JPS62295476A - Laser apparatus - Google Patents

Laser apparatus

Info

Publication number
JPS62295476A
JPS62295476A JP13826486A JP13826486A JPS62295476A JP S62295476 A JPS62295476 A JP S62295476A JP 13826486 A JP13826486 A JP 13826486A JP 13826486 A JP13826486 A JP 13826486A JP S62295476 A JPS62295476 A JP S62295476A
Authority
JP
Japan
Prior art keywords
electron beam
laser
medium
laser medium
discharge tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13826486A
Other languages
Japanese (ja)
Inventor
Koichi Ono
高一 斧
Tatsuo Omori
達夫 大森
Shigeto Fujita
重人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13826486A priority Critical patent/JPS62295476A/en
Publication of JPS62295476A publication Critical patent/JPS62295476A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09707Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using an electron or ion beam

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To optimize the output and the efficiency of a laser by obtaining a laser oscillation relative to neutral atoms and ion spectral beam in a laser medium in the same direction and the same orientation as the propagating direction in the medium of an electron beam. CONSTITUTION:An electron beam 17 generated by electron beam generating means 16 mounted out of a discharge tube 2 is passed through an incident window 18 to be incident to be propagated in the medium 1. Thus, the medium 1 is ionized and excited progressively, and special energy levels of the atoms and the ions of the medium 1 are inverted to be distributed. Then, the light of a spectral beam corresponding to the transfer between the energy levels is reflected on an output mirror 14 at the outside of the tube 2 and an electron beam incident and laser output mirror 18 to the tube 2 through a Brewster window 13 to output a laser light 15 in the same direction and the same orientation as the propagating direction in the medium 1 of the beam 17 outside an output mirror 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザ装置に関し、さらに詳しくいうと、
レーザによる工業計測、レーザによる科学計測、レーザ
レーダ、レーザ分光、光通信、ホログラフィ、スペック
ルとその応用、光情報処理、レーザ加工、レーザ医学、
光化学、制御熱核融合、同位体分離などの分野に用いら
れるもので、特に、気体の中性原子およびイオンのレー
ザ装#に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a laser device, and more specifically,
Industrial measurement using lasers, scientific measurement using lasers, laser radar, laser spectroscopy, optical communication, holography, speckle and its applications, optical information processing, laser processing, laser medicine,
It is used in fields such as photochemistry, controlled thermonuclear fusion, and isotope separation, and in particular relates to gaseous neutral atomic and ion laser equipment.

〔従来の技術〕[Conventional technology]

従来、この種の装筐としては、例えば、レーザ学会m:
レーザーハンドブックCオーム社、昭和jり年)797
〜799頁に掲載された第2図に示すものがある。
Conventionally, as this type of housing, for example, the Laser Society m:
Laser Handbook C Ohmsha, Showa J.) 797
There is one shown in FIG. 2 published on pages 1 to 799.

まず、第一図に示す従来のレーザ装置の構成について説
明する。第1図において、レーザ媒質(ハが封入された
放電管(2)に7−ザ媒質(ハの帰還路(3)が付設さ
れでいる。放電管(コ)に設置された陰極(ゲ)、陽極
(51にはそれぞれ放電管Cコ)の外側への陰極端子(
6)、陽極端子(71が接続されている。放電管(コ)
には冷却ジャケットit1が設けられており、冷却ジャ
ケラ) (r)には冷却媒質(デ1が満たされている。
First, the configuration of the conventional laser device shown in FIG. 1 will be explained. In Fig. 1, a return path (3) for a laser medium (C) is attached to a discharge tube (2) in which a laser medium (C) is sealed. , the cathode terminal (51 is connected to the outside of the discharge tube C)
6), anode terminal (71 is connected), discharge tube (k)
is provided with a cooling jacket it1, and the cooling jacket (r) is filled with a cooling medium (de1).

