JPS62292616A - Synthesized swelling silicate and its production - Google Patents
Synthesized swelling silicate and its productionInfo
- Publication number
- JPS62292616A JPS62292616A JP13547086A JP13547086A JPS62292616A JP S62292616 A JPS62292616 A JP S62292616A JP 13547086 A JP13547086 A JP 13547086A JP 13547086 A JP13547086 A JP 13547086A JP S62292616 A JPS62292616 A JP S62292616A
- Authority
- JP
- Japan
- Prior art keywords
- heavy metal
- ions
- silicate
- hectorite
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 230000008961 swelling Effects 0.000 title abstract description 9
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 53
- 150000001768 cations Chemical class 0.000 claims abstract description 29
- 239000002131 composite material Substances 0.000 claims abstract description 24
- 150000003839 salts Chemical class 0.000 claims abstract description 23
- 239000002244 precipitate Substances 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 20
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 20
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 20
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 6
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 5
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 4
- 229910021647 smectite Inorganic materials 0.000 claims description 26
- -1 Pb and Cd Chemical class 0.000 claims description 23
- 159000000003 magnesium salts Chemical class 0.000 claims description 15
- 239000002002 slurry Substances 0.000 claims description 12
- 239000012670 alkaline solution Substances 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052793 cadmium Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 4
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 4
- 239000006227 byproduct Substances 0.000 claims description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 229910000271 hectorite Inorganic materials 0.000 abstract description 17
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 abstract description 17
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 abstract description 5
- 239000007788 liquid Substances 0.000 abstract description 5
- 239000003513 alkali Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 47
- 239000010410 layer Substances 0.000 description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 239000006185 dispersion Substances 0.000 description 26
- 239000003153 chemical reaction reagent Substances 0.000 description 25
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium;hydroxide;hydrate Chemical compound [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 22
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 22
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 20
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 20
- 229910052749 magnesium Inorganic materials 0.000 description 20
- 239000011777 magnesium Substances 0.000 description 20
- 229910052901 montmorillonite Inorganic materials 0.000 description 20
- 238000005341 cation exchange Methods 0.000 description 19
- 238000002156 mixing Methods 0.000 description 17
- 239000002994 raw material Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000011707 mineral Substances 0.000 description 13
- 235000010755 mineral Nutrition 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 238000000634 powder X-ray diffraction Methods 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 12
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000010445 mica Substances 0.000 description 12
- 229910052618 mica group Inorganic materials 0.000 description 12
- 235000019353 potassium silicate Nutrition 0.000 description 12
- 229910052708 sodium Inorganic materials 0.000 description 12
- 239000011734 sodium Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 230000009974 thixotropic effect Effects 0.000 description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000004115 Sodium Silicate Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- 239000000440 bentonite Substances 0.000 description 10
- 229910000278 bentonite Inorganic materials 0.000 description 10
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 229910017052 cobalt Inorganic materials 0.000 description 10
- 239000010941 cobalt Substances 0.000 description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 229910052911 sodium silicate Inorganic materials 0.000 description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000012456 homogeneous solution Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000004033 plastic Substances 0.000 description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000011133 lead Substances 0.000 description 6
- 229910001629 magnesium chloride Inorganic materials 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000003349 gelling agent Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 150000004760 silicates Chemical class 0.000 description 4
- 229910001575 sodium mineral Inorganic materials 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000002522 swelling effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- VNSBYDPZHCQWNB-UHFFFAOYSA-N calcium;aluminum;dioxido(oxo)silane;sodium;hydrate Chemical compound O.[Na].[Al].[Ca+2].[O-][Si]([O-])=O VNSBYDPZHCQWNB-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229910052615 phyllosilicate Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000019795 sodium metasilicate Nutrition 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- IXHMFCXHACWHBS-UHFFFAOYSA-M chloronickel;hexahydrate Chemical compound O.O.O.O.O.O.[Ni]Cl IXHMFCXHACWHBS-UHFFFAOYSA-M 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- QVCGXRQVUIKNGS-UHFFFAOYSA-L cobalt(2+);dichloride;hydrate Chemical compound O.Cl[Co]Cl QVCGXRQVUIKNGS-UHFFFAOYSA-L 0.000 description 1
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 230000000887 hydrating effect Effects 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- DHRRIBDTHFBPNG-UHFFFAOYSA-L magnesium dichloride hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[Cl-].[Cl-] DHRRIBDTHFBPNG-UHFFFAOYSA-L 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 229910000269 smectite group Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Landscapes
- Colloid Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は水中において膨潤し、優れたゲル形成能、イ
オン交換能、フィルム形成能などを有し更に金属多核水
酸化イオンや各種有機物を層間に包接するなどの特殊機
能を持つヘクトライト型スメクタイトに類似した構造を
有する膨潤性ケイ酸塩およびその製造方法に関する。Detailed Description of the Invention This invention swells in water, has excellent gel-forming ability, ion exchange ability, film-forming ability, etc., and has special functions such as inclusion of metal polynuclear hydroxide ions and various organic substances between layers. The present invention relates to a swellable silicate having a structure similar to a hectorite-type smectite, and a method for producing the same.
スメクタイトは2層のシリカ四面体層がマグネシウム八
面体層あるいはアルミニウム八面体層を間にはさんだサ
ンドイッチ型の三層構造を有するフィロケイ酸塩の一員
であり、水中において陽イオン交換能を有し、更に層間
に水をとり入れて膨潤してゆく特異な性質を持つ粘土鉱
物である。天然には八面体層に二価のアルミニウムを含
む2−八面体型スメクタイトであるモンモリロナイト、
バイデライトおよび八面体層に二価のマグネシウムを含
む3−八面体型スメクタイトであるヘクトライト、サボ
ナイトなどが知られているが、我国で工業的利用の対象
となる程度のまとまった量が産出するのはモンモリロナ
イトを含有するベントナイトのみである。純スメクタイ
トとして、このベントナイトより抽出したモンモリロナ
イト製品が商品化されており、その膨潤性、ゲル特性な
どを活用して化粧品、医薬品、水系塗料などの分野への
用途開発に期待がかけられている。純モンモリロナイト
は1〜2%程度の希薄ベントナイト分散水溶液より抽出
して製造するため、乾燥費など精製コストをかなり要し
極めて高価格で市販されており、しかも天然物であるが
故に原料のベントナイトの採取場所や採取時期の相違に
より純モンモリロナイト製品の特性が変動するきらいが
あり、その需要はかなり限定されている。また、化学組
成、構造、欠陥、不純物などの材料特性の変動が大であ
るため、その特性制御がほとんど不可能であり、高度な
機能性精密素材としての適性を欠いている。一方、合成
の膨潤性フッ素雲母系鉱物であるナトリウム型口ケイ素
雲母(特開昭51−24598)製品がゲル化剤などと
して市販されているが、構造がもともと水中では膨潤し
がたい雲母構造であるため、市販の純スメクタイト製品
より水中での膨潤特性が劣っていてやはり需要は限定さ
れている。Smectite is a member of phyllosilicates that has a sandwich-type three-layer structure in which two silica tetrahedral layers are sandwiched between a magnesium octahedral layer or an aluminum octahedral layer, and has cation exchange ability in water. Furthermore, it is a clay mineral that has the unique property of absorbing water between its layers and swelling. Montmorillonite is a naturally occurring di-octahedral smectite containing divalent aluminum in its octahedral layers.
Beidellite and hectorite, which is a 3-octahedral smectite containing divalent magnesium in the octahedral layer, and sabonite are known, but they are not produced in large quantities in Japan for industrial use. is only bentonite containing montmorillonite. A montmorillonite product extracted from this bentonite has been commercialized as pure smectite, and it is expected that its swelling and gel properties will be utilized to develop applications in fields such as cosmetics, pharmaceuticals, and water-based paints. Pure montmorillonite is manufactured by extracting it from a dilute aqueous bentonite dispersion solution of about 1 to 2%, which requires considerable refining costs such as drying costs, and is commercially available at an extremely high price.Moreover, since it is a natural product, the raw material bentonite is The characteristics of pure montmorillonite products tend to fluctuate due to differences in collection location and collection time, and demand for it is quite limited. Furthermore, because material properties such as chemical composition, structure, defects, and impurities vary widely, it is almost impossible to control the properties, making it unsuitable as a highly functional precision material. On the other hand, sodium-type silicon mica (JP-A-51-24598) products, which are synthetic swellable fluorinated mica minerals, are commercially available as gelling agents, but they have a mica structure that is difficult to swell in water. Therefore, its swelling properties in water are inferior to commercially available pure smectite products, and its demand is still limited.
本発明の目的は天然産ベントナイトから抽出した純モン
モリロナイト製品にみられる様な欠点を有しない、工業
的に満足し得る設計された精密素材として、純モンモリ
ロナイト製品あるいはナトリウム型口ケイ素雲母製品よ
り更に高機能を有する合成膨潤性ケイ酸塩およびその製
造技術を提供することである。The purpose of the present invention is to provide an industrially satisfactory engineered precision material that does not have the drawbacks of pure montmorillonite products extracted from naturally occurring bentonite, and which is even higher than pure montmorillonite products or sodium-type silicon-based mica products. The object of the present invention is to provide a functional synthetic swellable silicate and a technology for producing the same.
本発明者らは優れた陽イオン交換能あるいはゲル形成能
を有する膨潤性ケイ酸塩の合成について長年鋭意研究を
重ねた結果、我国では天然にはほとんど産出しないヘク
トライト型スメクタイトに類似した構造を有し、極めて
優れたゲル形成能、イオン交換能、フィルム形成能など
特殊機能を有する新規の合成膨潤性ケイ酸塩およびその
製造方法の発明に至った。As a result of many years of intensive research into the synthesis of swellable silicates with excellent cation exchange ability or gel-forming ability, the present inventors have discovered a structure similar to hectorite-type smectite, which is rarely produced naturally in Japan. This led to the invention of a new synthetic swellable silicate having special functions such as extremely excellent gel-forming ability, ion-exchange ability, and film-forming ability, and a method for producing the same.
すなわちこの発明は一般式
%式%()
(式中のa、b、cおよびyの値は0≦a < 6、o
<b≦2.0≦C≦4および1≦y≦2とし、MはGo
、 Ni、 Zn、 Cu1Fe、 Mn、 Pb、
Cdなど2価重金属イオンから選んだ少なくとも1個の
2価重金属イオンであり、またAはアルカリ金属イオン
、アルカリ土類金属イオン、アンモニウムイオンおよび
アルキルアンモニウムイオン群から選んだ少なくとも1
個の陽イオンである)で表わされるヘクトライト型スメ
クタイトに類似した構造を有する合成膨潤性ケイ酸塩お
よびその製造方法を提供するものである。That is, this invention is based on the general formula % formula % () (in the formula, the values of a, b, c and y are 0≦a<6, o
<b≦2.0≦C≦4 and 1≦y≦2, and M is Go
, Ni, Zn, Cu1Fe, Mn, Pb,
At least one divalent heavy metal ion selected from divalent heavy metal ions such as Cd, and A is at least one divalent heavy metal ion selected from the group of alkali metal ions, alkaline earth metal ions, ammonium ions, and alkylammonium ions.
The object of the present invention is to provide a synthetic swellable silicate having a structure similar to hectorite-type smectite represented by (1) cations, and a method for producing the same.
