JPS62294416A - Collecting and recovering method for fine powder of submicron order - Google Patents

Collecting and recovering method for fine powder of submicron order

Info

Publication number
JPS62294416A
JPS62294416A JP13618686A JP13618686A JPS62294416A JP S62294416 A JPS62294416 A JP S62294416A JP 13618686 A JP13618686 A JP 13618686A JP 13618686 A JP13618686 A JP 13618686A JP S62294416 A JPS62294416 A JP S62294416A
Authority
JP
Japan
Prior art keywords
fine powder
fluidized bed
gas
collecting
type collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13618686A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
喬 鈴木
Takamasa Kawakami
川上 殷正
Goji Koyama
剛司 小山
Hiromasa Isaki
寛正 伊崎
Takuji Shidara
琢治 設楽
Riako Nakano
里愛子 中野
Kouichi Yakiyou
八京 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP13618686A priority Critical patent/JPS62294416A/en
Publication of JPS62294416A publication Critical patent/JPS62294416A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To collect and recover formed fine powder in the manufacture of fine powder efficiently by using a collecting and recovering device constituted with an agglomerated and piled layer of fine powder of submicron order. CONSTITUTION:Floating fine powder introduced and formed from a raw gas nozzle 7 of a reaction tube 1 is introduced into a fluidized bed 4 of a fluidized bed type collector 3 through a duct. The fluidized bed type collector 3 introduces nitrogen gas and the like from a fluidized gas introduction tube 6 and forms the fluidized bed 4 of agglomerated particles. Also, at a gas vent of the fluidized bed type collector 3, a spiral agglomerator type collector is installed to prevent fine powder from flying off all over. The device, therefore, is suitable for collecting and recovering non-crystalline fine powder of submicron order such as SiC, Si3N4, SiO2 or the like formed by CVD.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はサブミクロン微粉末の捕集・回収方法に係り、
さらに詳しくは、本発明はサブミクロン微粉末の有する
特性を活かした簡易でかつ効果的な気相における捕集・
回収方法に関し、たとえば、CVD法などの気相法によ
る微粉末の製造における生成微粉末を効率よく捕集・回
収する方法である。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for collecting and recovering submicron fine powder,
More specifically, the present invention utilizes the characteristics of submicron fine powder to achieve simple and effective collection and collection in the gas phase.
Regarding the collection method, for example, it is a method for efficiently collecting and recovering fine powder produced in the production of fine powder by a vapor phase method such as a CVD method.

〔従来技術およびその問題点〕[Prior art and its problems]

サブミクロン微粉末は粒子径がおよそ数μmから0.1
μm程度の範囲の微粉末であり、その挙動は数μm以」
二の所謂一般の粉末とも、また0、1μm以下の超微粉
末とも異なる。0.1μm以下の超微粉末では体積効果
、表面積効果等の粒子例々の表面エネルギーが無視でき
ず融点降下や結晶構造の異常、反応性の著しい向上等物
性そのものに変化をきたしファンデルワース力も大きく
作用し粒子同志がよくくっつき合い全体としてベタづい
た感じの粉体となる。これに対して数μm以上の粉体で
は物質に応じて異なる凝集挙動など粉体特性を示すもの
のその性質はバルクの物性を反映する。
Submicron fine powder has a particle size of approximately several μm to 0.1 μm.
It is a fine powder in the micrometer range, and its behavior is larger than several micrometers.
It is different from the second so-called general powder and also from ultrafine powder of 0.1 μm or less. For ultrafine powders of 0.1 μm or less, the surface energy of each particle such as volume effect and surface area effect cannot be ignored, resulting in changes in physical properties such as a drop in melting point, abnormal crystal structure, and significant increase in reactivity, and van der Waals forces. It acts strongly and particles stick together well, resulting in a powder that has a sticky feel as a whole. On the other hand, powders larger than several μm exhibit powder characteristics such as agglomeration behavior that vary depending on the substance, but the properties reflect the physical properties of the bulk.

