JPS62294769A - Ignition timing control deice for internal combustion engine - Google Patents

Ignition timing control deice for internal combustion engine

Info

Publication number
JPS62294769A
JPS62294769A JP13626686A JP13626686A JPS62294769A JP S62294769 A JPS62294769 A JP S62294769A JP 13626686 A JP13626686 A JP 13626686A JP 13626686 A JP13626686 A JP 13626686A JP S62294769 A JPS62294769 A JP S62294769A
Authority
JP
Japan
Prior art keywords
ignition timing
ignition
throttle valve
valve opening
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13626686A
Other languages
Japanese (ja)
Other versions
JPH0742919B2 (en
Inventor
Toshikazu Okamura
俊和 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13626686A priority Critical patent/JPH0742919B2/en
Publication of JPS62294769A publication Critical patent/JPS62294769A/en
Publication of JPH0742919B2 publication Critical patent/JPH0742919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide optimum control of ignition timing even in the event of decrease in the amount of exhaust feedback at a highland or in high temperatures by furnishing a No. ignition timing memory means in which ignition timings are stored in response to the number of engine revolutions and the degree of throttle valve opening. CONSTITUTION:A control unit 3, into which the engine number-of-revolutions signal, suction air rate-of-flow signal and throttle valve degree-of-opening signal are fed from a crank angle sensor 7, air flow meter 9 and throttle valve opening sensor 11, respectively, is equipped with a No.2 ignition timing memory means to store previously the ignition timings in response to the number of engine revolutions and the fundamental amount of fuel injection, and No.2 ignition timing memory means to store previously the ignition timing in response to the number of engine revolutions and the degree of throttle valve opening. Setting of ignition timing is made through selection of either of two ignition timings which is with smallest advance angle scanned from each ignition timing memory means and the input signal from each sensor. Thereby the optimum ignition timing is obtained which even suits for highland or in high temperatures, wherein knocking is prevented and NOX exhaustion is reduced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野) 本発明は電子制御燃料噴射式内燃機関における点火時期
制御装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an ignition timing control device for an electronically controlled fuel injection type internal combustion engine.

(従来の技術〉 従来、電子制御燃料噴射式内燃機関においては、吸入空
気vL量Qと機関回転数Nとから単位回転当りの吸入空
気量に対応する基本燃料噴射量’rp=に−Q/N(K
は定数)を演算し、この基本燃料噴射量に基づいて機関
吸気系に燃料を噴射供給する一方、機関回転数Nと基本
燃料噴射量’rp  (あるいは吸気管圧力)とに基づ
いて、点火時期を制御している(実開昭60−1202
40号公報。
(Prior art) Conventionally, in an electronically controlled fuel injection type internal combustion engine, the basic fuel injection amount 'rp=-Q/corresponding to the intake air amount per unit rotation is calculated from the intake air vL amount Q and the engine rotational speed N. N(K
is a constant), and based on this basic fuel injection amount, fuel is injected and supplied to the engine intake system, while the ignition timing is calculated based on the engine speed N and the basic fuel injection amount 'rp (or intake pipe pressure). is controlled (Jitsukai Sho 60-1202
Publication No. 40.

特公昭50−12055号公報等参照)。(See Japanese Patent Publication No. 50-12055, etc.).