また、冷却ジャケット(11には冷却媒質流入口(io
)および冷却媒質排出口(l/)が接続されている。放
電管(コ)の外側には、放電管C2)の軸線方向に磁界
を印加するソレノイド(/コ)が配設されており、放電
管(コ)の両端にそれぞれ装着されたブリュースタ窓(
/3)にそれぞれ対向して、放電管(コ)の軸線上に出
力鏡(ハ0が配置されている。矢印(/S)は出力鏡(
il)からのレーザ出力光を示している。
In addition, the cooling jacket (11 has a cooling medium inlet (io)
) and a cooling medium outlet (l/) are connected. A solenoid (/) that applies a magnetic field in the axial direction of the discharge tube (C2) is installed on the outside of the discharge tube (C).
An output mirror (c0) is placed on the axis of the discharge tube (c), facing each of the output mirrors (c).
The laser output light from il) is shown.

次に1上記従来のレーザ装置の動作について説明する。Next, the operation of the conventional laser device mentioned above will be explained.

レーザ媒質Cハが封入された放電管Cコ)において、陰
極(ダ1と陽極(s)の間にそれぞれ陰極端子(glと
陽極端子C4)を介して直流あるいはパルス高電圧を印
加し、レーザ媒質Cハを放電により電離・励起し、レー
ザ媒質Cハの中性原子およびイオンのある特定のエネル
ギ準位間に反転分布を生じさせる。
In the discharge tube C in which the laser medium C is sealed, a direct current or pulsed high voltage is applied between the cathode (D1) and the anode (S) through the cathode terminals (GL and the anode terminal C4), respectively, to generate a laser beam. The medium C is ionized and excited by discharge, and population inversion is caused between certain energy levels of neutral atoms and ions in the laser medium C.

すると、このエネルギ準位間の遷移に対応するスペクト
ル線の光は、ブリュースタ窓(/3)を通過し出力@(
ハ0で反射されて反転分布の生じているレーザ媒質(ハ
が封入された放電管(コ)内を複数回往復することによ
って増幅され、出力鏡(ハ0の外側にレーザ光(is)
が出力する。ここで、帰還路(Jlは放電管(コ)内の
レーザ媒質(/)の圧力勾配緩和、冷却ジャケラ)(f
l、冷却媒質(9)は放電管(コ)の加熱緩和、ソレノ
イド(/2)による放電管(,2)の軸線方向磁界は電
離・励起し反転分布を持つレーザ媒質Cハの放電管(2
)の壁への拡散による消失緩和の役割を果たしている。
Then, the light of the spectral line corresponding to the transition between energy levels passes through the Brewster window (/3) and the output @(
The laser medium (C), which is reflected by C0 and has a population inversion, is amplified by reciprocating multiple times within the enclosed discharge tube (C), and the laser beam (IS) is sent to the outside of the output mirror (C0).
outputs. Here, the return path (Jl is pressure gradient relaxation and cooling jacket of the laser medium (/) in the discharge tube (J)) (f
l, the cooling medium (9) heats and relaxes the discharge tube (C), and the axial magnetic field of the discharge tube (,2) by the solenoid (/2) ionizes and excites the discharge tube (C), which becomes the laser medium with population inversion (C). 2
) plays a role in mitigating loss due to diffusion into walls.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来のレーザ装置では、上述したように、
放電管(2)内部忙設置された陰極(Illと陽極(s
lの間に直流あるいはパルス高電圧を印加し、レーザ媒
質(ハを放電により電離・励起し、レーザ媒いた。この
ため、レーザ媒質内へのエネルギ注入は、陰極[11と
陽極(、ヤ)の間に印加された電圧と、陰極(す1と陽
極(slO間を流れる電流によって決定され、この電圧
と電流はレーザ媒質の種類と密度に大きく依存する。し
たがって、陰極(ql、陽極ir1間の電圧と電流をレ
ーザ媒質(/1の種類と密度に対して独立に変化させる
ことは不可能であり、レーザ媒質(ハの電離・励起と反
転分布の状態をレーザの出力や効率の立場から最適にす
ることは困難であり、またレーザ媒質Cハを高電離状態
にし高電離イオンのエネルギ準位間の短波長レーザ光を
得ることは困難であるなど、多くの問題点があった。
In the conventional laser device as described above, as mentioned above,
A cathode (Ill) and an anode (s) are installed inside the discharge tube (2).
A direct current or pulsed high voltage is applied between l, and the laser medium (c) is ionized and excited by discharge, forming a laser medium.For this reason, energy injection into the laser medium is carried out between the cathode [11 and the anode (, y)]. It is determined by the voltage applied between the cathode (ql) and the current flowing between the anode (slO) and the anode (slO), and this voltage and current are highly dependent on the type and density of the laser medium. It is impossible to change the voltage and current of the laser medium (/1) independently with respect to the type and density of the laser medium (/1), and the state of ionization/excitation and population inversion of the laser medium (/1) can be changed from the standpoint of laser output and efficiency. There were many problems, such as that it was difficult to optimize the laser medium C and that it was difficult to bring the laser medium C into a highly ionized state and obtain short wavelength laser light between the energy levels of highly ionized ions.