その中間の数μm以下から0.1μm程度の一次粒子径
であるサブミクロン微粉末は凝集力が強く一次粒子とし
て存在しない特性を有する。また、サブミクロン微粉末
は嵩密度が小さく流動性が悪く粉体架橋を起こし易いと
いう性質もある。
Submicron fine powder, which has a primary particle diameter between several μm or less and about 0.1 μm, has a strong cohesive force and does not exist as a primary particle. Further, submicron fine powder has a property that it has a small bulk density, poor fluidity, and is susceptible to powder crosslinking.

このような特性を有するサブミクロン微粉末を工業的に
製造するうえでのプロセス」二生成微粉末の捕集・回収
が大きな問題点の一つである。
One of the major problems in the industrial production of submicron fine powder with such characteristics is the collection and recovery of the secondary product fine powder.

サブミクロン微粉末は一次粒子状態で取り出すことは殆
んど不可能であるため、ある程度凝集させて捕集・回収
しなければならず、この捕集・回収には一般的にはフィ
ルター、静電バクフィルターまたは一旦液相中に導き捕
集する湿式法等が用いられる。
Since it is almost impossible to extract submicron fine powder in its primary particle state, it must be collected and collected by agglomerating it to some extent. A back filter or a wet method in which the material is introduced into a liquid phase and collected is used.

ところで、例えばCVD法により生成したサブミクロン
微粉末を微細フィルターで捕集・回収を行った場合、目
詰まりによる差圧増大を起こし捕集・回収効率の低下が
あると共に長時間の運転が行えないばかりか、飛散によ
るロスも大きい。また、フィルターと微粉末とを分離す
る作業が必要であり、この分離作業がまた極めて面倒で
もある。
By the way, for example, when submicron fine powder produced by the CVD method is collected and recovered using a fine filter, the differential pressure increases due to clogging, reducing the collection and recovery efficiency and making it impossible to operate for a long time. Not only that, but the loss due to scattering is also large. Further, it is necessary to separate the filter and the fine powder, and this separation work is also extremely troublesome.

また、静電バクフィルターによる方法は粒子自体に電荷
を与える方法であるから差圧上昇はなく捕集効率も比較
的高いが、微粉体に応じて輸送路に強い電界をかける必
要があり工業的には面倒であると共に高価でありまた安
全面でも問題がある。
In addition, the method using an electrostatic back filter is a method that applies an electric charge to the particles themselves, so there is no increase in differential pressure and the collection efficiency is relatively high, but it is necessary to apply a strong electric field to the transport path depending on the fine powder, making it difficult for industrial This is troublesome, expensive, and has safety issues.

その他に高温領域から低温領域に一次粒子のままで微粉
末を移動させ微粉末を凝集、堆積させるいわゆる熱堆積
法が考えられるが、この場合も飛散によるロスはまぬが
れず飛散によるロスを防止する手段が必要である。湿式
法による捕集では回収率は高いが、その後の乾煙工程が
必要である。
Another method that can be considered is the so-called thermal deposition method, in which fine powder is moved as primary particles from a high-temperature region to a low-temperature region, and the fine powder is agglomerated and deposited.However, even in this case, loss due to scattering is inevitable, and there is a means to prevent loss due to scattering. is necessary. Although the wet collection method has a high recovery rate, a subsequent dry smoke process is required.

〔発明の目的〕[Purpose of the invention]

本発明は、」1記した従来方法に認められる不利な点を
解消し、サブミクロン微粉末を効率よく捕集・回収する
ことを目的とする。
An object of the present invention is to eliminate the disadvantages observed in the conventional method described in 1. and to efficiently collect and recover submicron fine powder.

〔発明の構成〕[Structure of the invention]

サブミクロン微粉末は浮遊、対流中に微粒子同志の衝突
あるいは容器壁面との衝突、摩擦などによる静電気的作
用、又高温部から低温部へ冷却することにより凝集、堆
積が起こる。
Submicron fine powder aggregates and accumulates due to suspension, collision of fine particles with each other during convection or collision with the container wall surface, electrostatic action due to friction, or cooling from a high temperature area to a low temperature area.

本発明はサブミクロン微粉末の有するこのような特性を
利用した方法である。
The present invention is a method that utilizes such characteristics of submicron fine powder.