〈発明が解決しようとする問題点〉 、  しかしながら、このような従来の電子側i!it
燃料噴射式内燃機関の点火時期側′4′B装置にあって
は、点火時期を常に機関回転数と基本燃料噴射量とに対
応して決定していたため、第9図にある機関回転数での
吸入空気流量に対する各特性を低地の場合(実線水)と
高地の場合(破線示)とについて示すように、高地ある
いは高温で大気の密度が低下すると、絞り弁開度に対す
る吸入空気流量が低下する結果、低吸入空気流量で吸気
管圧力(ブースト)が上昇し、これに左右される排気還
流量が減少ないし零となるにも拘わらず、点火時期の制
御については基本燃料噴射量に基づいて排気還流量が多
い場合と同一の点火時期で運転されることによって、高
地あるいは高温での第9図のA領域において最適点火時
期より進角し過ぎる状態となり、ノッキングが発生し、
また排気中のNOxも増加するという問題点があった。
<Problems to be solved by the invention> However, such conventional electronic side i! it
In the ignition timing side '4'B device of a fuel-injected internal combustion engine, the ignition timing is always determined in accordance with the engine speed and the basic fuel injection amount, so the engine speed shown in Fig. 9 is As shown in the graphs of the characteristics of the intake air flow rate at low altitudes (solid water line) and at high altitudes (dashed line), when the density of the atmosphere decreases at high altitudes or at high temperatures, the intake air flow rate with respect to the throttle valve opening decreases. As a result, the intake pipe pressure (boost) increases with a low intake air flow rate, and even though the exhaust recirculation amount, which is affected by this, decreases or becomes zero, ignition timing control is still based on the basic fuel injection amount. By operating with the same ignition timing as when the amount of exhaust gas recirculation is large, the optimum ignition timing will be advanced too much in region A of Figure 9 at high altitudes or high temperatures, causing knocking.
Furthermore, there is a problem in that NOx in the exhaust gas also increases.

本発明は、このような従来の問題点に鑑み、高地あるい
は高温での大気密度の低下による排気還流量の減少に対
しても点火時期を適正に制御できるようにすることを目
的とする。
SUMMARY OF THE INVENTION In view of these conventional problems, an object of the present invention is to enable appropriate control of ignition timing even when the amount of exhaust gas recirculation decreases due to a decrease in atmospheric density at high altitudes or at high temperatures.

く問題点を解決するための手段〉 このため、本発明は、第1図に示すように、機関回転数
、吸入空気流量及び絞り弁開度をそれぞれ検出する検出
手段と、吸入空気流量と機関回転数とに基づいて単位回
転当りの吸入空気量に対応する基本燃料噴射量を演算す
る基本燃料噴射量演算手段と、予め機関回転数と基本燃
料噴射量とに対応して点火時期を記憶した第1の点火時
期記憶手段と、検出された機関回転数と基本燃料噴射量
とに基づいて第1の点火時期記憶手段より点火時期を検
索する第1の点火時期検索手段と、予め機関回転数と絞
り弁開度とに対応して点火時期を記憶した第2の点火時
期記憶手段と、検出された機関口□転数と絞り弁開度と
に基づいて第2の点火時期記憶手段より点火時期を検索
する第2の点火時期検索手段と、2つの検索手段により
検索された2つの点火時期のうち進角度小のものを選択
して点火時期を設定する点火時期選択手段と、この選択
された点火時期にて点火装置を作動させる点火制御手段
とを設けて、内燃機関の点火時期制御装置を構成したも
のである。
Means for Solving the Problems> Therefore, as shown in FIG. basic fuel injection amount calculating means for calculating a basic fuel injection amount corresponding to the intake air amount per unit rotation based on the engine speed and the engine speed; and ignition timing stored in advance in correspondence with the engine speed and the basic fuel injection amount. a first ignition timing storage means; a first ignition timing search means for searching the ignition timing from the first ignition timing storage means based on the detected engine speed and the basic fuel injection amount; The second ignition timing storage means stores the ignition timing in correspondence with the engine opening speed and the throttle valve opening, and the second ignition timing storage means stores the ignition timing in correspondence with the detected engine mouth rotation speed and the throttle valve opening. a second ignition timing search means for searching for the timing; an ignition timing selection means for selecting the one with the smallest advance angle among the two ignition timings searched by the two search means and setting the ignition timing; The ignition timing control device for an internal combustion engine is configured by providing an ignition control means for operating an ignition device at a specified ignition timing.

