JPS62295474A - Laser apparatus - Google Patents

Laser apparatus

Info

Publication number
JPS62295474A
JPS62295474A JP13826286A JP13826286A JPS62295474A JP S62295474 A JPS62295474 A JP S62295474A JP 13826286 A JP13826286 A JP 13826286A JP 13826286 A JP13826286 A JP 13826286A JP S62295474 A JPS62295474 A JP S62295474A
Authority
JP
Japan
Prior art keywords
electron beam
laser
medium
discharge tube
laser medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13826286A
Other languages
Japanese (ja)
Inventor
Koichi Ono
高一 斧
Tatsuo Omori
達夫 大森
Shigeto Fujita
重人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13826286A priority Critical patent/JPS62295474A/en
Publication of JPS62295474A publication Critical patent/JPS62295474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09707Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using an electron or ion beam

Abstract

PURPOSE:To optimize the output and the efficiency of a laser by obtaining a laser oscillation relative to neutral atoms in a laser medium and ion spectral beam in a direction perpendicular to the propagating direction in the medium of an electron beam. CONSTITUTION:An electron beam 17 generated by electron beam generating means 16 mounted out of a discharge tube 2 is passed through an incident window 18 to be incident perpendicularly to the axis of the tube 2 in the tube 2 in which laser medium l is sealed, and the beam 17 is propagated in the medium 1. Thus, the medium 1 is ionized and excited progressively, and special energy levels of the atoms and the ions of the medium 1 are inverted to be distributed. Then, the light of a spectral beam corresponding to the transfer between the energy levels is reflected on an output mirror 14 at the outside of the tube 2 through a Brewstar window 13 to output a laser light 15 in a direction perpendicular to the propagating direction in the medium 1 of the beam 17 toward the outside of the mirror 14.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は、レーザ装置に関し、さらに詳しくいうと、
レーザによる工業計測、レーザによる科学計測、レーザ
レーダ、レーザ分光、光通信、ホログラフィ、スペック
ルとその応用、光情報処理、レーザ加工、レーザ医学、
光化学、制御熱核融合、同位体分離などの分野に供用さ
れるもので、特に、気体の中性原子およびイオンのレー
ザ装置に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to a laser device, and more specifically,
Industrial measurement using lasers, scientific measurement using lasers, laser radar, laser spectroscopy, optical communication, holography, speckle and its applications, optical information processing, laser processing, laser medicine,
It is used in fields such as photochemistry, controlled thermonuclear fusion, and isotope separation, and particularly relates to gaseous neutral atom and ion laser devices.

〔従来の技術〕[Conventional technology]

従来、この種の装置としては、例えばレーザ学会編:レ
ーザーハンドブックcオーム社、昭和57年)797〜
/99頁に掲載された第2図に示すものがある。
Conventionally, this type of device has been used, for example, in the Laser Handbook (edited by the Laser Society of Japan: C Ohmsha, 1981) 797-
There is one shown in Figure 2 published on page 99.

まず、第二図に示す従来のレーザ装置について説明する
。第2図におい【、レーザ媒質(ハが封入された放電管
(コ)に、レーザ媒質Cハの帰還路(3)が付設されて
おり、放電管Cコ1に設置された陰極(al 、陽極(
ylからそれぞれ陰極端子(61、陽極端子(り)が導
出されている。また、放電管(コ)に設置された冷却ジ
ャケット([1には冷却媒質(9)が満たされている。
First, a conventional laser device shown in FIG. 2 will be explained. In Fig. 2, a discharge tube (C) in which a laser medium (C) is sealed is provided with a return path (3) for the laser medium C, and a cathode (al, anode(
A cathode terminal (61) and an anode terminal (ri) are led out from the yl respectively. Also, the cooling jacket ([1] installed in the discharge tube (k) is filled with a cooling medium (9).