この発明は上記のような問題点を解消するためになされ
たもので、レーザ媒質内への注入エネルギ、すなわち電
圧と電流と、レーザ媒質の種類と密度とを、各独立に変
化させてレーザの出力や効率を最適にできるとともに、
レーザ媒質を高電離状態にし、高電離イオンからの短波
長レーザ光を得ることができるレーザ装置を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to generate a laser by independently changing the energy injected into the laser medium, that is, the voltage and current, and the type and density of the laser medium. In addition to optimizing output and efficiency,
The object of the present invention is to obtain a laser device that can bring a laser medium into a highly ionized state and obtain short wavelength laser light from highly ionized ions.

〔問題を解決するための手段〕[Means to solve the problem]

この発明に係るレーザ装蓋は、放電管外部に設置された
電子線発生手段によって電子線を発生させ、これをレー
ザ媒質で満された放電管内に入射し伝播させてレーザ媒
質を電離・励起するとともに、レーザ媒質の中性原子お
よびイオンの、ある特定のエネルギ準位間に反転分布を
発生し、電子線のレーザ媒質内での伝播方向と同一方向
に、そのエネルギ準位間の遷移に対応するスペクトル線
に関するレーザ発振を得るようにしたものである。
The laser cap according to the present invention generates an electron beam by an electron beam generating means installed outside the discharge tube, and causes the electron beam to enter and propagate into the discharge tube filled with a laser medium to ionize and excite the laser medium. At the same time, it generates a population inversion between certain energy levels of neutral atoms and ions in the laser medium, and corresponds to the transition between the energy levels in the same direction as the propagation direction of the electron beam in the laser medium. This system is designed to obtain laser oscillations related to spectral lines.

〔作 用〕[For production]

この発明においては、電子線発生手段によって発生され
る電子線は、放電管の外部で発生されレーザ媒質で満さ
れた放電管内圧入射されるので、レーザ媒質内への注入
エネルギは、レーザ媒質の種類と密度に依存しないで電
子線の電圧と電流により決定される。したがって、電子
線の電圧と電流、およびレーザ媒質の種類と密度を、各
独立に変化させてレーザの出力や効率を最適にできると
ともに、レーザ媒質を高電離状態にし高電離イオンから
の短波長レーザを得ることもできる。
In this invention, the electron beam generated by the electron beam generating means is generated outside the discharge tube and is pressure-injected into the discharge tube filled with a laser medium, so that the energy injected into the laser medium is It is determined by the voltage and current of the electron beam, independent of type and density. Therefore, the voltage and current of the electron beam and the type and density of the laser medium can be independently varied to optimize the laser output and efficiency. You can also get

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示し、図において、放電
管(,2)の片端にブリュースタ窓(i3)が装着され
ており、ブリュースタ窓(13)が装置された側の放電
管(:llの軸線上に出力鏡(iq)が配設されている
。また、放電管(21の他端の外部にFi電子線発生手
段(/乙)が放電管C,2)の軸線上に配置されている
。矢印(/4)は電子線発生手段(/6)によって発生
された電子線を示し、この電子線(/4)を放電管(:
11内に入射し伝播させるための入射窓兼上記出力鏡(
ハ0と対をなす出力鏡(7g)が設けられている。放電
管Cコ)の外側のブリュースタ窓(/3)付近には放電
管(:llの軸線方向に対して垂直方向に磁界を印加す
るヘルムホルツコイル(/9)が配設されている。
FIG. 1 shows an embodiment of the present invention. In the figure, a Brewster window (i3) is attached to one end of a discharge tube (2), and the discharge tube on the side where the Brewster window (13) is installed is shown in FIG. An output mirror (iq) is arranged on the axis of the discharge tube (21).Furthermore, an Fi electron beam generating means (21) is installed on the axis of the discharge tube (C, 2) outside the other end of the discharge tube (21). The arrow (/4) indicates the electron beam generated by the electron beam generating means (/6), and the electron beam (/4) is placed on the discharge tube (:
The above-mentioned output mirror (
An output mirror (7g) paired with C0 is provided. A Helmholtz coil (/9) that applies a magnetic field in a direction perpendicular to the axial direction of the discharge tube (C) is disposed near the Brewster window (/3) on the outside of the discharge tube (C).