く作用〉 上記の構成においては、機関回転数と基本燃料噴射量と
に対応して点火時期を記憶した第1の点火時期記憶手段
の他、機関回転数と絞り弁開度とに対応して点火時期を
記憶した第2の点火時期記憶手段を備え、高地あるいは
高温では機関回転数と絞り弁開度とに対応した最適な点
火時期が得られ、ノンキングを防止し、かつNOxの排
出量を低減できる。
In the above configuration, in addition to the first ignition timing storage means that stores the ignition timing in correspondence with the engine speed and the basic fuel injection amount, the first ignition timing storage means stores the ignition timing in correspondence with the engine speed and the throttle valve opening. Equipped with a second ignition timing memory means that stores the ignition timing, it is possible to obtain the optimal ignition timing corresponding to the engine speed and throttle valve opening at high altitudes or high temperatures, preventing non-king and reducing NOx emissions. Can be reduced.

〈実施例〉 以下に本発明の一実施例を説明する。<Example> An embodiment of the present invention will be described below.

第2図を参照し、機関1には各気筒毎に点火栓2が設け
られており、これらの点火栓2は、マイクロコンピュー
タ内蔵のコントロールユニット3からの点火制御信号紙
より、パワートランジスタ4、点火コイル5及びディス
トリビュータ6を介して高電圧を印加され、これにより
火花点火して混合気を着火燃焼させる。尚、点火栓2.
パワートランジスタ49点火コイル5及びディストリビ
ュータ6により、点火装置が構成される。
Referring to FIG. 2, the engine 1 is provided with spark plugs 2 for each cylinder, and these spark plugs 2 are controlled by power transistors 4, A high voltage is applied through the ignition coil 5 and the distributor 6, which ignites a spark to ignite and burn the air-fuel mixture. In addition, the spark plug 2.
The power transistor 49, ignition coil 5, and distributor 6 constitute an ignition device.

この点火時期の制御のため、ディストリビュータ6に内
蔵された光電式クランク角センサ7からの基準角度及び
単位角度信号、吸気通路8に設けた熱線式エアフローメ
ータ9からの吸入空気流量信号、絞り弁10の開度を検
出するポテンショメータ式絞り弁開度センサ11からの
絞り弁開度信号がコントロールユニット3に入力される
。尚、クランク角セジサ7はクランク角検出手段として
のみならず例えばその基準角度信号の周期より機関回転
数を算出できることから機関回転数検出手段として用い
られる。エアフU−メータ9及び絞り弁開度センサ11
がそれぞれ吸入空気流量検出手段及び絞り弁開度検出手
段として用いられることは勿論である。
In order to control this ignition timing, reference angle and unit angle signals are sent from a photoelectric crank angle sensor 7 built into the distributor 6, an intake air flow rate signal is sent from a hot wire air flow meter 9 provided in the intake passage 8, and a throttle valve 10 is used to control the ignition timing. A throttle valve opening signal is input to the control unit 3 from a potentiometer-type throttle valve opening sensor 11 that detects the opening of the throttle valve. Incidentally, the crank angle changer 7 is used not only as a crank angle detecting means but also as an engine speed detecting means since the engine speed can be calculated from the period of the reference angle signal. Airf U-meter 9 and throttle valve opening sensor 11
Of course, these are used as the intake air flow rate detection means and the throttle valve opening detection means, respectively.

コントロールユニット3内のマイクロコンピュータにお
いては第3図のブローチヤードに従って演算処理し、点
火時期を制御する。但し、このコントロールユニット3
は、点火時期の制御のみならず、燃料噴射弁12による
燃料噴射量の制御、電磁弁13を介しての排気還流制御
弁14による排気還流量の制御をも行うものである。
The microcomputer in the control unit 3 performs arithmetic processing according to the broach yard shown in FIG. 3 to control the ignition timing. However, this control unit 3
This not only controls the ignition timing, but also controls the fuel injection amount by the fuel injection valve 12 and the exhaust gas recirculation amount by the exhaust gas recirculation control valve 14 via the electromagnetic valve 13.