冷却ジャケラ) (ff)には冷却媒質流入口(10)
および冷却媒質排出口(//)が設けられている。放電
管(コ)の外側に設置されたソレノイド(/コ)は、放
電管(コ)の軸線方向に磁界を印加する。放電管(コ)
の両端にはブリュースタ窓(/3)がそれぞれ装着され
ており、放電管Cコ)の両端外側の放電管(21の軸線
上に出力鏡(yl)がそれぞれ配置されている。矢印(
/S)は出力鏡Cハ0からのレーザ出力光を示している
cooling jacket) (ff) has a cooling medium inlet (10)
and a cooling medium outlet (//). A solenoid (/) installed outside the discharge tube (C) applies a magnetic field in the axial direction of the discharge tube (C). Discharge tube (ko)
A Brewster window (/3) is installed at each end of the discharge tube (C), and an output mirror (yl) is placed on the axis of the discharge tube (21) on the outside of both ends of the discharge tube (C).
/S) indicates the laser output light from the output mirror C0.

次に従来のレーザ装置の動作について説明する。Next, the operation of the conventional laser device will be explained.

レーザ媒質(ハが封入された放電管Cコ)の陰極(ul
と陽極(51の間に、それぞれ陰極端子(61と陽極端
子(71を介して直流あるいはパルス高電圧を印加し、
レーザ媒質(ハを放電により電離・励起し、レーザ媒質
Cハの中性原子およびイオンの、ある特定のエネルギ準
位間に反転分布を生じさせる。すると、このエネルギ準
位間の遷移に対応するスペクトル線の光は、ブリュース
タ窓(/3)を通過し、出力鏡(/す)で反射されて反
転分布の生じているレーザ媒質Cハが封入された放電管
(コ1内を複数回往復することによって増幅され、出力
鏡Cハ0の外側にレーザ光(/S)が出力する。ここで
、帰還路(,71は放電管(2)内のレーザ媒質1ハの
圧力勾配を緩和する。
The cathode (ul) of the laser medium (discharge tube C in which C is sealed)
A direct current or pulsed high voltage is applied between the anode terminal (51) and the anode terminal (51) through the cathode terminal (61) and the anode terminal (71),
The laser medium (C) is ionized and excited by electric discharge to create a population inversion between certain energy levels of neutral atoms and ions in the laser medium (C). The light of the spectral line passes through the Brewster window (/3), is reflected by the output mirror (/S), and passes through the discharge tube (C1) multiple times in which the laser medium C, which has a population inversion, is enclosed. The laser beam (/S) is amplified by reciprocating and output to the outside of the output mirror (C).Here, the return path (, 71) alleviates the pressure gradient of the laser medium (1) in the discharge tube (2). do.

冷却ジャケラ)(f)、冷却媒質mtj:、放電管(コ
)の加熱を緩和する。ソレノイドCl2)による放電管
(21の軸方向磁界は、電離・励起し反転分布を持つレ
ーザ媒質Cハの放電管(コ)の壁への拡散による消失緩
和の役割を果している。
cooling jacket) (f), cooling medium mtj:, to moderate the heating of the discharge tube (k); The axial magnetic field of the discharge tube (21) generated by the solenoid (Cl2) plays the role of ionizing, exciting, and dissipation mitigation by diffusion of the laser medium C, which has an inverted population, to the wall of the discharge tube (C).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のレーザ装置では、上述したように、放電管Cコ)
内部に設置された陰極(11と陽極(5)の間に直流あ
るいはパルス高電圧を印加し、レーザ媒質(ハを放電に
より電離・励起し、レーザ媒質(ハの中性原子およびイ
オンの、ある特定のエネルギ準位間に反転分布を実現し
、レーザ出力を得ていた。このため、レーザ媒質(ハ内
へのエネルギ注入は、陰極(り)と陽極(S′10間に
印加された電圧と、陰極(4Ilと陽極Cj)の間を流
れる電流によって決定され、この電圧と電流はレーザ媒
質Cハの種類と密度に大きく依存する。したがって、陰
極(り)と陽極(s)の間の電圧と電流を、レーザ媒質
(ハの種類と密度に対して独立に変化させることは不可
能で、レーザ媒質(ハの電離・励起と反転分布の状態を
レーザの出力や効率の立場から最適にすることは困難で
あり、また、レーザ媒質を高電離状態にし高電離イオン
のエネルギ準位間の短波長レーザ光を得ることは困難で
あるという問題点があった。
In the conventional laser device, as mentioned above, the discharge tube C)
A direct current or pulsed high voltage is applied between the cathode (11) and the anode (5) installed inside, and the laser medium (Ha) is ionized and excited by discharge, and some of the neutral atoms and ions of the laser medium (Ha) are Laser output was obtained by realizing population inversion between specific energy levels.For this reason, energy injection into the laser medium (C) was performed using a voltage applied between the cathode (RI) and the anode (S'10). is determined by the current flowing between the cathode (4Il and the anode Cj), and this voltage and current greatly depend on the type and density of the laser medium C.Therefore, the voltage between the cathode (Il) and the anode (s) It is impossible to change the voltage and current independently of the type and density of the laser medium (Ha), so it is necessary to optimize the state of ionization, excitation, and population inversion of the laser medium (Ha) from the standpoint of laser output and efficiency. Furthermore, it is difficult to bring the laser medium into a highly ionized state and obtain short wavelength laser light between the energy levels of highly ionized ions.

