本発明に係る平面アンテナは、表面にアンテナパターン
を有する誘電体基板の裏面に地導体を有し、地導体側に
放熱部が設けられたことを特徴とするものであり、この
構成により、アンテナの温度上昇を抑制している。
[Disclosure 1 of the Invention The planar antenna according to the present invention is characterized in that it has a ground conductor on the back side of a dielectric substrate having an antenna pattern on its surface, and a heat dissipation part is provided on the side of the ground conductor, This configuration suppresses the rise in temperature of the antenna.

(実施例1) 第1図に示すように、矩形状の誘電体基板1の表面にア
ンテナパターンとしてのマイクロストリップライン導体
2が設けられるとともに、誘電体基板1の裏面に地導体
3が設けられることにより、マイクロストリップライン
平面アンテナが形成される。地導体3側には、放熱部と
なる放熱フィン4が誘電体基板1の周辺に沿う一方向に
走るように形成される。
(Example 1) As shown in FIG. 1, a microstrip line conductor 2 as an antenna pattern is provided on the surface of a rectangular dielectric substrate 1, and a ground conductor 3 is provided on the back surface of the dielectric substrate 1. As a result, a microstrip line planar antenna is formed. On the ground conductor 3 side, a radiation fin 4 serving as a heat radiation part is formed so as to run in one direction along the periphery of the dielectric substrate 1.

しかるに、この平面アンテナは太陽熱により加熱されで
も放熱フィン4の存在により温度上昇が抑制されるので
あり、誘電体基板1が反ったり、誘電体基板1の特性が
劣化したりすることが防止されるのである。その結果、
アンテナゲインの低下が防止される。
However, even if this planar antenna is heated by solar heat, the temperature rise is suppressed by the presence of the radiation fins 4, and the dielectric substrate 1 is prevented from warping or the characteristics of the dielectric substrate 1 from deteriorating. It is. the result,
A decrease in antenna gain is prevented.

(実施例2) 本実施例では、第2図に示すように、誘電体基板1の中
央部の放熱フィン4と両端部の放熱フィン4とが互いに
直交する方向に走るように形成される。この構成により
、放熱フィン2が誘電体基板1を補強することになり、
誘電体基板1の反りが一層よく防止されるのである。放
熱フィン4の配列方向としては、第3図に示すように、
誘電体基板1の対角線方向に沿う方向としてもよく、こ
の場合にも、誘電体基板1の各部で放熱フィン4が互い
に異なる方向に走るように形成することにより、放熱フ
ィン4で誘電体基板1を補強している。
(Example 2) In this example, as shown in FIG. 2, the radiation fins 4 at the center of the dielectric substrate 1 and the radiation fins 4 at both ends are formed to run in directions orthogonal to each other. With this configuration, the radiation fins 2 reinforce the dielectric substrate 1,
Warpage of the dielectric substrate 1 is further prevented. The arrangement direction of the radiation fins 4 is as shown in FIG.
The direction may be along the diagonal line of the dielectric substrate 1. In this case as well, by forming the radiation fins 4 to run in different directions in each part of the dielectric substrate 1, the radiation fins 4 can move the dielectric substrate 1. is reinforced.

(実施例3) 本実施例では、第4図に示すように、地導体3となる金
属板の表面(第4図の下面)に凹凸を形成して、地導体
3の表面積を大きくし、もって地導体3自身を放熱部と
している。この構成により、放熱フィン4を新たに設け
ることなく誘電体基板1の温度上昇を抑制することがで
きる。
(Example 3) In this example, as shown in FIG. 4, unevenness is formed on the surface of the metal plate that becomes the ground conductor 3 (lower surface in FIG. 4) to increase the surface area of the ground conductor 3. Therefore, the ground conductor 3 itself serves as a heat dissipation section. With this configuration, it is possible to suppress the temperature rise of the dielectric substrate 1 without newly providing the radiation fins 4.

[発明の効果1 本発明は上述のように、表面にアンテナパターンを有す
る誘電体基板の裏面に地導体を有し、地=3− 導体側に放熱部が設けられているので、太陽熱により加
熱されても、放熱部の存在により温度上昇が抑制される
のであり、誘電体基板に反りが発生したり、誘電体基板
の特性が劣化することが少なくなるのであり、その結果
、アンテナゲインの低下が防止されるのである。
[Effect of the invention 1 As described above, the present invention has a ground conductor on the back side of a dielectric substrate having an antenna pattern on its surface, and a heat dissipation part is provided on the ground = 3- conductor side, so it can be heated by solar heat. However, the temperature rise is suppressed by the presence of the heat dissipation section, which reduces the occurrence of warping of the dielectric substrate and the deterioration of the characteristics of the dielectric substrate.As a result, the antenna gain decreases. is prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1を示す斜視図、第2図および
第3図は本発明の実施例2を示す背面側の斜視図、第4
図は本発明の実施例3を示す斜視図である。 1は誘電体基板、2はマイクロストリップライン導体、
3は地導体、4は放熱フィンである。
FIG. 1 is a perspective view showing a first embodiment of the present invention, FIGS. 2 and 3 are rear perspective views showing a second embodiment of the present invention, and FIG.
The figure is a perspective view showing Embodiment 3 of the present invention. 1 is a dielectric substrate, 2 is a microstrip line conductor,
3 is a ground conductor, and 4 is a radiation fin.