第3図のフローチャートに従って点火時期の制御につい
て説明すると、ステップ1 (図にはSlと記しである
。以下同様)ではクランク角センサ7からの基準角度信
号の周期に基づいて機関回転数Nを算出する。ステップ
2ではエアフローメータ9からの信号をA/D変換して
吸入空気流量Qを読込む。ステップ3では絞り弁開度セ
ンサ11からの信号をA/D変換して絞り弁開度Thを
読込む。
To explain the control of the ignition timing according to the flowchart in FIG. 3, in step 1 (marked as Sl in the figure, the same applies hereinafter), the engine speed N is calculated based on the period of the reference angle signal from the crank angle sensor 7. do. In step 2, the signal from the air flow meter 9 is A/D converted to read the intake air flow rate Q. In step 3, the signal from the throttle valve opening sensor 11 is A/D converted to read the throttle valve opening Th.

° 次にステップ4では吸入空気流量Qと機関回転数N
とから単位回転当りの吸入空気量に対応する基本燃料噴
射量Tp =に−Q/N (Kは定数)を演算する。こ
の部分が基本燃料噴射量演算手段に相当する。但し、こ
の基本燃料噴射量Tpは燃料噴射弁12の燃料噴射量の
制御のために算出されるもので、これを点火時期の制御
に利用するのである。
° Next, in step 4, the intake air flow rate Q and engine speed N
-Q/N (K is a constant) is calculated from the basic fuel injection amount Tp=corresponding to the intake air amount per unit rotation. This part corresponds to the basic fuel injection amount calculation means. However, this basic fuel injection amount Tp is calculated for controlling the fuel injection amount of the fuel injection valve 12, and is used for controlling the ignition timing.

一方、コントロールユニット3内のマイクロコンピュー
タのROMには、第1の点火時期記憶手段として、第4
図に示すように機関回転数Nと基本燃料噴射量’rpと
に対応して点火時期(点火進角)ADVTPを記憶した
第1のマツプが設けられていると共に、第2の点火時期
記憶手段として、第5図に示すように機関回転数Nと絞
り弁開度Thとに対応して点火時期(点火進角)ADV
t+4を記憶した第2のマツプが設けられている。
On the other hand, in the ROM of the microcomputer in the control unit 3, a fourth ignition timing memory is stored as a first ignition timing storage means.
As shown in the figure, a first map storing ignition timing (ignition advance angle) ADVTP corresponding to engine speed N and basic fuel injection amount 'rp is provided, and a second ignition timing storage means is provided. As shown in Fig. 5, the ignition timing (ignition advance angle) ADV corresponds to the engine speed N and the throttle valve opening Th.
A second map is provided which stores t+4.

ステップ5では第1のマツプを参照し、機関回転数Nと
基本燃料噴射tTpとから点火時期ADvtpを検索す
る。この部分が第1の点火時期検索手段に相当する。
In step 5, the first map is referred to and the ignition timing ADvtp is searched from the engine speed N and the basic fuel injection tTp. This portion corresponds to the first ignition timing search means.

ステップ6では第2のマツプを参照し、機関回転数Nと
絞り弁開度Thとから点火時期A D V t。
In step 6, the second map is referred to and the ignition timing ADVt is determined from the engine speed N and the throttle valve opening Th.

を検索する。この部分が第2の点火時期検索手段に相当
する。
Search for. This portion corresponds to the second ignition timing search means.

次にステップ7では機関回転数Nと基本燃料噴射量Tp
とに基づいて第1のマツプより検索された点火時期A 
D ’Y TPと、機関回転数Nと絞り弁開度Thとに
基づいて第2のマツプより検索された点火時期A D 
V rHとを比較し、A D V rp≦ADVァ8の
場合は、ステップ8へ進んで進角度の小さいA D V
 tpを最終的な点火時期(点火進角)ADVトシテ設
定し、A D V tr > A D V rHの場合
は、ステップ9へ進んで進角度の小さいA D V t
oを最終的な点火時期(点火進角)ADVとして設定す
る。
Next, in step 7, the engine speed N and the basic fuel injection amount Tp
Ignition timing A searched from the first map based on
Ignition timing A D searched from the second map based on D'Y TP, engine speed N, and throttle valve opening Th
If ADVrp≦ADVa8, proceed to step 8 and select the ADV with the smaller advance angle.
Set tp as the final ignition timing (ignition advance angle), and if ADV tr > ADV rH, proceed to step 9 and set ADV t with a smaller advance angle.
Set o as the final ignition timing (ignition advance angle) ADV.