この発明は上記のような問題点を解消するためになされ
たもので、レーザ媒質内への注入エネルギ、すなわち電
圧と電流とレーザ媒質の種類と密度とを各独立に変化さ
せて、レーザの出力や効率を最適にできるとともに、レ
ーザ媒質を高電離状態にし、高電離イオンからの短波長
レーザ光を得ることができるレーザ装置を得ることを目
的とする。
This invention was made to solve the above problems, and the laser output is adjusted by independently changing the energy injected into the laser medium, that is, the voltage and current, and the type and density of the laser medium. It is an object of the present invention to provide a laser device that can optimize the efficiency of the invention, bring the laser medium into a highly ionized state, and obtain short wavelength laser light from highly ionized ions.

(4′) 〔問題を解決するための手段〕 この発明に係るレーザ装置は、放電管外側部に設置され
た電子線発生手段によって電子線を発生させ、これをレ
ーザ媒質で満たされた放電管内に入射し伝播させてレー
ザ媒質を電離・励起するとともにル−ザ媒質の中性原子
およびイオンの、ある特定のエネルギ準位間に反転分布
を発生し、電子線のレーザ媒質内での伝播方向と直角方
向にそのエネルギ単位間の遷移に対応するスペクトル線
に関するレーザ発振を得るようにしたものである。
(4') [Means for solving the problem] The laser device according to the present invention generates an electron beam by an electron beam generating means installed outside the discharge tube, and transmits the electron beam into the discharge tube filled with a laser medium. It ionizes and excites the laser medium by propagating the electron beam, and generates population inversion between specific energy levels of neutral atoms and ions in the laser medium, which changes the propagation direction of the electron beam within the laser medium. Laser oscillation is obtained in a direction perpendicular to the spectrum line corresponding to the transition between the energy units.

〔作 用〕[For production]

この発明においては、電子線発生手段によって発生され
る電子線は、放電管の外部で発生され、レーザ媒質で満
たされた放電管内に入射されるので、レーザ媒質内への
注入エネルギはレーザ媒質の種類と密度に依存すること
なく、電子線の電圧と電流により決定される。したがっ
て、電子線の電圧と電流、およびレーザ媒質の種類と密
度とを各独立に変化させてレーザの出力や効率を最適に
できるとともに、レーザ媒質を高電離状態にし、高電離
イオンからの短波長レーザを得ることもできる。
In this invention, the electron beam generated by the electron beam generating means is generated outside the discharge tube and is input into the discharge tube filled with a laser medium, so that the energy injected into the laser medium is It is determined by the voltage and current of the electron beam, regardless of the type and density. Therefore, the voltage and current of the electron beam and the type and density of the laser medium can be independently varied to optimize the laser output and efficiency. You can also get lasers.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示し、図において、放電
管Cコ1の軸線方向に垂直な磁界を印加する磁界コイル
(/コ)が、放電管(5)の外側に配置されている。放
電管(2)の外側部に電子線発生手段(/6)が設けら
れており、この電子線発生手段(/6)によって電子線
(/り)が放電管(21の軸線に対して垂直方向に発生
する。電子線(/7)はレーザ媒質(1)を封入した放
電管(21内に、入射窓(/l)を経て入射し伝播され
る。
FIG. 1 shows an embodiment of the present invention. In the figure, a magnetic field coil (/) that applies a magnetic field perpendicular to the axial direction of the discharge tube (5) is arranged outside the discharge tube (5). There is. An electron beam generating means (/6) is provided on the outside of the discharge tube (2), and the electron beam (/6) is perpendicular to the axis of the discharge tube (21). The electron beam (/7) enters the discharge tube (21) containing the laser medium (1) through the entrance window (/l) and is propagated.