Claims (1)

【特許請求の範囲】[Claims] (1)表面にアンテナパターンを有する誘電体基板の裏
面に地導体を有し、地導体側に放熱部が設けられたこと
を特徴とする平面アンテナ。
(1) A planar antenna characterized in that it has a ground conductor on the back side of a dielectric substrate having an antenna pattern on its surface, and a heat dissipation section is provided on the side of the ground conductor.
JP13896786A 1986-06-14 1986-06-14 Vplane antenna Pending JPS62295501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13896786A JPS62295501A (en) 1986-06-14 1986-06-14 Vplane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13896786A JPS62295501A (en) 1986-06-14 1986-06-14 Vplane antenna

Publications (1)

Publication Number Publication Date
JPS62295501A true JPS62295501A (en) 1987-12-22

Family

ID=15234362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13896786A Pending JPS62295501A (en) 1986-06-14 1986-06-14 Vplane antenna

Country Status (1)

Country Link
JP (1) JPS62295501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511516U (en) * 1991-07-30 1993-02-12 八木アンテナ株式会社 Antenna device for satellite communication
FR2710195A1 (en) * 1993-09-14 1995-03-24 Thomson Csf Antenna-electronic circuit assembly
EP1291960A2 (en) * 2001-08-28 2003-03-12 Kabushiki Kaisha Toshiba Antenna with heat sink
CN109155452A (en) * 2016-05-24 2019-01-04 德州仪器公司 High frequency antenna structure with high heat conductance and high surface area

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511516U (en) * 1991-07-30 1993-02-12 八木アンテナ株式会社 Antenna device for satellite communication
FR2710195A1 (en) * 1993-09-14 1995-03-24 Thomson Csf Antenna-electronic circuit assembly
EP1291960A2 (en) * 2001-08-28 2003-03-12 Kabushiki Kaisha Toshiba Antenna with heat sink
EP1291960A3 (en) * 2001-08-28 2004-01-07 Kabushiki Kaisha Toshiba Antenna with heat sink
CN109155452A (en) * 2016-05-24 2019-01-04 德州仪器公司 High frequency antenna structure with high heat conductance and high surface area

Similar Documents

Publication Publication Date Title
Kerr Short axial length broad-band horns
US3140491A (en) Diffraction shield consisting of notched ring which frames passive reflector
GB2338346A (en) Wide-band micropstrip dipole antenna array
JPS5990406A (en) Parallel board waveguide antenna
Ethier et al. Development of novel low-cost reflectarrays [antenna applications corner]
KR920002227B1 (en) Micro-strip array antenna
US6608607B2 (en) High performance multi-band frequency selective reflector with equal beam coverage
US6518935B2 (en) Device for transmitting and/or receiving electromagnetic waves fed from an array produced in microstrip technology
US3178713A (en) Parabolic antenna formed of curved spaced rods
Evtioushkine et al. Very wideband printed dipole antenna array
EP0654846A1 (en) Attenuation fin blanket for a feed horn
JPS62295501A (en) Vplane antenna
Qiu et al. Radiation efficiency of printed slot antennas backed by a ground reflector
CN113451780B (en) Circular polarization fixed frequency beam scanning leaky-wave antenna
JPS635601A (en) Plane antenna
JPS5989008A (en) Surface wave antenna and method of producing same
Kawakami et al. Decoupling of dipole antenna array on patch type meta-surface with C-shaped parasitic element
JPH0575340A (en) Beam tilt type plane antenna
KR100532587B1 (en) Linearly polarized microstrip patch array antennas with metallic strips on a superstrate to increase an antenna gain
Kim et al. 1× 8 Slotted Array Antenna with Fan-Beam Characteristics for 28 GHz 5G Mobile Applications
Huang et al. Single-Band and Dual-Band Transmitarray Antenna With High Gain and Aperture Efficiency
JPS62196903A (en) Plane antenna
JPH088445B2 (en) Microstrip antenna structure
JPH06296110A (en) Triplate type plane antenna with parasitic element
Balling et al. Design and analysis of large linearly polarized array-fed offset reflector antennas with frequency reuse