その他、第2図におけると同一符号は同一部分を示して
いる。
In addition, the same reference numerals as in FIG. 2 indicate the same parts.

次に動作について説明する。レーザ媒質(ハが封入され
た放電管(コ)内に、この放電管(:11の外部に設置
された電子線発生手段(/6)によって発生された電子
線(/7)が入射窓(ll)を通過して入射し、レーザ
媒質(月内を伝播する。そうすると、レーザ媒質(ハは
、電子線(17)とレーザ媒質Cハとの間の直接的ある
いは間接的相互作用、すなわち電子線電子とレーザ媒質
原子との間の衝突による電離や励起、あるいは電子線と
レーザ媒質原子の電離によるレーザ媒質プラズマとの間
の集団相互作用により、電子線(l4)のエネルギを受
は取る。その結果レーザ媒質(ハの電離・励起が進展し
、レーザ媒質Cハの中性原子およびイオンの、ある特定
のエネルギ準位間に反転分布を生じる。そうすると、こ
のエネルギ準位間の遷移に対応するスペクトル線の光は
、ブリュースタ窓c/3)を通過して放電管(2)の外
側の出力鏡(ハ0と放電管(2)内への電子線入射窓兼
レーザ出力鏡(lt)とで反射されて反転分布の生じて
いるレーザ媒質(ハが封入された放電管(コ)内を複数
回往復することKよって増幅され、出力鏡(llの外側
に電子線(l4)のレーザ媒質C月内での伝播方向と同
一方向で同一の向きにレーザ光(15)が出力する。
Next, the operation will be explained. An electron beam (/7) generated by an electron beam generating means (/6) installed outside the discharge tube (11) enters a discharge tube (C) in which a laser medium (C) is sealed. ll) and propagates within the laser medium (moon). Then, the laser medium (c) is a direct or indirect interaction between the electron beam (17) and the laser medium C, that is, the electron The energy of the electron beam (14) is received by ionization or excitation due to collision between the beam electrons and laser medium atoms, or by collective interaction between the electron beam and the laser medium plasma due to ionization of laser medium atoms. As a result, the ionization and excitation of the laser medium (C) progresses, causing a population inversion between certain energy levels of neutral atoms and ions in the laser medium (C).This then corresponds to the transition between these energy levels. The light of the spectral line passes through the Brewster window c/3) to the output mirror (c0) outside the discharge tube (2) and the electron beam incidence window and laser output mirror (lt) into the discharge tube (2). ) is reflected by the laser medium (C), which causes population inversion, and is amplified by K, which is amplified by the laser medium (C), which causes population inversion, within the enclosed discharge tube (C). Laser light (15) is output in the same direction as the propagation direction within the laser medium C.