その他、第1図におけると同一符号は同一部分であり、
説明を省略する。
Other than that, the same symbols as in Fig. 1 are the same parts.
The explanation will be omitted.

次に動作について説明する。レーザ媒質fハが封入され
た放電管(コ)内にこの放電管(2)の外部に設置され
た電子線発生手段(/6)によって発生された電子線(
/り)が入射窓(lr)を通過して放電管Cコ1の軸線
に垂直に入射し、レーザ媒質(ハ内を電子線(/り)が
伝播する。そうすると、レーザ媒質(ハは、電子線(/
7)とレーザ媒質(ハとの間の直接的あるいけ間接的相
互作用、すなわち電子線電子とレーザ媒質原子との間の
衝突による電離や励起、あるいは電子線(/7)とレー
ザ媒質原子の電離によるレーザ媒質プラズマとの間の集
団相互作用により、電子線(/7)のエネルギを受は取
る。その結果、レーザ媒質(ハの電離・励起が進展し、
レーザ媒質Cハの中性原子およびイオンの、ある特定の
エネルギ準位間に反転分布を生じる。すると、このエネ
ルギ準位間の遷移に対応するスペクトル線の光を、ブリ
ュースタ窓(/3)を通過して放電管(2)の外側の出
力鏡(/す)で反射されて、反転分布の生じているレー
ザ媒質Cハが封入された放電管(コ1内を複数回往復す
ることによって増幅され、出力鏡(/り)の外側に向け
て電子線(/り)のレーザ媒質Cハ内での伝播方向と直
角方向にレーザ光(/j)が出力する。ここで、冷却ジ
ャケラ) (11内の冷却媒質(?)は、放電管C,2
)の加熱を緩和する。磁界コイル(/コ)による放電管
(2)の軸方向に垂直な磁界は、電子線C/り)の、レ
ーザ媒質Cハ内での伝播中における電子線電子の空間電
荷効果あるいはレーザ媒質原子との衝突に起因する散乱
による放電管Cコ)の壁への発散による消失を緩和する
役割を果たしている。
Next, the operation will be explained. An electron beam () is generated by an electron beam generating means (/6) installed outside the discharge tube (2) in a discharge tube (C) in which a laser medium (F) is sealed.
The electron beam (/ri) passes through the entrance window (lr) and enters the axis of the discharge tube C1 perpendicularly, and the electron beam (/li) propagates inside the laser medium (c).Then, the laser medium (lr) becomes Electron beam(/
7) and the laser medium (c), i.e. ionization or excitation due to collision between the electron beam electrons and the laser medium atoms, or the interaction between the electron beam (/7) and the laser medium atoms. The energy of the electron beam (/7) is received and absorbed by the collective interaction between the laser medium and the plasma due to ionization.As a result, the ionization and excitation of the laser medium (Ha progresses,
Population inversion occurs between certain energy levels of neutral atoms and ions in the laser medium C. Then, the light of the spectral line corresponding to the transition between energy levels passes through the Brewster window (/3) and is reflected by the output mirror (/3) outside the discharge tube (2), resulting in population inversion. The laser medium C in which the electron beam (C) is generated is amplified by reciprocating within the sealed discharge tube (C1) multiple times, and the laser medium C in the electron beam (/C) is directed toward the outside of the output mirror (/C). A laser beam (/j) is output in a direction perpendicular to the propagation direction in the discharge tubes C and 2.
) to reduce heating. The magnetic field perpendicular to the axial direction of the discharge tube (2) due to the magnetic field coil (/) is due to the space charge effect of the electron beam electrons or the laser medium atoms during the propagation of the electron beam (C) within the laser medium C. This plays a role in mitigating the loss caused by scattering due to collision with the discharge tube (C) and its divergence toward the wall of the discharge tube (C).