マクエワンによれば3−八面体型スメクタイトに属する
ヘクトライトのモデル的化学式は(I[)式で表わされ
ている( Montmorillonite mine
rals byD.M.C. MacEyan, Th
eX−ray identification and
crystalstrudures of clay
minerals edited by G. Br
own。According to McEwan, the model chemical formula of hectorite, which belongs to the 3-octahedral smectite, is expressed by the formula (I[) (Montmorillonite mine
rals byD. M. C. MacEyan, Th.
eX-ray identification and
crystal structures of clay
Minerals edited by G. Br
own.
Mineralogical society, Lo
ndon, 1972, pp. 143−207 )
ここにM+は層間に存在する1価の交換性陽イオンであ
る。ヘクトライトは3−八面体型スメクタイトに属し、
四面体層にシリコンおよび八面体層にマグネシウムが位
置している。ヘクトライトの層電荷は八面体層における
2価のマグネシウムの一部が1価のリチウムと置換して
生じたものと考えられており、その陰電荷と電気的にバ
ランスする形で層間に陽イオンが入っている。Minerallogical society, Lo
ndon, 1972, pp. 143-207)
Here, M+ is a monovalent exchangeable cation present between the layers. Hectorite belongs to the 3-octahedral smectite group.
Silicon is located in the tetrahedral layer and magnesium is located in the octahedral layer. It is thought that the layer charge of hectorite is generated when part of the divalent magnesium in the octahedral layer is replaced with monovalent lithium, and cations are formed between the layers to electrically balance the negative charge. Contains.
一般式(I)で表わされる本発明の合成膨潤性ケイ酸塩
は一般式(I)における八面体層中のマグネシウムの全
であるいは一部がコバルト、ニッケル、亜鉛、銅、鉄、
マンガン、鉛、カドミウムなど2価の重金属で置換され
た構造を有し、あるいは水酸基の一部または全てがフッ
素と置換した構造も存在する。この様な重金属を多く含
有するヘクトライト型のスメクタイトは天然にはほとん
ど知られていす、本発明の合成膨潤性ケイ酸塩は新規の
スメクタイトであると考えられる。本発明の合成膨潤性
ケイ酸塩では層電荷は八面体層中の2価の重金属あるい
はマグネシウムと1価のリチウムの置換により発生して
いると考えられ、(I)式で示されるヘクトライトに類
似した構造を有するものと推察されうる。In the synthetic swellable silicate of the present invention represented by the general formula (I), all or part of the magnesium in the octahedral layer in the general formula (I) is cobalt, nickel, zinc, copper, iron,
There are also structures in which the hydroxyl groups are substituted with divalent heavy metals such as manganese, lead, and cadmium, or in which some or all of the hydroxyl groups are substituted with fluorine. Most of these hectorite-type smectites containing a large amount of heavy metals are known in nature, but the synthetic swellable silicate of the present invention is considered to be a new smectite. In the synthetic swellable silicate of the present invention, the layer charge is thought to be generated by the substitution of divalent heavy metals or magnesium with monovalent lithium in the octahedral layer, and the hectorite represented by formula (I) It can be inferred that they have similar structures.
本発明の合成膨潤性ケイ酸塩における八面体層に入る重
金属、マグネシウムおよびリチウムの総計量は一般式(
I)に示される様に構造的には6であるのが望ましいが
、仕込組成は6前後の値であれば総計量をやや多い値に
しても、またやや少ない値にしても本発明は達成され、
その値は5.5か66.5の範囲で許容される。リチウ
ムを必要以上に添加した場合は、八面体層中に入りきれ
ないものは交換性陽イオンとして構造にとり込まれ得る
。The total amount of heavy metals, magnesium and lithium entering the octahedral layer in the synthetic swellable silicate of the present invention is determined by the general formula (
As shown in I), it is desirable for the composition to be 6 from a structural point of view, but as long as the composition is around 6, the present invention can be achieved even if the total weight is set to a slightly larger or smaller value. is,
Its value is allowed in the range 5.5 or 66.5. If more lithium is added than necessary, the lithium that cannot fit into the octahedral layer may be incorporated into the structure as exchangeable cations.
本発明を達成するための方法について以下に述べる。本
発明の合成膨潤性ケイ酸塩の製造方法は次の工程から成
る。第1にシリコンと2価重金属および要すればマグネ
シウムを含有させた均質複合沈殿物を調整し、第2にこ
の均質複合沈殿物に水とリチウムイオンおよび要すれば
交換性陽イオンあるいはフッ素イオンを添加して出発原
料スラリーとし、第3に該スラリーを水熱反応せしめて
合成膨潤性ケイ酸塩を生成させ、第4にこの水熱反応物
を乾燥後粉砕することによって本発明製品を得ることが
できる。A method for achieving the present invention will be described below. The method for producing a synthetic swellable silicate of the present invention consists of the following steps. First, a homogeneous composite precipitate containing silicon, divalent heavy metals, and if necessary, magnesium is prepared, and second, water, lithium ions, and, if necessary, exchangeable cations or fluorine ions are added to the homogeneous composite precipitate. thirdly, the slurry is subjected to a hydrothermal reaction to produce a synthetic swellable silicate; and fourthly, the product of the present invention is obtained by drying and pulverizing this hydrothermally reacted product. Can be done.
第1工程においてケイ酸と2価重金属塩および要すれば
マグネシウム塩を混合して得た均質溶液をアルカリ溶液
で沈殿させ、濾過、水洗により副生溶解質を除去するこ
とにより均質複合沈殿物が調整される。ケイ酸と2価重
金属塩および要すればマグネシウム塩を含む均質溶液は
ケイ酸溶液と2価重金属塩水溶液を混合し、必要に応じ
てマグネシウム塩水溶液を加えることにより、あるいは
ケイ酸溶液に直接2価重金属塩および必要に応じてマグ
ネシウム塩を溶解することにより得られる。In the first step, a homogeneous solution obtained by mixing silicic acid, a divalent heavy metal salt and, if necessary, a magnesium salt is precipitated with an alkaline solution, and by-product solutes are removed by filtration and water washing to form a homogeneous composite precipitate. be adjusted. A homogeneous solution containing silicic acid and a divalent heavy metal salt and, if necessary, a magnesium salt can be prepared by mixing the silicic acid solution and a divalent heavy metal salt aqueous solution and adding an aqueous magnesium salt solution if necessary, or by directly adding divalent heavy metal salt to the silicic acid solution. Obtained by dissolving a heavy metal salt and, if necessary, a magnesium salt.
ケイ酸と2価重金属塩およびマグネシウム塩の混合割合
は一般式(I)を満足する範囲のaおよびbの値を選ぶ
ことにより与えられる。bの値は0〜2の間であるが、
通常好ましい値は0.5〜1.0の間である。a=Oの
マグネシウムを全く含有しない場合でも本発明の合成膨
潤性ケイ酸塩は生成する。aおよびbの値を決定するこ
とにより2価重金属の値は6−a−bで与えられる。仕
込組成は一般式(I)を満足するのが好ましいが、2価
重金属量の値、マグネシウム量(a)の値およびリチウ
ム量(b)の値は計算値から少し変動させても本発明の
合成膨潤性ケイ酸塩は製造可能であり、上記王者の値の
総計量が5.5〜6.5の間は許容される。ケイ酸溶液
はケイ酸ソーダと鉱酸を混合し、液のpHを酸性とする
ことにより得られる。The mixing ratio of silicic acid, divalent heavy metal salt, and magnesium salt is determined by selecting values of a and b within a range that satisfies general formula (I). The value of b is between 0 and 2,
Usually preferred values are between 0.5 and 1.0. The synthetic swellable silicate of the present invention is produced even when it does not contain any magnesium with a=O. By determining the values of a and b, the value of divalent heavy metal is given by 6-a-b. Although it is preferable that the charging composition satisfies the general formula (I), the values of the amount of divalent heavy metals, the amount of magnesium (a), and the amount of lithium (b) may vary slightly from the calculated values. Synthetic swellable silicates can be produced, and a total weight of the above-mentioned champion values between 5.5 and 6.5 is acceptable. A silicic acid solution is obtained by mixing sodium silicate and a mineral acid and making the pH of the solution acidic.
ケイ酸ソーダは一般に市販されている1号ないし4号水
ガラスならびにメタケイ酸ソーダはいずれも使用できる
。鉱酸としては硝酸、塩酸、硫酸などが用いられる。ケ
イ酸ソーダと鉱酸を混合する場合、鉱酸の量が少ないと
ゲル化する場合が多いので液のpHが5以下となる様に
ケイ酸ソーダと鉱酸の割合を選ぶ必要がある。2価重金
属塩はコバルト、ニッケtv、M鉛、flA、tLラマ
ンン、鉛、カドミウムなどの塩化物、硫酸塩、硝酸塩な
どから選ぶことができる。一般式(I)の組成を満足す
る値であれば、重金属は1種類だけでなく、2種類以上
のどの様な組成の組合せでも選ぶことができ、用途に応
じて組成を設計できる。必要ならばマグネシウム塩を添
加することも可能であり、塩化マグネシウム、硫酸マグ
ネシウム、硝酸マグネシウムなどから選ぶことができる
。次に常温でケイ酸と2価重金属塩あるいは要すればマ
グネシウム塩を含有する均質溶液とアルカリ溶液を混合
して均質複合沈殿物を得る。アルカリ溶液としては水酸
化ナトリウム溶液、水酸化カリウム溶液、アンモニア水
などが用いられる。アルカリ溶液の量は混合後のpHが
10以上となる様な量を選ぶのが望ましい。上記均質溶
液とアルカリ溶液を混合する場合、アルカリ溶液中に均
質溶液を滴下して沈殿せしめてもよく、あるいはその逆
の順序にしてもよい。また両者の液を瞬時に混合しても
均質複合沈殿物は得られる。混合の際、特に攪拌を必要
としないが、攪拌することは一向にさしつかえない。次
いで濾過、水洗をくり返して副生電解質を充分に除去す
る。これらの重金属を含む均質複合沈殿物はX線粉末回
折によりすでに低結晶質のスメクタイト様構造を有して
おり、そのため、第3段階の工程では比較的低温でしか
も短時間の水熱処理により良好な特性をもった本発明の
合成膨潤性ケイ酸塩が生成するものと推察される。また
上記均質複合沈殿物は沈殿する時に陽イオンをとり込ん
でいる場合が多いので、第2工程の段階で交換性陽イオ
ンを特に添加する必要はない。As the sodium silicate, any of commercially available No. 1 to No. 4 water glass and sodium metasilicate can be used. Nitric acid, hydrochloric acid, sulfuric acid, etc. are used as mineral acids. When mixing sodium silicate and mineral acid, it is necessary to select the ratio of sodium silicate and mineral acid so that the pH of the solution is 5 or less, since gelation often occurs if the amount of mineral acid is small. The divalent heavy metal salt can be selected from chlorides, sulfates, nitrates, etc. of cobalt, nickel tv, M lead, flA, tL Raman, lead, cadmium, and the like. As long as the value satisfies the composition of general formula (I), not only one kind of heavy metal but also any combination of two or more kinds of heavy metals can be selected, and the composition can be designed according to the purpose. If necessary, it is also possible to add a magnesium salt, which can be selected from magnesium chloride, magnesium sulfate, magnesium nitrate, and the like. Next, a homogeneous solution containing silicic acid and a divalent heavy metal salt or, if necessary, a magnesium salt, and an alkaline solution are mixed at room temperature to obtain a homogeneous composite precipitate. As the alkaline solution, sodium hydroxide solution, potassium hydroxide solution, aqueous ammonia, etc. are used. The amount of alkaline solution is desirably selected so that the pH after mixing is 10 or more. When the homogeneous solution and the alkaline solution are mixed, the homogeneous solution may be dropped into the alkaline solution to cause precipitation, or the reverse order may be used. A homogeneous composite precipitate can also be obtained by instantaneously mixing both liquids. Stirring is not particularly required during mixing, but stirring is absolutely prohibited. Next, filtration and washing with water are repeated to sufficiently remove by-product electrolytes. These homogeneous composite precipitates containing heavy metals already have a low-crystalline smectite-like structure as determined by X-ray powder diffraction, and therefore, in the third step, hydrothermal treatment at a relatively low temperature and for a short period of time is effective. It is presumed that the synthetic swellable silicate of the present invention having the characteristics is produced. Furthermore, since the above-mentioned homogeneous composite precipitate often incorporates cations during precipitation, there is no particular need to add exchangeable cations in the second step.