すなわち、本発明はサブミクロン微粉末の凝集、堆積層
からなる捕集・回収器を使用するサブミクロン微粉末の
捕集・回収方法に関する。
That is, the present invention relates to a method for collecting and collecting submicron fine powder using a collecting and collecting device consisting of an agglomerated and deposited layer of submicron fine powder.

サブミクロン微粉末は嵩密度が0.2程度と小さく重ね
ても圧縮せずガスによる差圧上昇は極めて小さく、適度
に凝集した微粉末は同程度の微粉末に対してフィルター
としての作用効果を示す。
Submicron fine powder has a small bulk density of around 0.2, so even if it is piled up, it will not be compressed and the differential pressure increase due to gas will be extremely small, and moderately agglomerated fine powder will act as a filter against fine powders of the same size. show.

本発明における捕集・回収器は、たとえば、合成樹脂、
ゴム製のチューブを管状物にコイル状に巻いた構造から
なり、該チューブ内に噴霧状のサブミクロン微粉末を導
入し、サブミクロン微粉末の持つ特性によりチューブ内
に微粉末の凝集、堆積層を形成させたスパイラルアグロ
メレーター、または円筒状の管状物に浮遊状のサブミク
ロン微粉末を導入し、同様にサブミクロン微粉末の持つ
特性により微粉末の凝集、堆積層を形成させたものなど
である。上記円筒状の管状物に微粉末の凝集、堆積層を
形成させる場合は、該層の形成が容易に惹起するように
、たとえば該管状物を横型に配置しておき浮遊状のサブ
ミクロン微粉末を該管状物の径よりも小さい径の排出口
から導入すること等が好ましい。
The collection/recovery device in the present invention includes, for example, synthetic resin,
It has a structure in which a rubber tube is coiled around a tubular object, and atomized submicron fine powder is introduced into the tube, and due to the characteristics of the submicron fine powder, the fine powder agglomerates and forms a deposited layer inside the tube. A spiral agglomerator that forms a submicron powder, or a cylindrical tube in which suspended submicron fine powder is introduced, and the fine powder agglomerates and forms a deposited layer due to the characteristics of the submicron fine powder. It is. When agglomerating fine powder and forming a deposited layer on the above-mentioned cylindrical tube, for example, the tube is arranged horizontally so that the formation of the layer can be easily caused, and the floating submicron fine powder is It is preferable to introduce the liquid through an outlet having a diameter smaller than that of the tubular object.

このような捕集、回収器おける凝集、堆積層の形成に使
用される上記の合成樹脂、ゴム製のチューブ、あるいは
管状物は径が余りに大きい場合は凝集層を形成させるの
に好ましくなく通常10〜50mm程度が使用される。
If the diameter of the synthetic resin, rubber tube, or tubular material used for such collection, agglomeration in the collector, and formation of the deposited layer is too large, it is not suitable for forming the agglomerated layer, and the diameter is usually 10. ~50mm is used.

 このようにして形成された微粉末の凝集、堆積層は嵩
密度が小さく適度な気孔を形成しておりサブミクロン微
粉末の捕集・回収に好適なフィルターとして作用する。
The agglomerated and deposited layer of fine powder thus formed has a small bulk density and forms appropriate pores, and acts as a filter suitable for collecting and recovering submicron fine powder.

また、該捕集・回収器の凝集、堆積層を浮遊流動層とし
て用いる場合は、流動化ガス導入口、サブミクロン微粉
未導入口、ガス排出口、および流動化ガス分散板を備え
た通常縦型の円筒状容器に所定量の微粉末を投入し、流
動化ガス導入口からガスを導入し、浮遊、流動化させる
。浮遊、流動化した微粉末は10〜100μm程度の二
次凝集粒子として存在する。流動化ガス分散板は、多孔
板上にカーボン繊維などのシートを一層以上配置した構
造のもの、あるいは該シート層の上にさらに多孔板を配
置した構造のものなどが挙げられる。
In addition, when the agglomeration and accumulation layer of the collection/recovery device is used as a floating fluidized bed, it is usually vertically equipped with a fluidizing gas inlet, a submicron fine powder non-introducing port, a gas outlet, and a fluidizing gas dispersion plate. A predetermined amount of fine powder is put into a cylindrical container, and gas is introduced from the fluidizing gas inlet to cause it to float and fluidize. The suspended and fluidized fine powder exists as secondary agglomerated particles of about 10 to 100 μm. Examples of the fluidized gas distribution plate include those having a structure in which one or more sheets of carbon fiber or the like are arranged on a perforated plate, or those having a structure in which a perforated plate is further arranged on the sheet layer.