電子線発生手段としては、冷陰極形または熱陰極形の電
子線源、あるいは中空陰極放電形電子線源などが考えら
れる。
As the electron beam generating means, a cold cathode type or hot cathode type electron beam source, a hollow cathode discharge type electron beam source, etc. can be considered.

なお、上記実施例では、電子線(/り)が中性のレーザ
媒質(ハ内和入射し伝播される場合について説明したが
、レーザ媒質Cハは電子線発生手段(/6)による電子
線(/7)以外の別個の電離発生手段によってあらかじ
め電離されていてもよく、上記実施例と同様の効果を奏
する。
In the above embodiment, the case where the electron beam (/) is incident on the neutral laser medium (C) and propagated is explained, but the laser medium C is the electron beam generated by the electron beam generating means (/6). The ionization may be performed in advance by a separate ionization generating means other than (/7), and the same effects as in the above embodiment can be obtained.

また、上記実施例では出力鏡(ハ0を用いレーザ共振系
を形成している場合について説明したが、レーザ媒質(
ハ内の反転分布が大きく、ゲインが高い場合には、出力
鏡(ハ0はな(てもよく、上記実施例と同様の効果を奏
する。
In addition, in the above embodiment, a case was explained in which a laser resonant system was formed using an output mirror (HA0), but the laser medium (
When the population inversion in C is large and the gain is high, the output mirror (C0 may also be used), and the same effect as in the above embodiment is obtained.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明は、レーザ媒
質を封入した放電管の外部に設置された電子線発生手段
により放電管の軸aVC対して垂直方向に発生された電
子線をレーザ媒質内に入射し伝播させてレーザ媒質の原
子を電離・励起し、ある特定の中性原子およびイオンの
エネルギ準位間に反転分布を発生させ、電子線のレーザ
媒質内での伝播方向と直角方向にレーザ媒質の中性原子
およびイオンのスペクトル線に関するレーザ発振を得る
ようにしたので、レーザ媒質内への注入エネルギはレー
ザ媒質の種類と密度に依存せず、電子線の電圧と電流に
より決定される。したがって、電子線の電圧と電流およ
びレーザ媒質の種類と密度を、各独立に変化させてレー
ザの出力や効率を最適にできるとともに、レーザ媒質を
高電離状態にし、高電離イオンからの短波長レーザを得
られる効果がある。
As is clear from the above description, the present invention allows an electron beam generated in a direction perpendicular to the axis aVC of the discharge tube by an electron beam generating means installed outside a discharge tube in which a laser medium is enclosed to be inside the laser medium. The electron beam propagates and ionizes and excites the atoms in the laser medium, creating a population inversion between the energy levels of certain neutral atoms and ions, which causes the electron beam to propagate in the direction perpendicular to the direction of propagation within the laser medium. Since laser oscillation is obtained with respect to the spectral lines of neutral atoms and ions in the laser medium, the energy injected into the laser medium does not depend on the type and density of the laser medium, but is determined by the voltage and current of the electron beam. . Therefore, the voltage and current of the electron beam and the type and density of the laser medium can be independently varied to optimize the laser output and efficiency. It has the effect of obtaining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の縦断面図、第2図は従来
のレーザ装置の縦断面図である。 (ハ・・レーザ媒質、(,21・・放電管、(/コ)・
・磁界コイル、(15)II・レーザ出力、(/6)・
・電子線発生手段、(/9)・・電子線。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional laser device. (c...laser medium, (,21...discharge tube, (/ko)...
・Magnetic field coil, (15) II・Laser output, (/6)・
・Electron beam generating means, (/9)...electron beam. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)放電管の外側部に配置され前記放電管の軸線に垂
直方向に電子線を発生する電子線発生手段と、前記放電
管に収納され前記電子線発生手段により発生された電子
線が伝播するレーザ媒質とを備え、前記電子線の前記レ
ーザ媒質内での伝播方向と直角方向に、前記レーザ媒質
の中性原子およびイオンのスペクトル線に関するレーザ
発振を得るレーザ装置。
(1) An electron beam generating means disposed outside the discharge tube and generating an electron beam in a direction perpendicular to the axis of the discharge tube, and an electron beam generated by the electron beam generating means housed in the discharge tube propagating. a laser medium, the laser device obtains laser oscillation related to spectral lines of neutral atoms and ions of the laser medium in a direction perpendicular to the propagation direction of the electron beam in the laser medium.
(2)レーザ媒質を電離するために、電子線発生手段以
外に、独立した別個の電離発生手段を備えている特許請
求の範囲第1項記載のレーザ装置。
(2) The laser device according to claim 1, further comprising an independent and separate ionization generating means in addition to the electron beam generating means to ionize the laser medium.
(3)前記電子線発生手段が、冷陰極形電子線源および
熱陰極形電子線源のいずれかである特許請求の範囲第1
項記載のレーザ装置。
(3) Claim 1, wherein the electron beam generating means is either a cold cathode type electron beam source or a hot cathode type electron beam source.
Laser device described in section.
(4)電子線発生手段が、中空陰極放電形電子線源であ
る特許請求の範囲第1項記載のレーザ装置。
(4) The laser device according to claim 1, wherein the electron beam generating means is a hollow cathode discharge type electron beam source.
(5)放電管の外側に配置され前記放電管の軸線方向に
垂直な磁界を発生する磁界コイルを備えた特許請求の範
囲第1項記載のレーザ装置。
(5) The laser device according to claim 1, further comprising a magnetic field coil disposed outside the discharge tube and generating a magnetic field perpendicular to the axial direction of the discharge tube.
JP13826286A 1986-06-16 1986-06-16 Laser apparatus Pending JPS62295474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13826286A JPS62295474A (en) 1986-06-16 1986-06-16 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13826286A JPS62295474A (en) 1986-06-16 1986-06-16 Laser apparatus