これらの部分が点火時期選択手段に相当する。These parts correspond to the ignition timing selection means.

以降はステップ10でクランク角センサ7からの単位角
度信号に基づいて現在のクランク角CAを読込み、次の
ステップ11でそのクランク角CAが設定された点火時
期ADVと一致したか否かを判定し、これらを繰返して
、点火時期ADVになったところで、ステップ12へ進
み、点火制御信号を出力してパワートランジスタ4を駆
動し、点火動作を行わせる。
Thereafter, in step 10, the current crank angle CA is read based on the unit angle signal from the crank angle sensor 7, and in the next step 11, it is determined whether or not the crank angle CA matches the set ignition timing ADV. , these steps are repeated, and when the ignition timing reaches ADV, the process proceeds to step 12, where an ignition control signal is output to drive the power transistor 4 to perform an ignition operation.

ところで、第6図はある機関回転数における吸入空気流
量及び基本燃料噴射量と点火時期との関係を示している
。この関係は高度等による空気の密度変化によらず吸入
空気流量(質量流量)に対して一定である。
By the way, FIG. 6 shows the relationship between the intake air flow rate, the basic fuel injection amount, and the ignition timing at a certain engine speed. This relationship is constant with respect to the intake air flow rate (mass flow rate) regardless of changes in air density due to altitude or the like.

また、第7図はある機関回転数における吸入空気fLt
及び絞り弁開度と点火時期との関係を示している。線m
は低地において吸入空気流量(質量流量)と点火時期と
の関係が第6図と一致するように決めている。線nは線
mに対し所定値だけ進角させている。
In addition, Fig. 7 shows the intake air fLt at a certain engine speed.
and shows the relationship between throttle valve opening and ignition timing. line m
is determined so that the relationship between the intake air flow rate (mass flow rate) and the ignition timing matches that shown in FIG. 6 at low altitudes. Line n is advanced by a predetermined value with respect to line m.

線nによる点火時期は低地においては第3図のステー/
プ7 T: A D V T1 < A D V tl
lとなるため、最適点火時期は基本燃料噴射量に応じた
点火時期ADV、、となる。
The ignition timing according to line n is determined by the stay /
7 T: ADV T1 < ADV tl
Therefore, the optimum ignition timing is the ignition timing ADV, which corresponds to the basic fuel injection amount.

高地では絞り弁全開時(4/4)の吸入空気流量が低地
のQeからQfへと減少するが、それに応じて点火時期
はa −b −c間及びd−f間は基本燃料噴射量に応
じた点火時期A D V TPのままであるが、c −
d間は絞り弁開度に応じた点火時期ADVt□となる。
At high altitudes, the intake air flow rate when the throttle valve is fully open (4/4) decreases from Qe at low altitudes to Qf, but the ignition timing changes accordingly to the basic fuel injection amount between a-b-c and d-f. The corresponding ignition timing ADV TP remains, but c −
Between d and d, the ignition timing ADVt□ corresponds to the opening degree of the throttle valve.

更に高度が上がると、絞り弁全開時(4/4)の吸入空
気流fflQgへと減少するが、それに応じて点火時期
はa −b間は基本燃料噴射量に応じた点火時期ADV
TPとなり、b−g間は絞り弁開度に応じた点火時期A
DVTHへと遅角する。
As the altitude further increases, the intake airflow decreases to fflQg when the throttle valve is fully open (4/4), but the ignition timing changes accordingly between a and b, the ignition timing ADV according to the basic fuel injection amount.
TP, and between b and g, the ignition timing is A according to the throttle valve opening.
Delays to DVTH.

以上の関係を機関回転数及び吸入空気流量が一定の代表
点にて示したものが第8図であり、高度と点火時期との
関係を示している。
FIG. 8 shows the above relationship at representative points where the engine speed and intake air flow rate are constant, and shows the relationship between altitude and ignition timing.