第2工程の出発原料スラリーは第1工程で得た均質複合
沈殿物に水酸化リチウム水溶液および要すれば陽イオン
の水酸化物、フッ化物あるいはそれらの混合水溶液を加
え、または要すればフッ化水素酸を添加することによっ
て調整される。The starting material slurry for the second step is prepared by adding a lithium hydroxide aqueous solution and, if necessary, a cationic hydroxide, fluoride, or a mixed aqueous solution thereof to the homogeneous composite precipitate obtained in the first step, or if necessary, adding fluoride to the homogeneous composite precipitate. Prepared by adding hydrogen acid.
第3工程の水熱反応は第2工程で得られた出発原料組成
物スラリーをオートクレーブに仕込み、100°Cない
し350 ’Cの温度で反応させ、本発明の合成膨潤性
ケイ酸塩を生成せしめる。反応中特に攪拌を必要としな
いが攪拌することは一向にさしつかえない。一般に反応
温度が高いほど反応速度は大となり、反応時間が長いほ
ど結晶は良好となるが、反応温度200 ’C1反応圧
力15.9kg/c1R2では2時間の反応時間で充分
である。In the third step, the hydrothermal reaction, the starting material composition slurry obtained in the second step is charged into an autoclave and reacted at a temperature of 100°C to 350'C to produce the synthetic swellable silicate of the present invention. . Although stirring is not particularly required during the reaction, stirring is absolutely prohibited. Generally, the higher the reaction temperature, the higher the reaction rate, and the longer the reaction time, the better the crystal formation, but at a reaction temperature of 200' C1 and a reaction pressure of 15.9 kg/c1 R2, a reaction time of 2 hours is sufficient.
第4工程においては、第3工程の水熱反応終了後オート
クレーブ内容物を取り出し、60°C以上200°C以
下の温度で乾燥し、粉砕することにより最終製品が得ら
れる。In the fourth step, after the completion of the hydrothermal reaction in the third step, the contents of the autoclave are taken out, dried at a temperature of 60° C. or higher and 200° C. or lower, and pulverized to obtain a final product.
本発明を実施することによって製造した新規の合成膨潤
性ケイ酸塩はX線回折、示差熱分析、赤外吸収スペク)
/し、化学分析、陽イオン交換容量(C,E、C,)
、n性特性などによって評価することができる。The novel synthetic swellable silicate produced by carrying out the present invention can be analyzed by X-ray diffraction, differential thermal analysis, and infrared absorption spectroscopy.
/shi, chemical analysis, cation exchange capacity (C, E, C,)
, n-characteristics, etc.
本発明の新規の合成膨潤性ケイ酸塩はCu −にα線を
用いた場合の回折角(2θ)が、(h k)反射の(3
5,06)について60.5度から61.0度の間に現
われ、3−八面体型スメクタイトであることがわかる。The novel synthetic swellable silicate of the present invention has a diffraction angle (2θ) of (h k) reflection when α rays are used for Cu −.
5,06), it appears between 60.5 degrees and 61.0 degrees, indicating that it is a 3-octahedral smectite.
X線回折パターンはへクトライトのものに類似している
が、全般的にピークがややブロードとなっている。水溶
液中では通常70〜120ミリ当量/100gの高い陽
イオン交換容量を示し、あるいは水中において優れた膨
潤特性および分散性を示し、重金属の種類に対応した着
色した水系ゲルを生成し、チクソトロピー的な性質を有
するため、水溶性塗料、化粧品、セラミックス原料、触
媒などの添加剤、スラリー安定剤、増粘剤、粘結剤、懸
濁安定剤、チクソトロピー付与剤などとして極めて有用
である。本発明の新規合成膨潤性ケイ酸塩は本質的に2
価重金属を含有するため、殺菌、抗菌、消毒などの目的
に使用され得る。また構造中に重金属を有するため触媒
、触媒担体として有用であり、更に種々の金属多核水酸
化イオンとの層間複合体を形成し、新たな触媒、触媒担
体、吸着剤などとして利用され得る。更に有機化合物複
合体とすることにより親油性粘土として用いることもで
きる。また、焼成によりセラミックス化してセンサー、
電磁遮蔽材、半導体材料などの原料としても有用である
。The X-ray diffraction pattern is similar to that of hectorite, but the peaks are generally slightly broader. It exhibits a high cation exchange capacity of usually 70 to 120 milliequivalents/100 g in aqueous solution, or exhibits excellent swelling and dispersibility properties in water, producing a colored aqueous gel corresponding to the type of heavy metal, and exhibiting thixotropic properties. Because of these properties, it is extremely useful as an additive for water-soluble paints, cosmetics, ceramic raw materials, catalysts, etc., as a slurry stabilizer, thickener, binder, suspension stabilizer, thixotropy imparting agent, etc. The novel synthetic swellable silicate of the present invention consists essentially of 2
Because it contains heavy metals, it can be used for purposes such as sterilization, antibacterial, and disinfection. Furthermore, since it has heavy metals in its structure, it is useful as a catalyst and catalyst carrier, and furthermore, it can form interlayer complexes with various metal polynuclear hydroxide ions and can be used as new catalysts, catalyst carriers, adsorbents, etc. Furthermore, it can also be used as a lipophilic clay by forming an organic compound composite. In addition, sensors can be made into ceramics by firing.
It is also useful as a raw material for electromagnetic shielding materials, semiconductor materials, etc.
次に実施例をあげて説明する。Next, an example will be given and explained.
実施例1
11のビーカーに水400 yslを入れ、3号水ガラ
ス(Si0228%、Na2O9%、モル比3.22)
86 gを溶解し、16N硝酸23 xiを攪拌しな
がら一度に加えてケイ酸溶液を得る。次に水100t/
に塩化マグネシウム−級試薬(純度98%)28gおよ
び塩化コバルト六水和物特級試薬(純度99%) 32
,1gを溶解した溶液をケイ酸溶液に加えて調整したケ
イ酸−コバルト塩−マグネシウム塩均質混合溶液を2規
定水酸化ナトリウム溶液400 ml中に攪拌しながら
5分間で滴下する。直ちに得られた反応均質複合沈殿物
を濾過し、充分に水洗した後、水酸化リチウム−水和物
特級試薬(純度98%) 1.47gを溶解した水溶液
30tpttを加えてスラリー状とし、オートクレーブ
に移す。15.9 kg/α、 200°Cで2時間反
応させる。冷却後、反応生成物をとりだし、80°Cで
乾燥した後、摺潰機にて粉砕する。Example 1 Put 400 ysl of water into a beaker No. 11, and add No. 3 water glass (Si0228%, Na2O9%, molar ratio 3.22).
86 g is dissolved and 23 xi of 16N nitric acid is added at once with stirring to obtain a silicic acid solution. Next, 100 tons of water/
28 g of magnesium chloride-grade reagent (98% purity) and cobalt chloride hexahydrate special grade reagent (99% purity) 32
A homogeneous mixed solution of silicic acid-cobalt salt-magnesium salt prepared by adding 1 g of silicic acid solution dissolved therein was added dropwise to 400 ml of 2N sodium hydroxide solution over 5 minutes with stirring. Immediately, the reaction homogeneous composite precipitate obtained was filtered, thoroughly washed with water, and then 30 tptt of an aqueous solution in which 1.47 g of lithium hydroxide hydrate special grade reagent (purity 98%) was dissolved was added to form a slurry, and the mixture was placed in an autoclave. Move. 15.9 kg/α, react at 200°C for 2 hours. After cooling, the reaction product is taken out, dried at 80°C, and then crushed using a grinder.
本市はMとしてコバルトを含有し、a=2.7、b=0
.7、C=Oに相当し、交換性陽イオンとしてナトリウ
ムを含み、その陽イオン交換容量は86ミリ当量710
0gであった。X線粉末回折図は3−八面体型スメクタ
イトであるヘクトライトに類似したパターンを示すが、
全体的にピークはブロードであり、(35,06)反射
ピークのd値は1,522人であった。粉末の色調は淡
紫色であり、2%水系分散液は淡紫色の半透明の固体ゲ
ルを形成し、極めて強いチクソトロピー性を示した。This city contains cobalt as M, a=2.7, b=0
.. 7, corresponds to C=O, contains sodium as an exchangeable cation, and its cation exchange capacity is 86 meq. 710
It was 0g. The X-ray powder diffraction pattern shows a pattern similar to hectorite, a 3-octahedral smectite.
Overall, the peak was broad, and the d value of the (35,06) reflection peak was 1,522. The color of the powder was pale purple, and the 2% aqueous dispersion formed a pale purple translucent solid gel, exhibiting extremely strong thixotropic properties.
実施例2
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 2 The same procedure as in Example 1 was carried out except that the amounts of raw materials were as follows.
3号水ガラス 86g塩化コバルト
六水和物特級試薬 64g水酸化リチウム−水和物
1.5g得られた製品は紫色を呈し、Mとして
コバルトを含有し、a=0、b = 0.7、c=0に
相当し、交換性陽イオンはナトリウムで陽イオン交換容
量は72ミリ当量7100 gであった。X線粉末回折
図は実施例1の本発明製品のパターンに類似しており、
(35,06)反射ピークのd値は1,527人であっ
た。2%水系分散液は紫色の半透明のチクソトロピーク
なゲルを形成した。No. 3 water glass 86g Cobalt chloride hexahydrate special grade reagent 64g Lithium hydroxide hydrate
1.5 g of the product obtained has a purple color, contains cobalt as M, corresponds to a = 0, b = 0.7, c = 0, the exchangeable cation is sodium, and the cation exchange capacity is 72 mm. The equivalent weight was 7100 g. The X-ray powder diffraction pattern is similar to the pattern of the inventive product of Example 1;
(35,06) The d value of the reflection peak was 1,527 people. The 2% aqueous dispersion formed a purple translucent thixotropic gel.
表 2.5%水系分散液の流動学的性質(25°C)実
施例1および実施例2で得られた本発明製品、純モンモ
リロナイト製品のクニビアFおよび水系分散剤として市
販されている合成ナトリウム型口ケイ素雲母製品を用い
て2.5%水系分散液を調整し、その流動学的性質を回
転粘度計であるFannVGメーターで測定した結果を
表に示す。Table 2. Rheological properties of 5% aqueous dispersion (25°C) Products of the invention obtained in Examples 1 and 2, pure montmorillonite product Kunivia F and synthetic sodium commercially available as an aqueous dispersant A 2.5% aqueous dispersion was prepared using a molded silicon mica product, and its rheological properties were measured using a Fann VG meter, which is a rotational viscometer. The results are shown in the table.