Publications (1)

Publication Number Publication Date
JPS62295474A true JPS62295474A (en) 1987-12-22

Family

ID=15217823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13826286A Pending JPS62295474A (en) 1986-06-16 1986-06-16 Laser apparatus

Country Status (1)

Country Link
JP (1) JPS62295474A (en)

Similar Documents

Publication Publication Date Title
Mangano et al. Electron‐beam‐controlled discharge pumping of the KrF laser
Spence et al. Gas-filled capillary discharge waveguides
US4780608A (en) Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species
JPS62181484A (en) Method and apparatus for inducing soft x-ray laser operation
US10770860B2 (en) Lookthrough compression arrangement
US4007430A (en) Continuous plasma laser
Andreev et al. Laser wakefield structure in a plasma column created in capillary tubes
EP3229330B1 (en) Plasma confinement of a laser gain media for gain-amplified lasers
US3413568A (en) Reversed axial magnetic fields in lasers
Miyake et al. Laser system for the resonant ionization of hydrogen-like atoms produced by nuclear reactions
US4677637A (en) TE laser amplifier
Kitaeva et al. Continuously operating argon ion lasers
Kartashov et al. Femtosecond filament initiated, microwave heated cavity-free nitrogen laser in air
US4177435A (en) Optically pumped laser
US3614653A (en) Optical maser
US3798568A (en) Atmospheric pressure induction plasma laser source
US6061379A (en) Pulsed x-ray laser amplifier
JPS62295474A (en) Laser apparatus
Kroon et al. TOF analysis of an optically pumped metastable neon beam
JPS62295476A (en) Laser apparatus
JPS62295475A (en) Laser apparatus
EP0319898B1 (en) Metal vapor laser apparatus
US3537030A (en) Gas laser device with means for indicating optimum discharge conditions
US3898587A (en) Multiple-source plasma-overlap laser
Gerber et al. Intense electron-beam initiation of a high-energy hydrogen fluoride (HF) laser