第8図で、高度o ”−sでは基本燃料噴射量に応じた
点火時期ADVtrに制御される。高度S −%−tで
は絞り弁開度に応じた点火時期A D V THに制御
され、高度に応じて同一吸入空気流量に対し絞り弁開度
が大きくなるのを補償するように遅角される。高度を以
上では絞り弁開度に応じた点火時期A D V THに
制御され、該回転数での4/4開度の点火時期となる。
In Fig. 8, at the altitude o''-s, the ignition timing is controlled to ADVtr according to the basic fuel injection amount. At the altitude S-%-t, the ignition timing is controlled to ADVTH according to the throttle valve opening, The ignition timing is retarded to compensate for the increase in the opening of the throttle valve for the same intake air flow rate depending on the altitude.At higher altitudes, the ignition timing is controlled to A D V TH according to the opening of the throttle valve. The ignition timing is 4/4 opening at the rotation speed.

このようにして、高度S以上では従来例に対し点火時期
を遅角させ、最適化している。
In this way, at altitudes above S, the ignition timing is retarded and optimized compared to the conventional example.

尚、機関回転数と基本燃料噴射量とに応じた点火時期の
マツプを持たず、機関回転数と絞り弁開度とに応じた点
火時期のマツプのみにて点火特性を決定する場合には、
低地にて要求点火時期を合わせるため、第7図において
線mと線nとを一致させる必要があり、そのため高地で
は遅角し過ぎることになり、出力の低下という問題が生
じるので採用し得ない。
In addition, in the case where the ignition characteristics are determined only by the ignition timing map according to the engine speed and the throttle valve opening without having a map of the ignition timing according to the engine speed and the basic fuel injection amount,
In order to match the required ignition timing at low altitudes, it is necessary to match line m and line n in Fig. 7, which would result in too much retardation at high altitudes, resulting in a problem of reduced output, so this method cannot be adopted. .

〈発明の効果) 以上説明したように本発明によれば、高地あるいは高温
時でも最適な点火時期が得られ、ノッキングを防止し、
かつNOxの排出量を低減できるという効果が得られる
<Effects of the Invention> As explained above, according to the present invention, optimal ignition timing can be obtained even at high altitudes or at high temperatures, and knocking can be prevented.
Moreover, the effect of reducing the amount of NOx emissions can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す機能ブロック図、第2図は
本発明の一実施例を示すシステム図、第3図は点火時期
制御のフローチャート、第4図及び第5図は点火時期の
マツプを示す図、第6図及 ′び第7図はある回転数に
おける特性図、第8図は高度に対する点火時期の特性図
、第9図はある回転数での吸入空気流量に対する特性図
である。 1・・・機関  2・・・点火栓  3・・・コントロ
ールユニット  4・・・パワートランジスタ  5・
・・点火コイル  6・・・ディストリビュータ  7
・・・クランク角センサ  9・・・エアフローメータ
11・・・絞り弁開度センサ
Fig. 1 is a functional block diagram showing the configuration of the present invention, Fig. 2 is a system diagram showing an embodiment of the invention, Fig. 3 is a flowchart of ignition timing control, and Figs. 4 and 5 show ignition timing control. Figures 6 and 7 are diagrams showing the maps, Figure 8 is a characteristic diagram of ignition timing versus altitude, and Figure 9 is a characteristic diagram of intake air flow rate at a certain rotation speed. be. 1... Engine 2... Spark plug 3... Control unit 4... Power transistor 5.
...Ignition coil 6...Distributor 7
... Crank angle sensor 9 ... Air flow meter 11 ... Throttle valve opening sensor

Claims (1)

【特許請求の範囲】[Claims] 機関回転数、吸入空気流量及び絞り弁開度をそれぞれ検
出する検出手段と、吸入空気流量と機関回転数とに基づ
いて単位回転当りの吸入空気量に対応する基本燃料噴射
量を演算する基本燃料噴射量演算手段と、予め機関回転
数と基本燃料噴射量とに対応して点火時期を記憶した第
1の点火時期記憶手段と、検出された機関回転数と基本
燃料噴射量とに基づいて第1の点火時期記憶手段より点
火時期を検索する第1の点火時期検索手段と、予め機関
回転数と絞り弁開度とに対応して点火時期を記憶した第
2の点火時期記憶手段と、検出された機関回転数と絞り
弁開度とに基づいて第2の点火時期記憶手段より点火時
期を検索する第2の点火時期検索手段と、2つの検索手
段により検索された2つの点火時期のうち進角度小のも
のを選択して点火時期を設定する点火時期選択手段と、
この選択された点火時期にて点火装置を作動させる点火
制御手段とを備えてなる内燃機関の点火時期制御装置。
Detection means for detecting the engine rotation speed, intake air flow rate, and throttle valve opening, and basic fuel for calculating the basic fuel injection amount corresponding to the intake air amount per unit rotation based on the intake air flow rate and the engine rotation speed. injection amount calculation means; first ignition timing storage means that stores ignition timing in advance in correspondence with the engine speed and basic fuel injection amount; a first ignition timing retrieval means for retrieving the ignition timing from the first ignition timing storage means; a second ignition timing storage means for storing the ignition timing in advance in correspondence with the engine speed and the throttle valve opening; a second ignition timing retrieval means for retrieving the ignition timing from the second ignition timing storage means based on the engine speed and throttle valve opening; ignition timing selection means for selecting an ignition timing with a small advance angle and setting the ignition timing;
An ignition timing control device for an internal combustion engine, comprising ignition control means for operating an ignition device at the selected ignition timing.
JP13626686A 1986-06-13 1986-06-13 Ignition timing control device for internal combustion engine Expired - Lifetime JPH0742919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13626686A JPH0742919B2 (en) 1986-06-13 1986-06-13 Ignition timing control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13626686A JPH0742919B2 (en) 1986-06-13 1986-06-13 Ignition timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPS62294769A true JPS62294769A (en) 1987-12-22
JPH0742919B2 JPH0742919B2 (en) 1995-05-15

Family

ID=15171168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13626686A Expired - Lifetime JPH0742919B2 (en) 1986-06-13 1986-06-13 Ignition timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0742919B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227956A (en) * 1987-03-17 1988-09-22 Japan Electronic Control Syst Co Ltd Ignition timing control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63227956A (en) * 1987-03-17 1988-09-22 Japan Electronic Control Syst Co Ltd Ignition timing control device for internal combustion engine

Also Published As

Publication number Publication date
JPH0742919B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
JP2592342B2 (en) Control device for internal combustion engine
EP0241029B1 (en) Engine controlling system
US4469072A (en) Method and apparatus for controlling the fuel-feeding rate of an internal combustion engine
US5186149A (en) System for controlling fuel supply for internal combustion engine
US4485625A (en) Control means for internal combustion engines
JPH0512543B2 (en)
US5975048A (en) Idle speed control system for direct injection spark ignition engines
JPS6223557A (en) Study control method for internal-combustion engine
JP2577211B2 (en) Basic fuel injection amount setting device for internal combustion engine
JPS62294769A (en) Ignition timing control deice for internal combustion engine
JP3538862B2 (en) Engine ignition timing control device
JP2580645B2 (en) Ignition timing control device
JPS59141730A (en) Method of controlling fuel injection quantity of internal-combustion engine
JP2536617B2 (en) Fuel supply amount control method during acceleration of internal combustion engine
JP2822716B2 (en) Exhaust gas recirculation control device for internal combustion engine
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JPH07310568A (en) Control device for engine
JP2887927B2 (en) Fuel supply system for spark ignition engine
JPH0536624B2 (en)
JP2917417B2 (en) Engine control device
JP2591072B2 (en) Control device for internal combustion engine
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JPH0151665B2 (en)
JPH0510240A (en) Ignition timing controller for internal combustion engine
JPS6062661A (en) Ignition-timing controller for engine