表から明らかのごとく、実施例1および実施例2で得ら
れたコバルトを含む本発明製品の水系分散液は市販の純
モンモリロナイト製品りニピアFおよび合成ナトリウム
型口ケイ素雲母製品の水系分散液と比較して、極めて高
い粘性、降伏値およびゲル強度を有し、チクソトロピー
性が強く、水系に対するゲル化剤として優れた性能を有
することがわかる。As is clear from the table, the aqueous dispersions of the cobalt-containing products of the present invention obtained in Examples 1 and 2 were compared with the aqueous dispersions of the commercially available pure montmorillonite product Rinipia F and the synthetic sodium-type silicon-mica products. It can be seen that it has extremely high viscosity, yield value, and gel strength, has strong thixotropy, and has excellent performance as a gelling agent for aqueous systems.
実施例3
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 3 The same procedure as in Example 1 was carried out except that the amounts of raw material materials were as follows.
3号水ガラス 86 g塩化ニッケ/
I/(■)六水和物
特級試薬(純度98%) 64,1g水酸化リ
チウム−水和物 1.26 g10%フッ化水
素酸溶液 10肩l得られた製品は淡緑色を
呈し、Mとしてニッケルを含有し、a=O1b = 0
.6、C=1に相当し、交換性陽イオンとしてナトリウ
ムを含み、陽イオン交換容量は72ミリ当量7100g
であった。X線粉末回折図は実施例1の本発明製品のパ
ターンに類似しており、(35,06)反射ピークのd
値は1.522人であった。2%水系分散液はチクソト
ロピー性の淡緑色の半透明固体ゲルを形成した。No. 3 water glass 86 g nickel chloride/
I/(■) Hexahydrate special grade reagent (purity 98%) 64.1 g Lithium hydroxide hydrate 1.26 g 10% hydrofluoric acid solution 10 L The obtained product exhibits a light green color, M contains nickel as, a=O1b=0
.. 6, corresponds to C=1, contains sodium as an exchangeable cation, and has a cation exchange capacity of 72 milliequivalents, 7100 g.
Met. The X-ray powder diffraction pattern is similar to the pattern of the inventive product of Example 1, with the (35,06) reflection peak d
The value was 1.522 people. The 2% aqueous dispersion formed a thixotropic pale green translucent solid gel.
FannVGメーターで測定した2、5%水系分散液の
流動学的特性は次の通りで、見掛粘度(600rpm)
= 8cp、見掛粘度(6rpm) = 150 c
p、塑性粘度=4cp、降伏値= 71b/100f
t2.10秒後ゲル強度:41b/100ft2および
10分後ゲル強度−321b7100ft2であった。The rheological properties of the 2.5% aqueous dispersion measured with a FannVG meter are as follows: apparent viscosity (600 rpm);
= 8 cp, apparent viscosity (6 rpm) = 150 c
p, plastic viscosity = 4cp, yield value = 71b/100f
t2. Gel strength after 10 seconds: 41b/100ft2 and gel strength after 10 minutes -321b7100ft2.
実施例4
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 4 The same procedure as in Example 1 was carried out except that the amounts of raw material materials were as follows.
3号水ガラス 86 g塩化マグネ
シウム六水和物−級試薬 42g硝酸亜鉛六水和物特
級試薬(純度99%)20g水酸化リチウム−水和物
1.47 g得られた製品は純白を呈し、M
として亜鉛を含有し、a = 4.05、 b = 0
.7、c=0に相当し、交換性陽イオンとしてナトリウ
ムを含み、陽イオン交換容量は80ミリ当量/100g
であった。X線粉末回折図は実施例1の本発明製品のパ
ターンに類似しており、(35,06)反射ピークのd
値は1.523人であった。2%水系分散液はチクソト
ロピー性のある白色の半透明固体ゲルを形成した。No. 3 water glass 86 g Magnesium chloride hexahydrate-grade reagent 42 g Zinc nitrate hexahydrate special grade reagent (99% purity) 20 g Lithium hydroxide hydrate
The product obtained in an amount of 1.47 g was pure white and had an M
contains zinc as, a = 4.05, b = 0
.. 7, corresponds to c = 0, contains sodium as an exchangeable cation, and has a cation exchange capacity of 80 milliequivalents/100g
Met. The X-ray powder diffraction pattern is similar to the pattern of the inventive product of Example 1, with the (35,06) reflection peak d
The value was 1.523 people. The 2% aqueous dispersion formed a white translucent solid gel with thixotropic properties.
FannVGメーターで測定した2、5%水系分散液の
流動学的特性は次の通りで、見掛粘度(600rpm)
=10cp、 見掛粘度(6rpm) = 150
cp。The rheological properties of the 2.5% aqueous dispersion measured with a FannVG meter are as follows: apparent viscosity (600 rpm);
= 10 cp, apparent viscosity (6 rpm) = 150
cp.
塑性粘度=6cp、降伏値= 71b/100ft2.
10秒後ゲル強度= 41b/100ft2 および1
0分後ゲル強度=41 lb/100ft2 であった
。Plastic viscosity = 6cp, yield value = 71b/100ft2.
Gel strength after 10 seconds = 41b/100ft2 and 1
Gel strength after 0 minutes was 41 lb/100 ft2.
実施例5
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 5 The same procedure as in Example 1 was carried out except that the amount of raw materials charged was as follows.
塩化マグネシウム六水和物−級試薬 42 g塩化銅二
本和物特級試薬 11.6 g水酸化リチウ
ム−水和物 1.47 g得られた製品は
演法青色を呈し、Mとして銅を含有し、a = 4.0
5、 b = 0.7、C=Oに相当し、交換性陽イオ
ンとしてナトリウムを含み、陽イオン交換容量は76ミ
リ当量/100gであった。X線粉末回折図は実施例1
の本発明製品のパターンと類似しており、(35,06
)反射ピークのd値は1.518人であった。2%水系
分散液は極めてチクソトロピー性の強い演法青色の半透
明固体ゲルを形成した。Fann VGメーターで測定
した2、5%水系分散液の流動学的特性は次の通りで見
掛粘度(600rpm) =t4cp、見掛粘度(6r
pm) = 350 cp、塑性粘度=7cp、降伏
値= 131b/ 100ft2.10秒後ゲル強度=
81b/100ft2 および10分後ゲル強度=5
31b7100ft2 であった。Magnesium chloride hexahydrate-grade reagent 42 g Copper chloride dihydrate special grade reagent 11.6 g Lithium hydroxide hydrate 1.47 g The product obtained exhibits a blue color and contains copper as M. and a = 4.0
5, b = 0.7, corresponds to C═O, contained sodium as exchangeable cation, and had a cation exchange capacity of 76 meq/100 g. The X-ray powder diffraction diagram is from Example 1.
It is similar to the pattern of the product of the present invention, (35,06
) The d value of the reflection peak was 1.518 people. The 2% aqueous dispersion formed a highly thixotropic blue translucent solid gel. The rheological properties of a 2.5% aqueous dispersion measured with a Fann VG meter are as follows: apparent viscosity (600 rpm) = t4cp, apparent viscosity (6r
pm) = 350 cp, plastic viscosity = 7 cp, yield value = 131b/100ft2. Gel strength after 10 seconds =
81b/100ft2 and gel strength after 10 minutes = 5
It was 31b7100ft2.
官庁手続
手続補正書
昭和62年2月 9日
1、事件の表示
昭和61年特許願第135470号
2、発明の名称
合成膨潤性ケイ酸塩およびその製造方法3、補正をする
者事件との関係 特許出願人住所 〒100東京都千
代田区霞が関1丁目3番1号氏名 (114)工業技術
院長 飯 塚 幸 三4、指定代理人
5、補正命令の日付 なし6、補正により
増加する発明の数 なし7、補正の対象
明細書全文
8、補正の内容
先に提出していた明細書の特許請求の範囲第2項では第
1項を引用して記載していたが、この出願の特許請求の
範囲第2項は必須要件項であるので、別紙の通り特許請
求の範囲第2項を訂正し、さらに実施例5と実施例6を
追加いたし、それに応じて全文補正致しました。Office procedure amendment document February 9, 1985 1, Indication of the case Patent Application No. 135470 of 1988 2, Name of the invention Synthetic swelling silicate and its manufacturing method 3, Person making the amendment Relationship with the case Patent applicant address: 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo 100 Name (114) Director of the Agency of Industrial Science and Technology Yuki Iizuka, 34, Designated representative: 5, Date of amendment order: None 6, Number of inventions increased by amendment: None 7. Full text of the specification to be amended 8. Contents of the amendment Although paragraph 2 of the claims of the previously submitted specification cited paragraph 1, the scope of claims of this application Since Paragraph 2 is an essential requirement, we have corrected Claim Paragraph 2 as shown in the attached document, added Example 5 and Example 6, and amended the entire text accordingly.
会え補上 明 細 書1、発明の名称
合成膨潤性ケイ酸塩およびその製造方法
2、特許請求の範囲
1)一般式
%式%
(式中のa、 bScおよびyの値は0≦a<6、o<
b≦2.0≦C≦4およびI≦y≦2とし、MはCoX
Ni、ZnXCu5 Fe% Mns Pb、 Cdな
ど2価重金属イオンから選んだ少なくとも1個の2((
I重金属イオンであり、またAはアルカリ金属イオン、
アルカリ土類金属イオン、アンモニウムイオンおよびア
ルキルアンモニウムイオンからなる群から選んだ少なく
とも1個の陽イオンである)で表されるヘクトライト型
スメクタイトに類似した構造を有する合成膨潤性ケイ酸
塩。Supplementary Description 1, Title of the Invention Synthetic swellable silicate and method for producing the same 2, Claims 1) General formula % Formula % (In the formula, the values of a, bSc and y are 0≦a< 6, o<
b≦2.0≦C≦4 and I≦y≦2, M is CoX
At least one 2(((
I is a heavy metal ion, and A is an alkali metal ion,
A synthetic swellable silicate having a structure similar to a hectorite-type smectite represented by at least one cation selected from the group consisting of alkaline earth metal ions, ammonium ions, and alkylammonium ions.
2)一般式 潤性ケイ酸塩の製造方法。2) General formula A method for producing a hydrating silicate.
3、発明の詳細な説明
この発明は水中において膨潤し、優れたゲル形成能、イ
オン交換能、フィルム形成能などを有し、更に金属多核
水酸化イオンや各種有機物を層間に包接するなどの特殊
機能を持つヘクトライト型スメクタイトに類似した構造
を有する膨潤性ケイ酸塩およびその製造方法に関する。3. Detailed Description of the Invention This invention swells in water, has excellent gel-forming ability, ion exchange ability, film-forming ability, etc., and also has special properties such as inclusion of metal polynuclear hydroxide ions and various organic substances between layers. The present invention relates to a swellable silicate having a structure similar to functional hectorite smectite and a method for producing the same.