ここで、冷却ジャケラ) (1)および冷却媒質(幻は
、放電管(21の加熱緩和、ソレノイド(lコ)による
放電管(21の軸線方向磁界は、電離Φ励起し反転分布
を持つレーザ媒質Cハの放電管(2)の壁への拡散によ
る消失緩和、および電子線(/4)のレーザ媒質(月内
での伝播中における電子線電子の空間電荷効果あるいは
レーザ媒質原子との衝突に起因する散乱による放電管(
2)の壁への発散による消失緩和にそレ−t”れ機能し
ている。また、ヘルムホルツコイルCノ?)による放電
管(21の軸線方向に垂直な磁界は、レーザ媒質(4内
を伝播する電子線(l4)のブリュースタ窓(/3)へ
の衝突防止の役割を果している。
Here, the cooling jacket) (1) and the cooling medium (phantom is the discharge tube (21 heating relaxation, the discharge tube (21 axial magnetic field by the solenoid) are the laser medium that excites ionization Φ and has an inverted population. Mitigation of loss due to diffusion of C to the wall of the discharge tube (2), and laser medium of the electron beam (/4) (due to space charge effect of electron beam electrons or collision with laser medium atoms during propagation within the moon) Discharge tube due to scattering (
2) The magnetic field perpendicular to the axial direction of the discharge tube (21) by the Helmholtz coil C no. It plays the role of preventing the propagating electron beam (l4) from colliding with the Brewster window (/3).

なお、上記実施例では、電子線(/7)が中性のレーザ
媒質C月内に入射し伝播される場合について説明したが
、レーザ媒質(2)は電子線発生手段cノロ)による電
子線(/7)以外の別個の電離発生手段によってあらか
じめ電離されていてもよい。また、電子線発生手段とし
ては、冷陰極形電子線源または熱陰極形電子線源あるい
は中空陰極放電形電子線源などを用いることが考えられ
、上記実施例と同様の効果を奏する。
In the above embodiment, the case where the electron beam (/7) enters and propagates in the neutral laser medium C is explained, but the laser medium (2) is an electron beam generated by the electron beam generating means C). It may be ionized in advance by a separate ionization generating means other than (/7). Further, as the electron beam generating means, it is possible to use a cold cathode type electron beam source, a hot cathode type electron beam source, a hollow cathode type electron beam source, etc., and the same effects as in the above embodiments can be obtained.

また、上記実施例では入射窓兼出力鏡(/1)が用いら
れる場合について説明したが、入射窓と出力鏡は別々に
別けて設置してもよく、上記実施例と同様の効果を奏す
る。
Further, in the above embodiment, the case where the entrance window and output mirror (/1) is used has been described, but the entrance window and the output mirror may be installed separately, and the same effects as in the above embodiment can be obtained.