微粉末の凝集、堆積層を安定な流動状態に保持させるべ
く導入する流動化ガスの導入速度は浮遊もしくは流動層
を形成させる微粉末の種類によって異なるが、空塔速度
3.0〜10cn+/secが適当である。3゜Ocm
/sec以下では偏流を生じ易く安定な流動状態が得ら
れず、10cm/sea以」二では飛散量が大きくなり
好ましくない。この線速度範囲はサブミクロン−次粒子
の終端沈降速度(0,icm/sea以下)よりはくか
に大きいが、互いに凝集し、二次粒子を形成しているた
め飛散が抑制されている。
The introduction speed of the fluidizing gas introduced to maintain the agglomeration of fine powder and the deposited layer in a stable fluidized state varies depending on the type of fine powder to be suspended or to form a fluidized bed, but the superficial velocity is 3.0 to 10 cn+/sec. is appropriate. 3゜Ocm
If the flow rate is less than 10cm/sea, drifting tends to occur and a stable flow state cannot be obtained, and if it is more than 10cm/sea, the amount of scattering becomes large, which is not preferable. Although this linear velocity range is much higher than the terminal sedimentation velocity (0.icm/sea or less) of submicron-order particles, scattering is suppressed because they aggregate with each other to form secondary particles.

流動層型捕集器はたとえば図−2に示したように微粉末
流動層(I)の上部に飛散微粉末が安定化するに十分な
高さのフリーボード領域(TI)を、さらにその」一部
に微粉末のロスを防止するフリーボード領域よりも径を
大きくした還流部(1)を設けることが好ましい。
For example, as shown in Figure 2, a fluidized bed collector has a freeboard area (TI) of sufficient height above the fine powder fluidized bed (I) to stabilize the scattered fine powder. It is preferable to provide a part of the reflux section (1) with a diameter larger than the freeboard area to prevent loss of fine powder.

本発明の方法における捕集・回収器としての凝集、堆積
層は被捕集サブミクロン微粉末と同一のものが使用され
る。 流動化ガスは、窒素、アルゴン、ヘリウム等の不
活性ガスが用いられる。
In the method of the present invention, the same layer as the submicron fine powder to be collected is used for the agglomeration and deposition layer as a collection/recovery device. As the fluidizing gas, an inert gas such as nitrogen, argon, helium, etc. is used.

本発明の方法により微粉末を捕集、回収する場合、工業
的には浮遊、流動層型を採用することが好ましい。本発
明の方法による微粉末の捕集・回収は、たとえば、CV
D法により、サブミクロン微粉末を生成する装置の該微
粉末排出口に接続して使用される。該捕集器は所望によ
り多数個を直列に配設することにより飛散によロスを防
止し、回収率を向上することができる。さらには本発明
の捕集器をオフガスパージラインに付設することにより
、パージガスに同伴して飛散する微粉末を捕集、回収す
ることがてきる。この目的には先に記述したスパイラル
アグロメレーター型のものが好適である。
When collecting and recovering fine powder by the method of the present invention, it is preferable from an industrial perspective to adopt a floating or fluidized bed type. Collection and recovery of fine powder by the method of the present invention can be carried out by, for example, CV
It is used by connecting to the fine powder outlet of an apparatus for producing submicron fine powder by method D. If desired, a large number of collectors may be arranged in series to prevent loss due to scattering and improve the recovery rate. Furthermore, by attaching the collector of the present invention to an off-gas purge line, it is possible to collect and recover fine powder that is scattered along with the purge gas. The spiral agglomerator type described above is suitable for this purpose.

本発明の方法に使用される捕集器を図面を参照して説明
する。
A collector used in the method of the present invention will be explained with reference to the drawings.