スメクタイトは2層のシリカ四面体層がマグネシウム八
面体層あるいはアルミニウム八面体層を間にはさんだサ
ンドイッチ型の三層構造を有するフィロケイ酸塩の一員
であり、水中において陽イオン交換能を有し、更に層間
に水を取り入れて膨潤してゆく特異な性質を持つ粘土鉱
物である。天然には八面体層に三価のアルミニウムを含
む2−八面体型スメクタイトであるモンモリロナイト、
バイデライトおよび八面体層に二価のマグネシウムを含
む3−八面体型スメクタイトであるヘクトライト、サボ
ナイトなどが知られているが、我国で工業的利用の対象
となる程度のまとまった量が産出するのはモンモリロナ
イトを含有するベントナイトのみである。純スメクタイ
トとして、このベントナイトより抽出したモンモリロナ
イト製品が商品化されており、その膨潤性、ゲル特性な
どを活用して化粧品、医薬品、水系塗料などの分野への
用途開発に期待がかけられている。純モンモリロナイト
は1〜2%程度の希薄ベントナイト分散水溶液より抽出
して製造するため、乾燥費など精製コストをかなり要し
極めて高価格で市販されており、しかも天然物であるが
故に原料のベントナイトの採取場所や採取時期の相違に
より純モンモリロナイト製品の特性がかなり変動するき
らいがあり、その需要はかなり限定されている。また、
化学組成、構造、欠陥、不純物などの材料特性の変動が
大であるため、その特性制御がほとんど不可能であり、
高度な機能性精密素材としての適性を欠いている。一方
、合成の膨潤性フッ素雲母系鉱物であるナトリウム型口
ケイ素雲母(特開昭5l−24598)製品がゲル化剤
などとして市販されているが、構造がもともと水中では
膨潤しがたい雲母構造であるため、市販の純スメクタイ
ト製品より水中での膨潤特性が劣っていてやはり需要は
限定されている。Smectite is a member of phyllosilicates that has a sandwich-type three-layer structure in which two silica tetrahedral layers are sandwiched between a magnesium octahedral layer or an aluminum octahedral layer, and has cation exchange ability in water. Furthermore, it is a clay mineral that has the unique property of absorbing water between its layers and swelling. Montmorillonite is a naturally occurring di-octahedral smectite containing trivalent aluminum in its octahedral layers.
Beidellite and hectorite, which is a 3-octahedral smectite containing divalent magnesium in the octahedral layer, and sabonite are known, but they are not produced in large quantities in Japan for industrial use. is only bentonite containing montmorillonite. A montmorillonite product extracted from this bentonite has been commercialized as pure smectite, and it is expected that its swelling and gel properties will be utilized to develop applications in fields such as cosmetics, pharmaceuticals, and water-based paints. Pure montmorillonite is manufactured by extracting it from a dilute aqueous bentonite dispersion solution of about 1 to 2%, which requires considerable refining costs such as drying costs, and is commercially available at an extremely high price.Moreover, since it is a natural product, the raw material bentonite is The characteristics of pure montmorillonite products tend to vary considerably due to differences in collection location and collection time, and demand for it is quite limited. Also,
Because material properties such as chemical composition, structure, defects, and impurities vary widely, it is almost impossible to control their properties.
It lacks suitability as a highly functional precision material. On the other hand, sodium-type silicon mica (JP-A-5L-24598) products, which are synthetic swellable fluorinated mica minerals, are commercially available as gelling agents, but they have a mica structure that is difficult to swell in water. Therefore, its swelling properties in water are inferior to commercially available pure smectite products, and its demand is still limited.
本発明の目的は天然産ベントナイトから抽出した純モン
モリロナイト製品にみられる様な欠点を有しない、工業
的に満足し得る設計された精密素材として、純モンモリ
ロナイト製品あるいはナトリウム型口ケイ素雲母製品よ
り更に高機能を有する合成膨潤性ケイ酸塩およびその製
造技術を提供することである。The purpose of the present invention is to provide an industrially satisfactory engineered precision material that does not have the drawbacks of pure montmorillonite products extracted from naturally occurring bentonite, and which is even higher than pure montmorillonite products or sodium-type silicon-based mica products. The object of the present invention is to provide a functional synthetic swellable silicate and a technology for producing the same.
本発明者らは優れた陽イオン交換能あるいはゲル形成能
を有する膨潤性ケイ酸塩の合成について長年鋭意研究を
重ねた結果、我国では天然にはほとんど産出しないヘク
トライト型スメクタイトに類似した構造を有し、極めて
優れたゲル形成能、イオン交換能、フィルム形成能など
特殊機能を有する新規の合成膨潤性ケイ酸塩およびその
製造方法の発明に至った。As a result of many years of intensive research into the synthesis of swellable silicates with excellent cation exchange ability or gel-forming ability, the present inventors have discovered a structure similar to hectorite-type smectite, which is rarely produced naturally in Japan. This led to the invention of a new synthetic swellable silicate having special functions such as extremely excellent gel-forming ability, ion-exchange ability, and film-forming ability, and a method for producing the same.
すなわちこの発明は一般式
%式%
FelMn、 Pb1Cdなど2価重金属イオンから選
んだ少なくとも1個の2価重金属イオンであり、またA
はアルカリ金属イオン、アルカリ土類金属イオン、アン
モニウムイオンおよびアルキルアンモニウムイオンから
なる群から選んだ少なくとも1個の陽イオンである)で
表されるヘクトライト型スメクタイトに類似した構造を
有する合成膨潤性ケイ酸塩およびその製造方法を提供す
るものである。That is, the present invention uses at least one divalent heavy metal ion selected from divalent heavy metal ions such as FelMn, Pb1Cd, etc., and A
is at least one cation selected from the group consisting of alkali metal ions, alkaline earth metal ions, ammonium ions, and alkylammonium ions). Acid salts and methods for producing the same are provided.
マクエワンによれば3−八面体型スメクタイトに属する
ヘクトライトのモデル的化学式は(ID式で表されてい
る(Montmorillonite m1neral
s byD、M、C,MacEwan、 The X−
ray 1dentification andcry
stal 5tructures of clay m
1nerals edited byG、 Brown
、 Mineralogieal 5ociety、
London。According to McEwan, the model chemical formula of hectorite, which belongs to the 3-octahedral smectite, is expressed by the ID formula (Montmorillonite m1neral
s by D, M, C, MacEwan, The X-
ray 1 dentification and cry
stal 5structures of clay m
1nerals edited byG, Brown
, Mineralogial 5ociety,
London.
1972、 pp、 143−207)。1972, pp. 143-207).
(S18)(M2S、33Li0.67)020(OH
)4↓
M″0.67
ここにMは層間に存在する1価の交換性陽イオンである
。ヘクトライトは3−八面体型スメクタイトに属し、四
面体層にシリコンおよび八面体層にマグネシウムが位置
している。ヘクトライトの層電荷は八面体層における2
価のマグネシウムの一部が1(iのリチウムと置換して
生じたものと考えられており、その陰電荷と電気的にバ
ランスする形で層間に陽イオンが入っている。(S18) (M2S, 33Li0.67)020(OH
)4↓ M″0.67 Here, M is a monovalent exchangeable cation existing between the layers. Hectorite belongs to 3-octahedral smectite, with silicon in the tetrahedral layer and magnesium in the octahedral layer. The layer charge of hectorite is 2 in the octahedral layer.
It is thought that a part of the valent magnesium is replaced with lithium in 1(i), and a cation is inserted between the layers to electrically balance the negative charge.
一般式(I)で表される本発明の合成膨潤性ケイ耐塩は
一般式(II)における八面体層中のマグネジつムの全
であるいは一部がコバルト、ニッケル、引船、銅、鉄、
マンガン、鉛、カドミウムなど211の重金属で置換さ
れた構造を有し、あるいは水耐基の一部または全てがフ
ッ素と置換した構造も泊在する。この様な重金属を多く
含有するヘクトライト型のスメクタイトは天然にはほと
んど知らj(l
潤性ケイ酸塩では層電荷は八面体層中の2価の重金属あ
るいはマグネシウムと1価のリチウムの置換により発生
していると考えられ、(U)式で示されるヘクトライト
に類似した構造を有するものと推察されつる。The synthetic swellable salt-resistant silicon salt of the present invention represented by the general formula (I) has all or part of the magnetism in the octahedral layer in the general formula (II) containing cobalt, nickel, tugboat, copper, iron,
There are also structures in which 211 heavy metals such as manganese, lead, and cadmium are substituted, or structures in which part or all of the water-resistant group is substituted with fluorine. Hectorite-type smectites containing large amounts of heavy metals are hardly known in nature. It is thought to have a structure similar to hectorite shown by formula (U).
本発明の合成膨潤性ケイ酸塩における八面体層に入る重
金属、マグネシウムおよびリチウムの総計量は一般式(
I)に示される様に構造的には6であるのが望ましいが
、仕込み組成は6前後の値であれば総計量をやや多い値
にしても、またやや少なド
′ い値にしても本発明は達成され、その値は5から
7の範囲で許容される。リチウムを必要以上に添:
加した場合は、八面体層中に入りきれないものは[交換
性陽イオンとして構造にとり込まれ得る。The total amount of heavy metals, magnesium and lithium entering the octahedral layer in the synthetic swellable silicate of the present invention is determined by the general formula (
As shown in I), it is desirable for the composition to be 6 from a structural standpoint, but as long as the composition is around 6, it will work even if the total weight is set to a slightly larger value or a slightly lower value. The invention has been achieved and its values are allowed in the range from 5 to 7. Add more lithium than necessary:
When added, those that cannot fit into the octahedral layer can be incorporated into the structure as exchangeable cations.
: 本発明を達成するための方法について以下に述
′ べる。本発明の合成膨潤性ケイ酸塩の製造方法は
次の工程から成る。第1にシリコンと2価重金属′
および要すればマグネシウムを含有させた均質複合法澱
物を調整し、第2にこの均質複合沈澱物に水とリチウム
イオンおよび要すれば交換性陽イオンあるいはフッ素イ
オンを添加して出発原料スラリーとし、第3に該スラリ
ーを水熱反応せしめて合成膨潤性ケイ酸塩を生成させ、
第4にこの水熱反応物を乾燥後粉砕することによって本
発明製品を得ることができる。: A method for achieving the present invention will be described below. The method for producing a synthetic swellable silicate of the present invention consists of the following steps. First, silicon and divalent heavy metals'
and, if necessary, prepare a homogeneous composite precipitate containing magnesium, and then add water, lithium ions, and, if necessary, exchangeable cations or fluorine ions to this homogeneous composite precipitate to prepare a starting material slurry. , thirdly subjecting the slurry to a hydrothermal reaction to produce a synthetic swellable silicate;
Fourth, the product of the present invention can be obtained by drying and then pulverizing this hydrothermal reaction product.
第1工程においてケイ酸と2価重金属塩および要すれば
マグネシウム塩を混合して得た均質溶液をアルカリ溶液
で沈澱させ、濾過、水洗により副生溶解質を除去するこ
とにより均質複合沈澱物が調整される。ケイ酸と2価重
金属塩および要すればマグネシウム塩を含む均質溶液は
ケイ酸溶液と2価重金属塩水溶液を混合し、必要に応じ
てマグネシウム塩水溶液を加えることにより、あるいは
ケイ酸溶液に直接2価重金属塩および必要に応じてマグ
ネシウム塩を溶解することにより得られる。In the first step, a homogeneous solution obtained by mixing silicic acid, a divalent heavy metal salt, and if necessary, a magnesium salt is precipitated with an alkaline solution, and by-product solutes are removed by filtration and water washing to obtain a homogeneous composite precipitate. be adjusted. A homogeneous solution containing silicic acid and a divalent heavy metal salt and, if necessary, a magnesium salt can be prepared by mixing the silicic acid solution and a divalent heavy metal salt aqueous solution and adding an aqueous magnesium salt solution if necessary, or by directly adding divalent heavy metal salt to the silicic acid solution. Obtained by dissolving a heavy metal salt and, if necessary, a magnesium salt.