さらに、上記実施例では出力鏡(itt)と入射窓兼出
力鏡(it)でレーザ共振系を形成している場合につい
て説明したが、レーザ媒質(月内の反転分布が大きく、
ゲインが高い場合には、出力鏡(lダ)はなくてもよく
、上記実施例と同様の効果を奏する。
Furthermore, in the above embodiment, a case was explained in which a laser resonant system was formed by the output mirror (itt) and the input window and output mirror (it).
When the gain is high, the output mirror (LDA) may be omitted, and the same effect as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、レーザ媒質を封入し
た放電管の外部に1電子線の軸線上に設置された電子線
発生手段により発生された電子線を、レーザ媒質内に入
射し伝播させてレーザ媒質の原子を電離・励起し、ある
特定の中性原子およびイオンのエネルギ準位間に反転分
布を発生させ、電子線のレーザ媒質内での伝播方向と同
一方向、同−向きにレーザ媒質の中性原子およびイオン
のスペクトル線に関するレーザ発振を得るようにしたの
で、レーザ媒質内への注入エネルギはレーザ媒質の種類
と密度に依存せず、電子線の電圧と電流により決定され
る。従って、電子線の電圧と電流、およびレーザ媒質の
種類と密度とを各独立に変化させてレーザの出力や効率
を最適にできるとともに、レーザ媒質を高電離状態にし
、高電離イオンからの短波長レーザな得られる効果があ
る。
As described above, according to the present invention, an electron beam generated by an electron beam generating means installed on the axis of an electron beam outside a discharge tube in which a laser medium is enclosed is incident into the laser medium and propagated. The atoms in the laser medium are ionized and excited, and a population inversion is generated between the energy levels of certain neutral atoms and ions. Since laser oscillation is obtained with respect to the spectral lines of neutral atoms and ions in the laser medium, the energy injected into the laser medium does not depend on the type and density of the laser medium, but is determined by the voltage and current of the electron beam. . Therefore, the voltage and current of the electron beam and the type and density of the laser medium can be independently varied to optimize the laser output and efficiency. There is a laser effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の縦断面図、第2図は従来
のレーザ装置の縦断面図である。 (ハ・・レーザ媒質、(:ll・φ放電管、(is)・
・レーザ出力、(ib)・・電子線発生手段、(/l’
)・・電子線。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional laser device. (c. Laser medium, (:ll・φ discharge tube, (is)・
・Laser output, (ib)...electron beam generating means, (/l'
)··Electron beam. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)放電管の一端軸線上に配設された電子線発生手段
と、前記放電管に収納され前記電子線発生手段により発
生された電子線が伝播するレーザ媒質とを備え、前記電
子線の前記レーザ媒質内での伝播方向と同一の方向およ
び向きに前記レーザ媒質の中性原子およびイオンのスペ
クトル線に関するレーザ発振を得るレーザ装置。
(1) comprising an electron beam generating means disposed on the axis of one end of a discharge tube, and a laser medium housed in the discharge tube through which the electron beam generated by the electron beam generating means propagates; A laser device that obtains laser oscillation regarding spectral lines of neutral atoms and ions in the laser medium in the same direction and direction as the propagation direction in the laser medium.
(2)レーザ媒質を電離するために、電子線発生手段以
外に、独立した別個の電離発生手段を備えている特許請
求の範囲第1項記載のレーザ装置。
(2) The laser device according to claim 1, further comprising an independent and separate ionization generating means in addition to the electron beam generating means to ionize the laser medium.
(3)電子線発生手段に、冷陰極形電子線および熱陰極
形電子線源のいずれかを用いる特許請求の範囲第1項記
載のレーザ装置。
(3) The laser device according to claim 1, wherein the electron beam generating means includes either a cold cathode type electron beam or a hot cathode type electron beam source.
(4)電子線発生手段に、中空陰極放電形電子線源を用
いる特許請求の範囲第1項記載のレーザ装置。
(4) The laser device according to claim 1, wherein the electron beam generating means is a hollow cathode discharge type electron beam source.
JP13826486A 1986-06-16 1986-06-16 Laser apparatus Pending JPS62295476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13826486A JPS62295476A (en) 1986-06-16 1986-06-16 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13826486A JPS62295476A (en) 1986-06-16 1986-06-16 Laser apparatus

Publications (1)

Publication Number Publication Date
JPS62295476A true JPS62295476A (en) 1987-12-22

Family

ID=15217868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13826486A Pending JPS62295476A (en) 1986-06-16 1986-06-16 Laser apparatus

Country Status (1)

Country Link
JP (1) JPS62295476A (en)

Similar Documents

Publication Publication Date Title
Bennett Gaseous optical masers
US4704718A (en) Apparatus and method for generating soft X-ray lasing action in a confined plasma column through the use of a picosecond laser
Raeder et al. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL
Poprawe et al. Tailored light
Wang et al. Experiment and modeling of the pulsed lasing in a diode-pumped argon metastable laser
US4177435A (en) Optically pumped laser
Tomlinson Scattering and beam trapping in laser-produced plasmas in gases
Kitaeva et al. Continuously operating argon ion lasers
US3614653A (en) Optical maser
Filipovicz et al. Rydberg atoms
JPS62295476A (en) Laser apparatus
Döbele et al. Diagnostics of atoms by laser spectroscopic methods in plasmas and plasma-wall interaction studies (vacuum ultraviolet and two-photon techniques)
Small Laser sources and microchannel plate detectors for pulse fluorometry
US4140978A (en) Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium
Dane et al. Scaling characteristics of the XeF (C to A) excimer laser
US6061379A (en) Pulsed x-ray laser amplifier
JPS62295475A (en) Laser apparatus
JPS62295474A (en) Laser apparatus
Rawlins et al. Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays
US3334314A (en) Optical gas maser using the
Verheijen et al. An atomic-beam set-up for 0.5 MHz absolute frequency stabilisation of a single-mode CW dye laser
Chrysalidis Improving the Spectral Coverage and Resolution of the ISOLDE RILIS
JPS62295477A (en) Laser apparatus
Lu Excitation of helium to Rydberg states using STIRAP
Espinoza HELIUM NEON LASERS