第1図は本発明に係る捕集・回収器をCVD法による外
部加熱炉型微粉末製造装置に付設して生成微粉末を流動
層で捕集・回収し、飛散ロスを防ぐために還流部のガス
排出口にスパイラルアグロメレーター型捕集器を付設し
た実施態様の一例を示す。第2図はスパイラルアグロメ
レーター型捕集器であり、第3図は流動層型の捕集器の
一例である。 第1図において1は反応管、2は加熱炉
3は流動層型捕集器、4は流動層、5はスパイラルアグ
ロメレーター型捕集器、6は流動化ガス導入管、7は原
料ガス導入ノズル、8は副生成物回収部、9は生成微粉
末取り出し口を示し、11.1213はそれぞれ導管を
示す。第2図において21は合成樹脂、ゴム製のチュー
ブを巻く管状物、22は合成樹脂、ゴム製のチューブ、
23はガスおよび微粉未導入口、24はガス出口である
。第3図において■は微粉末流動層、■はフリーボード
領域、■は凝集還流域であり、31は流動化ガス導入口
、32は浮遊状微粉未導入口、33は流動ガス分散板、
34はガス排出口、をそれぞれ示す。
Figure 1 shows a collection/recovery device according to the present invention attached to an external heating furnace type pulverized powder production apparatus using the CVD method to collect and collect the generated pulverized powder in a fluidized bed, and to prevent scattering loss. An example of an embodiment in which a spiral agglomerator type collector is attached to the gas outlet is shown. FIG. 2 shows a spiral agglomerator type collector, and FIG. 3 shows an example of a fluidized bed type collector. In Fig. 1, 1 is a reaction tube, 2 is a heating furnace 3 is a fluidized bed type collector, 4 is a fluidized bed, 5 is a spiral agglomerator type collector, 6 is a fluidizing gas introduction pipe, and 7 is a raw material gas. Reference numeral 8 indicates an introduction nozzle, 8 indicates a by-product recovery section, 9 indicates a produced fine powder outlet, and 11.1213 indicates a conduit, respectively. In Fig. 2, 21 is a tube made of synthetic resin or rubber, and 22 is a tube made of synthetic resin or rubber.
23 is a gas and fine powder non-introduction port, and 24 is a gas outlet. In Fig. 3, ■ is a fine powder fluidized bed, ■ is a freeboard area, ■ is a coagulation reflux area, 31 is a fluidizing gas inlet, 32 is a port where suspended fine powder is not introduced, 33 is a fluidized gas distribution plate,
Reference numeral 34 indicates a gas discharge port.

本発明の捕集・回収方法によれば90%以上の収率で捕
集・回収され、飛散ロスは殆どない。
According to the collection/recovery method of the present invention, the collection/recovery can be performed with a yield of 90% or more, and there is almost no scattering loss.

次に、CVD法により微粉末を生成する装置に適用した
例を示す。
Next, an example in which the present invention is applied to an apparatus for producing fine powder using the CVD method will be shown.