ケイ酸と2(iIi重金属塩およびマグネシウム塩の混
合割合は一般式(1)を満足する範囲のaおよびbの値
を選ぶことにより与えられる。bの値はO〜2の間であ
るが、通常好ましい値は0.5〜1.0の間である。The mixing ratio of silicic acid and 2(iIi heavy metal salt and magnesium salt is given by selecting the values of a and b within the range that satisfies the general formula (1). The value of b is between O and 2, Usually preferred values are between 0.5 and 1.0.
a=0のマグネシウムを全く含有しない場合でも本発明
の合成膨潤性ケイ酸塩は生成する。aおよびbの値を決
定することにより2価重金属の値は6−a−bで与えら
れる。仕込組成は一般式(I)e満足するのが好ましい
が、2価重金属量の値、マグネシウム量(a)の値およ
びリチウム量(b)の値は計算値から少し変動させても
本発明の合成膨潤性ケイ酸塩は製造可能であり、上記王
者の値の総計量が5〜70間は許容される。ケイ酸溶液
はケイ酸ソーダと鉱酸を混合し、液のpHを酸性とする
ことにより得られる。ケイ酸ソーダは一般に市販されて
いる1号ないし4号水ガラスならびにメタケイ酸ソーダ
はいずれも使用できる。鉱酸としては硝酸、塩酸、硫酸
などが用いられる。ケイ酸ソーダと鉱酸を混合する場合
、鉱酸の量が少ないとゲル化する場合が多いので液のp
Hが5以下となる様にケイ酸ソーダと鉱酸の割合を選ぶ
必要がある。2価重金属塩はコバルト、ニッケル、亜鉛
、銅、鉄、マンガン、鉛、カドミウムなどの塩化物、硫
酸塩、硝酸塩、などから選ぶことができる。一般式(1
)の組成を満足する値であれば、重金属は1種類だけで
なく、2種類以上のどの様な組成の組合せでも選ぶこと
ができ、用途に応じて組成を設計できる。The synthetic swellable silicate of the present invention is produced even when a=0 and no magnesium is contained. By determining the values of a and b, the value of divalent heavy metal is given by 6-a-b. Although it is preferable that the charging composition satisfies the general formula (I)e, the values of the amount of divalent heavy metals, the amount of magnesium (a), and the amount of lithium (b) may vary slightly from the calculated values. Synthetic swellable silicates can be produced and a total weight of between 5 and 70 of the above-mentioned champion values is acceptable. A silicic acid solution is obtained by mixing sodium silicate and a mineral acid and making the pH of the solution acidic. As the sodium silicate, any of commercially available No. 1 to No. 4 water glass and sodium metasilicate can be used. Nitric acid, hydrochloric acid, sulfuric acid, etc. are used as mineral acids. When mixing sodium silicate and mineral acid, if the amount of mineral acid is small, gelation often occurs, so the pH of the liquid
It is necessary to select the ratio of sodium silicate and mineral acid so that H is 5 or less. The divalent heavy metal salt can be selected from chlorides, sulfates, nitrates, etc. of cobalt, nickel, zinc, copper, iron, manganese, lead, cadmium, etc. General formula (1
), it is possible to select not only one type of heavy metal but also any combination of two or more types of heavy metals, and the composition can be designed according to the application.
必要ならばマグネシウム塩を添加することも可能であり
、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシ
ウムなどから選ぶことができる。次に常温でケイ酸と2
個重金属塩あるいは要すればマグネシウム塩を含有する
均質溶液とアルカリ溶液を混合して均質複合沈澱物を得
る。アルカリ溶液としては水酸化ナトリウム溶液、水酸
化カリウム溶液、アンモニア水などが用いられる。アル
カリ溶液の量は混合後のp!(が10以上となる様な量
を選ぶのが望ましい。上記均質溶液とアルカリ溶液を混
合する場合、アルカリ溶液中に均質溶液を滴下して沈澱
せしめてもよく、あるいはその逆の順序にしてもよい。If necessary, it is also possible to add a magnesium salt, which can be selected from magnesium chloride, magnesium sulfate, magnesium nitrate, and the like. Next, add silicic acid and 2 at room temperature.
A homogeneous composite precipitate is obtained by mixing a homogeneous solution containing individual heavy metal salts or, if necessary, a magnesium salt and an alkaline solution. As the alkaline solution, sodium hydroxide solution, potassium hydroxide solution, aqueous ammonia, etc. are used. The amount of alkaline solution is p! after mixing. (It is desirable to select an amount such that good.
また両者の液を瞬時に混合しても均質複合沈澱物は得ら
れる。混合の際、特に撹拌を必要としないが、撹拌する
ことは一向にさしつかえない1次いで′aI禍、水浩を
掃返17で副牛雪解質を充分に除去する。これらの重金
属を含む均質複合沈澱物はX線粉末回折によりすでに低
結晶質のスメクタイト様構造を有しており、そのため、
第3段階の工程では比較的低温でしかも短時間の水熱処
理により良好な特性を持った本発明の合成膨潤性ケイ酸
塩が生成するものと推察される。また上記均質複合沈澱
物は沈澱する時に陽イオンをとり込んでいる場合が多い
ので、第2工程の段階で交換性陽イオンを特に添加する
必要はない。A homogeneous composite precipitate can also be obtained by instantaneously mixing both liquids. During mixing, stirring is not particularly required, but stirring is not a problem at all. 1. Next, the 'aI disaster, the water and the water, and the secondary lysate are thoroughly removed by sweeping 17. These heavy metal-containing homogeneous composite precipitates already have a low-crystalline smectite-like structure according to X-ray powder diffraction, and therefore,
It is presumed that in the third step, the synthetic swellable silicate of the present invention having good properties is produced by hydrothermal treatment at a relatively low temperature and for a short time. Furthermore, since the homogeneous composite precipitate often incorporates cations during precipitation, it is not necessary to particularly add exchangeable cations in the second step.
第2工程の出発原料スラリーは第1工程で得た均質複合
沈澱物に水酸化リチウム水溶液および要すれば陽イオン
の水酸化物、フッ化物あるいはそれらの混合水溶液を加
え、または要すればフッ化水素酸を添加することによっ
て調整される。The starting material slurry for the second step is prepared by adding an aqueous solution of lithium hydroxide and, if necessary, a cationic hydroxide, fluoride, or a mixed aqueous solution thereof to the homogeneous composite precipitate obtained in the first step, or if necessary, adding fluoride to the homogeneous composite precipitate. Prepared by adding hydrogen acid.
第3工程の水熱反応は第2工程で得られた出発原料組成
物スラリーをオートクレーブに仕込み、100℃ないし
350℃の温度で反応させ、本発明の合成膨潤性ケイ酸
塩を生成せしめる。反応中特に撹拌を必要としないが撹
拌をすることは一向にさしつかえない。一般に反応温度
が高いほど反応速度は大となり、反応時間が長いほど結
晶は良好となるが、反応温度200℃、反応圧力15.
9 kg/cm2では2時間の反応時間で充分である。In the hydrothermal reaction of the third step, the starting material composition slurry obtained in the second step is charged into an autoclave and reacted at a temperature of 100° C. to 350° C. to produce the synthetic swellable silicate of the present invention. Although stirring is not particularly required during the reaction, stirring is absolutely prohibited. Generally, the higher the reaction temperature, the higher the reaction rate, and the longer the reaction time, the better the crystals will be.
At 9 kg/cm2, a reaction time of 2 hours is sufficient.
第4工程においては、第3工程の水熱反応終了後オート
クレーブ内容物を取り出し、60℃以上200℃以下の
温度で乾燥し、粉砕することにより最終製品が得られる
。In the fourth step, after the completion of the hydrothermal reaction in the third step, the contents of the autoclave are taken out, dried at a temperature of 60° C. or higher and 200° C. or lower, and pulverized to obtain a final product.
本発明を実施することによって製造した新規の合成膨潤
性ケイ酸塩はX線回折、示差熱分析、赤外吸収スペクト
ル、化学分析、陽イオン交換容量(C,E、C,)、粘
性特性などによって評価することができる。The novel synthetic swellable silicate produced by carrying out the present invention has X-ray diffraction, differential thermal analysis, infrared absorption spectrum, chemical analysis, cation exchange capacity (C, E, C,), viscosity properties, etc. It can be evaluated by
本発明の新規の合成膨潤性ケイ酸塩はCu−にα線を用
いた場合の回折角(2θ)が、(hk)反射の(35,
06)について通常60.3度から61.2度の間に現
れ、3−八面体型スメクタイトであることがわかる。X
線回折パターンはヘクトライトのものに類似しているが
、全般的にピークがややブロードとなっている場合が多
い。水溶液中では通常60〜120ミリ当量/100g
の高い陽イオン交換容量を示し、あるいは水中において
優れた膨潤特性および分散性を示し、重金属の種類に対
応した着色した水系ゾルあるいはゲルを生成し、チクソ
トロピー的な性質を有するため、水溶性塗料、セラミッ
クス原料、触媒などの添加剤、スラリー安定剤、増粘剤
、粘結剤、懸濁安定剤、チクソトロピー付与剤などとし
て極めて有用である。本発明の新規合成膨潤性ケイ酸塩
は本質的に2価重金属を含有するため、殺菌、抗菌、消
毒などの目的に使用され得る。また構造中に重金属を含
有するため触媒、触媒担体として有用であり、更に種々
の金属多核水酸化イオンとの層間複合体を形成し、新た
な触媒、触媒担体、吸着剤などとして利用され得る。更
に有機化合物複合体とすることにより親油性粘土として
用いることもできる。また、焼成によりセラミックス化
してセンサー、電磁遮蔽材、半導体材料などの原料とし
ても有用である。The novel synthetic swellable silicate of the present invention has a diffraction angle (2θ) of (hk) reflection when α rays are used for Cu-.
06), it usually appears between 60.3 degrees and 61.2 degrees, indicating that it is a 3-octahedral smectite. X
The line diffraction pattern is similar to that of hectorite, but the peaks are generally somewhat broader in many cases. In aqueous solution, usually 60 to 120 milliequivalents/100g
It exhibits a high cation exchange capacity, exhibits excellent swelling properties and dispersibility in water, produces a colored aqueous sol or gel corresponding to the type of heavy metal, and has thixotropic properties, making it suitable for water-soluble paints, It is extremely useful as a ceramic raw material, additive for catalysts, slurry stabilizer, thickener, binder, suspension stabilizer, thixotropy imparting agent, etc. Since the novel synthetic swellable silicate of the present invention essentially contains divalent heavy metals, it can be used for purposes such as sterilization, antibacterial, and disinfection. Furthermore, since it contains heavy metals in its structure, it is useful as a catalyst and catalyst carrier, and furthermore, it forms interlayer complexes with various metal polynuclear hydroxide ions and can be used as new catalysts, catalyst carriers, adsorbents, etc. Furthermore, it can also be used as a lipophilic clay by forming an organic compound composite. It is also useful as a raw material for sensors, electromagnetic shielding materials, semiconductor materials, etc. by turning it into ceramics by firing.
次に実施例をあげて説明する。Next, an example will be given and explained.
実施例1
11のビーカーに水400 mAを入れ、3号水ガラス
(Si0228%、Na2O9%、モル比3.22)
86 gを溶解し、16規定硝酸23m1を撹拌しなが
ら一度に加えてケイ酸溶液を得る。次に水100 mA
に塩化マグネシウム−級試薬(純度98%)28gおよ
び塩化コバルト穴水和物特級試薬(純度99%) 32
.1 gを溶解した溶液をケイ酸溶液に加えて調整した
ケイ酸−コバルト塩−マグネシウム塩均質混合溶液を2
規定水酸化ナトリウ°ム溶液400 ml中に撹拌しな
がら5分間で滴下する。直ちに得られた反応均質複合沈
澱物を濾過し、充分に水洗した後、水酸化リチウム−水
和物特級試薬(純度98%) 1.47 gを溶解した
水溶液30mfを加えてスラリー状とし、オートクレー
ブに移す。15.9 kg/Cm2.200℃で2時間
反応させる。冷却後、反応生成物をとりだし、80℃で
乾燥した後、襦涜機にて粉砕する。Example 1 400 mA of water was put into a beaker No. 11, and No. 3 water glass (Si0228%, Na2O9%, molar ratio 3.22) was added.
86 g was dissolved and 23 ml of 16N nitric acid was added at once with stirring to obtain a silicic acid solution. Then water 100 mA
28 g of magnesium chloride-grade reagent (98% purity) and special grade cobalt chloride hydrate reagent (99% purity) 32
.. A homogeneous mixed solution of silicic acid-cobalt salt-magnesium salt prepared by adding 1 g of dissolved solution to the silicic acid solution was added to 2
Add dropwise to 400 ml of normal sodium hydroxide solution over 5 minutes while stirring. The reaction homogeneous composite precipitate immediately obtained was filtered, thoroughly washed with water, and then 30 mf of an aqueous solution in which 1.47 g of lithium hydroxide hydrate special grade reagent (purity 98%) was dissolved was added to form a slurry, and the mixture was autoclaved. Move to. 15.9 kg/Cm2. React at 200°C for 2 hours. After cooling, the reaction product is taken out, dried at 80°C, and then pulverized using a grinder.
水晶はMとしてコバルトを含有し、a=2.7、b=0
.7、C=Oに相当し、交換性陽イオンとしてナトリウ
ムを含み、その陽イオン交換容量は86ミリ当量/10
08であった。X線粉末回折図は3−へ面体方スメクタ
イトであるヘクトライトに類似したパターンを示すが、
全体的にはピークはブロードであり、(35、O6)反
射ピークのd値は1.522人であった。粉末の色調は
淡紫色であり、2%水系分散液は淡紫色の半透明の固体
ゲルを形成し、極めて強いチクソトロピー性を示した。The crystal contains cobalt as M, a=2.7, b=0
.. 7, corresponds to C=O, contains sodium as an exchangeable cation, and has a cation exchange capacity of 86 milliequivalents/10
It was 08. The X-ray powder diffraction pattern shows a pattern similar to hectorite, which is a 3-hehedral smectite.
Overall, the peak was broad, and the d value of the (35, O6) reflection peak was 1.522. The color of the powder was pale purple, and the 2% aqueous dispersion formed a pale purple translucent solid gel, exhibiting extremely strong thixotropic properties.
実施例2
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 2 The same procedure as in Example 1 was carried out except that the amounts of raw materials were as follows.
3号水ガラス 86 g塩化コバ
ルト六水和物特級試薬 64g水酸化リチウム−水和
物特級試薬 1.58得られた製品は紫色を呈し、M
としてコバルトを含有し、a=0、b=0.7、e=o
に相当し、交換性陽イオンはナトリウムで陽イオン交換
容量は72ミリ当量/100gであった。X線粉末回折
図は実施例1の本発明製品のパターンに類似しており、
(35,06)反射ピークのd値は1.527人であっ
た。2%水系分散液は紫色の半透明のチクソトロピー性
なゲルを形成した。No. 3 water glass 86 g Cobalt chloride hexahydrate special grade reagent 64 g Lithium hydroxide hydrate special grade reagent 1.58 The obtained product has a purple color and is M
contains cobalt as, a=0, b=0.7, e=o
The exchangeable cation was sodium and the cation exchange capacity was 72 meq/100g. The X-ray powder diffraction pattern is similar to the pattern of the inventive product of Example 1;
(35,06) The d value of the reflection peak was 1.527 people. The 2% aqueous dispersion formed a purple translucent thixotropic gel.
実施例1および実施例2で得られた本発明製品と純モン
モリロナイト製品のクニビアFおよび水系分散剤として
市販されている合成ナトリウム型西ケイ素雲母製品を用
いて2.5%水系分散液を調整し、その流動学的性質を
回転粘度計であるFann VGツメ−−で測定した結
果を表に示す。A 2.5% aqueous dispersion was prepared using the products of the present invention obtained in Examples 1 and 2, the pure montmorillonite product Kunivia F, and a commercially available synthetic sodium-type silicon mica product as an aqueous dispersant. The rheological properties were measured using a rotational viscometer, a Fann VG meter, and the results are shown in the table.
表から明らかなごとく、実施例1および実施例2で得ら
れたコバルトを含む本発明製品の水系分散液は市販の純
モンモリロナイト製品りニビアFおよび合成ナトリウム
型口ケイ素雲母製品の水系分散液と比較して、極めて高
い粘度、降伏値およびゲル強度を有し、チクソトロピー
性が強く、水系に対するゲル化剤として優れた性能を有
することがわかる。As is clear from the table, the aqueous dispersions of the cobalt-containing products of the present invention obtained in Examples 1 and 2 were compared with the aqueous dispersions of the commercially available pure montmorillonite product Rinivia F and the synthetic sodium-type silicon-mica products. It can be seen that it has extremely high viscosity, yield value and gel strength, strong thixotropy, and excellent performance as a gelling agent for aqueous systems.
実施例3
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 3 The same procedure as in Example 1 was carried out except that the amounts of raw material materials were as follows.
3号水ガラス 86
g塩化ニッケル(I)六水和物特級試薬(純度98%
)64.1g水酸化リチウム−水和物特級試薬
1.26 g10%フッ化水素酸溶液
10 ml得られた製品は淡緑色を呈し、
Mとしてニッケルを含有し、a=O1b=0.6、c=
1に相当し、交換性陽イオンとしてナトリウムを含み、
陽イオン交換容量は72ミリ当量/100gであった。No. 3 water glass 86
g Nickel (I) chloride hexahydrate special grade reagent (purity 98%
)64.1g Lithium hydroxide-hydrate special grade reagent
1.26 g 10% hydrofluoric acid solution
10 ml of the product was pale green in color,
Contains nickel as M, a=O1b=0.6, c=
1 and contains sodium as an exchangeable cation,
The cation exchange capacity was 72 meq/100g.
X線粉末回折図は実施例1の本発明製品のパターンに類
似しており、(35,06)反射ピークのd値は1.5
22人であった。2%水系分散液はチクソトロピー性の
淡緑色の半透明固体ゲルを形成した。Fann VGツ
メ−−で測定した2、5%水系分散液の流動学的性質は
次の通りで、見掛粘度(600rpm) =8 cp、
見掛粘度(6rpm)=150 cp、塑性粘度=4
cp、降伏値=7 lb/100ft2.10秒後ゲル
強度=4 lb/100ft2および10分後ゲル強度
=32 lb/100ft2であった。The X-ray powder diffraction pattern is similar to the pattern of the inventive product of Example 1, and the d value of the (35,06) reflection peak is 1.5.
There were 22 people. The 2% aqueous dispersion formed a thixotropic pale green translucent solid gel. The rheological properties of the 2.5% aqueous dispersion measured on a Fann VG tool were as follows: apparent viscosity (600 rpm) = 8 cp;
Apparent viscosity (6 rpm) = 150 cp, plastic viscosity = 4
cp, yield value = 7 lb/100ft2, gel strength after 10 seconds = 4 lb/100ft2 and gel strength after 10 minutes = 32 lb/100ft2.
実施例4
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 4 The same procedure as in Example 1 was carried out except that the amounts of raw material materials were as follows.
3号水ガラス 86 g塩化マグ
ネシウム穴水和物−級試薬 42g硝酸亜鉛穴水和物特
級試薬(純度99%)20g水酸化リチウム−水和物特
級試薬 1.47 g得られた製品は純白を呈し、M
として亜鉛を含有し、a:4.05、b=0.7、C=
0に相当し、交換性陽イオンとしてナトリウムを含み、
陽イオン交換容量は80ミリ当量/100gであった。No. 3 water glass 86 g Magnesium chloride hole hydrate-grade reagent 42 g Zinc nitrate hole hydrate special grade reagent (99% purity) 20 g Lithium hydroxide hydrate special grade reagent 1.47 g The obtained product exhibits pure white color. M
contains zinc as, a: 4.05, b=0.7, C=
0 and contains sodium as an exchangeable cation,
The cation exchange capacity was 80 meq/100g.
X線粉末回折図は実施例1の本発明製品のパターンに類
似しており、(35,06)反射ピークのd値は1.5
23人であった。2%水系分散液はチクソトロピー性の
ある白色の半透明固体ゲルを形成した。Fann VG
ツメ−−で測定した2、5%水系分散液の流動学的性質
は次の通りで、見掛粘度(600rpm) =10 c
p、見掛粘度(6rpm) =150 cp。The X-ray powder diffraction pattern is similar to the pattern of the inventive product of Example 1, and the d value of the (35,06) reflection peak is 1.5.
There were 23 people. The 2% aqueous dispersion formed a white translucent solid gel with thixotropic properties. Fann VG
The rheological properties of the 2.5% aqueous dispersion measured with a claw were as follows: apparent viscosity (600 rpm) = 10 c
p, apparent viscosity (6 rpm) = 150 cp.
塑性粘度=6 cp、降伏値=7 lb/100ft2
.10秒後ゲル強度=4 lb/100ft2および1
0分後ゲル強度=41 lb/100ft2であった。Plastic viscosity = 6 cp, yield value = 7 lb/100ft2
.. Gel strength after 10 seconds = 4 lb/100ft2 and 1
Gel strength after 0 minutes was 41 lb/100 ft2.
実施例5
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 5 The same procedure as in Example 1 was carried out except that the amount of raw materials charged was as follows.
3号水ガラス 86g塩化マグネ
シウム六水和物−級試薬 54 g硫酸第1鉄七水和物
特級試薬(純度99%) 2.8 g水酸化リチウム−
水和物特級試薬 1.47g得られた製品は淡い肌
色を呈した白色で、Mとして鉄を含有し、a=5.2、
b=0.7、c=0に相当し、交換性陽イオンとしてナ
トリウムを含有し陽イオン交換容量は98ミリ当量/1
00gであった。X線粉末回折図は実施例1の本発明製
品のパターンに類似しており、(35,06)反射ピー
クのd値は1.524八であった。2%水系分散液はチ
クソトロピー性のわずかに淡い肌色を呈した透明の固体
ゲルを形成した。Fann VGメーターで測定した2
、5%水系分散液の流動学的性質は次の通りで、見掛粘
度(600ppm)=14 cp、見掛粘度(6ppm
)=500 ep1塑性粘度=7ep、降伏値=13
lb/100ft2.10秒後ゲル強度=101b/1
00ft2および10分後ゲル強度=53 lb/10
0ft2であった。No. 3 water glass 86 g Magnesium chloride hexahydrate-grade reagent 54 g Ferrous sulfate heptahydrate special grade reagent (99% purity) 2.8 g Lithium hydroxide
Hydrate special grade reagent 1.47g The obtained product is white with a pale skin color, contains iron as M, a = 5.2,
Corresponds to b = 0.7, c = 0, contains sodium as an exchangeable cation, and has a cation exchange capacity of 98 milliequivalents/1
It was 00g. The X-ray powder diffraction pattern was similar to the pattern of the inventive product of Example 1, and the d value of the (35,06) reflection peak was 1.5248. The 2% aqueous dispersion formed a transparent solid gel with a thixotropic, slightly pale flesh color. 2 measured with a Fann VG meter
, the rheological properties of the 5% aqueous dispersion are as follows: apparent viscosity (600 ppm) = 14 cp, apparent viscosity (6 ppm)
)=500 ep1 plastic viscosity=7ep, yield value=13
lb/100ft2. Gel strength after 10 seconds = 101b/1
00ft2 and after 10 minutes gel strength = 53 lb/10
It was 0ft2.