実施例 第1図に示すごとき流動層型捕集器を付設した外部加熱
型反応装置を用いた。内径90mm 、長さ1200m
mのアルミナ炉心管を備えてた縦型管状反応炉を105
0℃に加熱し、原料ガス導入ノズルから、ヘキサメチル
ジシラザン[5i(C113)31 Nll 529 
g/brをアンモニアガス672 L/hr、窒素ガス
133 L/hrと共に反応炉内に導入した。反応は直
ちに進行し生成した浮遊状微粉末は導管を経て捕集器の
流動層に導入された。該捕集器は、流動化ガスとして1
000L/hrの窒素ガスを導入し、径150mm 、
高さ約250mmの窒化ケイ素二次凝集粒子の流動層を
形成した。また、該捕集きのガス排出口には微粉末の飛
散ロス防止のためスパイラルアグロメレーターかた捕集
器が付設さている。10時間反応後、流動層において全
生成粉末の82%が捕集され、スパイラルアグロメレー
ター捕集器で約10%がそれぞれ捕集された。なお、反
応炉内の800℃付近の温度領域に膜状物の生成が認め
られたが捕集器への混入は認められなかった。
EXAMPLE An externally heated reactor equipped with a fluidized bed collector as shown in FIG. 1 was used. Inner diameter 90mm, length 1200m
A vertical tubular reactor equipped with an alumina core tube of 105 m
Hexamethyldisilazane [5i (C113) 31 Nll 529
g/br was introduced into the reactor together with 672 L/hr of ammonia gas and 133 L/hr of nitrogen gas. The reaction proceeded immediately, and the resulting suspended fine powder was introduced into the fluidized bed of the collector through a conduit. The collector contains 1 as fluidizing gas.
000L/hr of nitrogen gas was introduced, and the diameter was 150mm.
A fluidized bed of secondary agglomerated silicon nitride particles with a height of about 250 mm was formed. In addition, a spiral agglomerator or collector is attached to the gas exhaust port of the gas collector to prevent scattering and loss of fine powder. After 10 hours of reaction, 82% of the total produced powder was collected in the fluidized bed and about 10% in the spiral agglomerator collector, respectively. Although film-like substances were observed to form in the temperature range of around 800° C. in the reactor, no contamination into the collector was observed.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、CVD法により生成される非晶質5i
C1SI3N4 、SiO□、などのサブミクロン微粉
末を捕集・回収するのに好適であり、捕集効率も相当に
高く、また捕集・回収された微粉末は捕集体との分離操
作を必要とせずそのまま次工程の結晶化処理に使用する
ことができるので微粉末の捕集・回収方法として極めて
有利な方法である。
The method of the present invention uses amorphous 5i produced by CVD method.
It is suitable for collecting and recovering submicron fine powders such as C1SI3N4 and SiO□, and the collection efficiency is quite high, and the collected and recovered fine powders do not require separation from the collector. This method is extremely advantageous as a method for collecting and recovering fine powder because it can be used as is in the next step of crystallization treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る捕集・回収器をCVD法による外
部加熱炉型微粉末製造装置に付設して生成微粉末を流動
層で捕集・回収し、飛散ロスを防ぐために還流部のガス
排出口にスパイラルアグロメレーター型捕集器を付設し
た実施態様の一例を示す。第2図はスパイラルアグロメ
レーター型捕集器であり、第3図は流動層型の捕集器の
一例である。第2図はスパイラルアグロメレーター型捕
集器を、第3図は流動層型の捕集器の一例を示す。 ■は微粉末流動層、■はフリーボード領域、■は凝集還
流域、 1は反応管、2は加熱炉、3は流動層型捕集器、4は流
動層、5はスパイラルアグロメレーター型捕集器、6は
流動化ガス導入管、7は原料ガス導入ノズル、8は副生
成物回収部、9は生成微粉末取り出し口を示し、11.
12.13はそれぞれ導管を示す。21は合成樹脂、ゴ
ム製等のチューブを巻く管状物、22は合成樹脂、ゴム
製等のチューブ、23は微粉未導入口、24はガス排出
口である。 31は流動化ガス導入口、32は浮遊状微粉未導入口、
33は流動化ガス分散板、34はガス排出口、をそれぞ
れ示す。 特許出願人 三菱瓦斯化学株式会社 代理人 弁理士 小 堀 貞 文 第1図
Figure 1 shows a collection/recovery device according to the present invention attached to an external heating furnace type pulverized powder production apparatus using the CVD method to collect and collect the generated pulverized powder in a fluidized bed, and to prevent scattering loss. An example of an embodiment in which a spiral agglomerator type collector is attached to the gas outlet is shown. FIG. 2 shows a spiral agglomerator type collector, and FIG. 3 shows an example of a fluidized bed type collector. FIG. 2 shows an example of a spiral agglomerator type collector, and FIG. 3 shows an example of a fluidized bed type collector. ■ is a fine powder fluidized bed, ■ is a freeboard area, ■ is a coagulation reflux area, 1 is a reaction tube, 2 is a heating furnace, 3 is a fluidized bed type collector, 4 is a fluidized bed, 5 is a spiral agglomerator type A collector, 6 a fluidizing gas introduction pipe, 7 a raw material gas introduction nozzle, 8 a by-product recovery section, 9 a produced fine powder outlet, 11.
12 and 13 each indicate a conduit. 21 is a tubular member made of synthetic resin, rubber, or the like, 22 is a tube made of synthetic resin, rubber, etc., 23 is a fine powder non-introduction port, and 24 is a gas discharge port. 31 is a fluidizing gas inlet, 32 is a port where suspended fine powder is not introduced,
Reference numeral 33 indicates a fluidizing gas distribution plate, and 34 indicates a gas discharge port. Patent applicant Mitsubishi Gas Chemical Co., Ltd. Agent Patent attorney Sadafumi Kobori Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)サブミクロン微粉末の凝集、堆積層からなる捕集
・回収器を使用することを特徴とするサブミクロン微粉
末の捕集・回収方法。
(1) A method for collection and collection of submicron fine powder, which is characterized by using a collection and collection device consisting of agglomeration and accumulation layer of submicron fine powder.
(2)前記凝集、堆積層が浮遊、流動層である特許請求
の範囲第1項記載の捕集・回収方法。
(2) The collection/recovery method according to claim 1, wherein the agglomerated or deposited layer is a floating or fluidized layer.
JP13618686A 1986-06-13 1986-06-13 Collecting and recovering method for fine powder of submicron order Pending JPS62294416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13618686A JPS62294416A (en) 1986-06-13 1986-06-13 Collecting and recovering method for fine powder of submicron order

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13618686A JPS62294416A (en) 1986-06-13 1986-06-13 Collecting and recovering method for fine powder of submicron order

Publications (1)

Publication Number Publication Date
JPS62294416A true JPS62294416A (en) 1987-12-21

Family

ID=15169355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13618686A Pending JPS62294416A (en) 1986-06-13 1986-06-13 Collecting and recovering method for fine powder of submicron order

Country Status (1)

Country Link
JP (1) JPS62294416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855651A (en) * 1994-11-29 1999-01-05 Asahi Denka Kogyo K.K. Method for processing waste gas exhausted from chemical vapor and deposition equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855651A (en) * 1994-11-29 1999-01-05 Asahi Denka Kogyo K.K. Method for processing waste gas exhausted from chemical vapor and deposition equipment

Similar Documents

Publication Publication Date Title
CA2661985C (en) Silicon production with a fluidized bed reactor integrated into a siemens-type process
US4378976A (en) Combined sonic agglomerator/cross flow filtration apparatus and process for solid particle and/or liquid droplet removal from gas streams
CA1151084A (en) Low residence time solid-gas separation device and system
US20170159174A1 (en) Reactor For Producing Polycrystalline Silicon and Method For Removing A Silicon-Containing Layer On A Component Of Such A Reactor
JPH067700A (en) Method for jet pulverizing of silicon particle
JP6234816B2 (en) Porous spherical titanium dioxide
WO2018035152A1 (en) Flame based fluidized bed reactor for nanomaterials production
US4328353A (en) Process for the manufacture of organohalosilanes
US8703087B2 (en) Apparatus and method for top removal of granular material from a fluidized bed deposition reactor
JPS62294416A (en) Collecting and recovering method for fine powder of submicron order
CN114213445A (en) Method for returning organic silicon contact to bed
JP2003019427A (en) Method of manufacturing fine particles by spray thermal decomposition method
JP2006511704A (en) Heat treatment method and plant for sulfide ore
EP0727389B1 (en) Method of recovering particulate silicon from a by-product stream
JP2004018290A (en) Granular agglomerate of carbonaceous fine fibrous body
US2581118A (en) Method of controlling temperatures in a fluidized catalyst hydrocarbon synthesis process
Ozcelik et al. Synthesis of boron carbide nanoparticles via spray pyrolysis
JP5423418B2 (en) Trichlorosilane production equipment
US2517006A (en) Catalytic reaction for the production of unsaturated aliphatic aldehydes
US3341009A (en) Method and apparatus for separating fines adhering to pellets
US3328131A (en) Process and apparatus for contacting carbon black pellets with bag filter efflux
CN109422251A (en) Silicon powder for fluidized reaction and preparation method thereof, silicon nitride and its production method
Rohatgi et al. Silane pyrolysis in a fluidized bed reactor
CN102653405B (en) For the treatment of the equipment of hydrogenation of silicon tetrachloride by product
JPS61201605A (en) Containuous manufacture of sodium perborate monohydrate fromsodium perborate tetrahydrate