実施例6
原料物質の仕込量を次の通りとして実施例1と同様に操
作した。Example 6 The same procedure as in Example 1 was carried out except that the amount of raw materials charged was as follows.
3号水ガラス 86g塩化マグネ
シウム穴水和物−級試薬 42g塩化第2銅二永和物特
級試薬(純度99%)11.6 g水酸化リチウム−水
和物特級試薬 1.47g得られた製品は灰色を呈
し、Mとして銅を含有し、a=4.05、b =0.7
、C=Oに相当し、交換性陽イオンとしてナトリウムを
含有し陽イオン交換容量は76ミリ当量/100gであ
った。X線粉末回折図は実施例1の本発明製品のパター
ンに類似しており、(35,06)反射ピークのd値は
1.518Aであった◎Fann VGメーターで測定
した2、5%水系分散液の流動学的性質は次の通りで見
掛粘度(600ppm)=14 cp、見掛粘度(6p
pm)=350 Cp、塑性粘度=7 ep1降伏値=
13 lb/100ft2.10秒後ゲル強度=8 l
b/100ft2および10分後ゲル強度=53 lb
/100ft2であった。No. 3 water glass 86 g Magnesium chloride hydrate grade reagent 42 g Cupric chloride di-eternal hydrate special grade reagent (99% purity) 11.6 g Lithium hydroxide hydrate special grade reagent 1.47 g The obtained product is gray , contains copper as M, a = 4.05, b = 0.7
, C=O, contained sodium as an exchangeable cation, and had a cation exchange capacity of 76 milliequivalents/100 g. The X-ray powder diffraction pattern was similar to the pattern of the inventive product of Example 1, and the d value of the (35,06) reflection peak was 1.518 A. ◎2.5% water system measured with a Fann VG meter. The rheological properties of the dispersion are as follows: apparent viscosity (600 ppm) = 14 cp;
pm) = 350 Cp, plastic viscosity = 7 ep1 yield value =
13 lb/100ft2. Gel strength after 10 seconds = 8 l
b/100ft2 and gel strength after 10 minutes = 53 lb
/100ft2.
Claims (1)
)O_2_0(OH)_4_−_cF_c〕^b^−・
A^y^+_b_/_y(式中のa、b、cおよびyの
値は0≦a<6、0<b≦2、0≦c≦4および1≦y
≦2とし、MはCo、Ni、Zn、Cu、Fe、Mn、
Pb、Cdなど2価重金属イオンから選んだ少なくとも
1個の2価重金属イオンであり、またAはアルカリ金属
イオン、アルカリ土類金属イオン、アンモニウムイオン
およびアルキルアンモニウムイオンからなる群から選ん
だ少なくとも1個の陽イオンである)で表わされるヘク
トライト型スメクタイトに類似した構造を有する合成膨
潤性ケイ酸塩。 2)特許請求の範囲第1項に記載のヘクトライト型スメ
クタイトに類似した構造を有する膨潤性ケイ酸塩を合成
するにあたり、第1項の一般式の組成を満足するケイ酸
、2価重金属塩およびマグネシウム塩の均質混合液とア
ルカリ溶液より均質複合沈殿物を調整し、副生溶解質を
除去した後、上記組成を満足する量のリチウムイオンお
よび要すれば陽イオンとフッ素イオンを添加して得たス
ラリーをオートクレーブに移し、100℃ないし350
℃の条件下で水熱反応を行い、次いで反応生成物を乾燥
・粉砕することを特徴とする特許請求範囲第1項の一般
式で示される合成膨潤性ケイ酸塩の製造方法。[Claims] 1) General formula [Si_8(M_6_-_a_-_bMg_aLi_b
)O_2_0(OH)_4_-_cF_c〕^b^-・
A^y^+_b_/_y (the values of a, b, c and y in the formula are 0≦a<6, 0<b≦2, 0≦c≦4 and 1≦y
≦2, and M is Co, Ni, Zn, Cu, Fe, Mn,
At least one divalent heavy metal ion selected from divalent heavy metal ions such as Pb and Cd, and A is at least one divalent heavy metal ion selected from the group consisting of alkali metal ions, alkaline earth metal ions, ammonium ions, and alkylammonium ions. A synthetic swellable silicate with a structure similar to hectorite-type smectite, which is the cation of 2) In synthesizing a swellable silicate having a structure similar to the hectorite-type smectite described in claim 1, a silicic acid or a divalent heavy metal salt that satisfies the composition of the general formula in claim 1 A homogeneous composite precipitate is prepared from a homogeneous mixed solution of magnesium salt and an alkaline solution, and after removing by-product solutes, lithium ions and, if necessary, cations and fluoride ions are added in an amount that satisfies the above composition. Transfer the obtained slurry to an autoclave and heat it at 100℃ to 350℃.
A method for producing a synthetic swellable silicate represented by the general formula of claim 1, which comprises carrying out a hydrothermal reaction under conditions of .degree. C., and then drying and pulverizing the reaction product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13547086A JPS62292616A (en) | 1986-06-11 | 1986-06-11 | Synthesized swelling silicate and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13547086A JPS62292616A (en) | 1986-06-11 | 1986-06-11 | Synthesized swelling silicate and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62292616A true JPS62292616A (en) | 1987-12-19 |
JPH0569769B2 JPH0569769B2 (en) | 1993-10-01 |
Family
ID=15152464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13547086A Granted JPS62292616A (en) | 1986-06-11 | 1986-06-11 | Synthesized swelling silicate and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62292616A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63185811A (en) * | 1987-01-26 | 1988-08-01 | Agency Of Ind Science & Technol | Synthetic porous material and production thereof |
EP0401047A2 (en) * | 1989-06-02 | 1990-12-05 | Unilever Plc | Detergent composition |
FR2683552A1 (en) * | 1991-11-08 | 1993-05-14 | Inst Francais Du Petrole | NON - SWELLING TRIOCTAEDRIC 2: 1 PHYLLOSILICATES AND PROCESS FOR THEIR PREPARATION. |
JP2012148946A (en) * | 2011-01-21 | 2012-08-09 | Hitachi Chemical Co Ltd | Synthetic smectite paste, synthetic smectite self-supporting film, synthetic smectite film, and method for producing synthetic smectite film |
CN110734071A (en) * | 2019-10-16 | 2020-01-31 | 林亚庆 | magnesium silicate and its derivatives and preparation method |
CN111436459A (en) * | 2019-12-27 | 2020-07-24 | 福建格瑞诗化工科技有限公司 | Inorganic mildew-proof antibacterial material, preparation method and application thereof, and inorganic mildew-proof antibacterial liquid |
EP3584220A4 (en) * | 2017-02-14 | 2021-01-27 | Topy Kogyo Kabushiki Kaisha | Silicate coated article and method for producing same |
EP3842385A4 (en) * | 2018-08-22 | 2022-09-07 | Topy Kogyo Kabushiki Kaisha | Silicate coated body |
EP3842386A4 (en) * | 2018-08-22 | 2022-09-07 | Topy Kogyo Kabushiki Kaisha | Silicate coated body |
-
1986
- 1986-06-11 JP JP13547086A patent/JPS62292616A/en active Granted
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63185811A (en) * | 1987-01-26 | 1988-08-01 | Agency Of Ind Science & Technol | Synthetic porous material and production thereof |
EP0401047A2 (en) * | 1989-06-02 | 1990-12-05 | Unilever Plc | Detergent composition |
FR2683552A1 (en) * | 1991-11-08 | 1993-05-14 | Inst Francais Du Petrole | NON - SWELLING TRIOCTAEDRIC 2: 1 PHYLLOSILICATES AND PROCESS FOR THEIR PREPARATION. |
JP2012148946A (en) * | 2011-01-21 | 2012-08-09 | Hitachi Chemical Co Ltd | Synthetic smectite paste, synthetic smectite self-supporting film, synthetic smectite film, and method for producing synthetic smectite film |
EP3584220A4 (en) * | 2017-02-14 | 2021-01-27 | Topy Kogyo Kabushiki Kaisha | Silicate coated article and method for producing same |
EP3842385A4 (en) * | 2018-08-22 | 2022-09-07 | Topy Kogyo Kabushiki Kaisha | Silicate coated body |
EP3842386A4 (en) * | 2018-08-22 | 2022-09-07 | Topy Kogyo Kabushiki Kaisha | Silicate coated body |
CN110734071A (en) * | 2019-10-16 | 2020-01-31 | 林亚庆 | magnesium silicate and its derivatives and preparation method |
CN111436459A (en) * | 2019-12-27 | 2020-07-24 | 福建格瑞诗化工科技有限公司 | Inorganic mildew-proof antibacterial material, preparation method and application thereof, and inorganic mildew-proof antibacterial liquid |
CN111436459B (en) * | 2019-12-27 | 2021-12-28 | 福建格瑞诗化工科技有限公司 | Inorganic mildew-proof antibacterial material, preparation method and application thereof, and inorganic mildew-proof antibacterial liquid |
Also Published As
Publication number | Publication date |
---|---|
JPH0569769B2 (en) | 1993-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1125991A (en) | Method of synthesizing zincosilicate or stannosilicate or titanosilicate material | |
JPS62292616A (en) | Synthesized swelling silicate and its production | |
US8101148B2 (en) | Process for the preparation of magadiite or kenyaite from an organic structuring agent comprising two terminal alcohol functions | |
JP2636178B2 (en) | Synthetic mixed-layer silicate and method for producing the same | |
TW394750B (en) | Magnesiosilicates | |
JPS62292615A (en) | Production of swelling silicate | |
JP2667978B2 (en) | Synthetic porous body and method for producing the same | |
JPS636486B2 (en) | ||
JPS6112848B2 (en) | ||
JPS5921517A (en) | Synthetic swellable silicate and its manufacture | |
US5958354A (en) | Aluminosilicate cation exchange compounds | |
JPS62297210A (en) | Swelling silicate and production thereof | |
JP2701055B2 (en) | Method for producing metal-containing clay mineral | |
JPH01212212A (en) | Production of smectite interlayer composite material | |
JP3007954B2 (en) | Mixed layer silicate and method for producing the same | |
JP2979141B2 (en) | Synthetic iron-containing swellable silicate and method for producing the same | |
JPH1129760A (en) | Ultraviolet protecting agent | |
JP4925040B2 (en) | Method for producing metal ion-containing synthetic layered silicate | |
US7785555B1 (en) | Synthesis of lizardite from olivine | |
ESHETE | EXTRACTION OF SILICA FROM ALUMINUM SULPHATE MANUFACTURING | |
JPS6259518A (en) | Production of synthetic hectorite | |
AU704624B2 (en) | Aluminosilicate cation exchange compounds | |
JPS58176116A (en) | Swellable silicic acid salt | |
JPH01246123A (en) | Fibrous agglomerate of synthetic kaolinite and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |