JPS62292529A - Power distribution controller for four wheel drive vehicle - Google Patents

Power distribution controller for four wheel drive vehicle

Info

Publication number
JPS62292529A
JPS62292529A JP13547186A JP13547186A JPS62292529A JP S62292529 A JPS62292529 A JP S62292529A JP 13547186 A JP13547186 A JP 13547186A JP 13547186 A JP13547186 A JP 13547186A JP S62292529 A JPS62292529 A JP S62292529A
Authority
JP
Japan
Prior art keywords
clutch
wheel drive
force distribution
differential limiting
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13547186A
Other languages
Japanese (ja)
Inventor
Shuji Torii
修司 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13547186A priority Critical patent/JPS62292529A/en
Publication of JPS62292529A publication Critical patent/JPS62292529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To aim at improvement in stack escapability as well as improvement in accelerability at a low friction factor passage, by installing a device which interlocks the clutch clamping force control actuation of a differential limiting controller with the clutch clamping force control actuation of an all wheel driving force distribution controller. CONSTITUTION:An all wheel driving force distribution controller 1 makes clutch clamping force variable according to driving conditions of a vehicle, and clutch clamping force control actuation of this controller 1 and another clutch clamping force control actuation of a differential limiting controller are interlocked with each other via an interlocking device 3. This clutch clamping force of the differential limiting controller 2 is given as the value conformed to the clutch clamping force of the all wheel driving force distribution controller 1. With this constitution, when it comes to driving force distribution at the 4WD side, differential limiting actuation is also performed by the interlocking device 3, increasing driving force at the low speed side of left and right wheels. Therefore, stack escapability and accelerability at a low friction factor passage are all improved.

Description

【発明の詳細な説明】 3、発明の、ET細な説明 (産業上の利用分野) 本発明は、外部からのクラッチ締結力制御により1i1
1後輪と左右輪の両部動力配分制御装置を制御する四輪
駆動11(用駆動力配分制御装置に関する。
Detailed Description of the Invention 3. ET Detailed Description of the Invention (Field of Industrial Application) The present invention provides a
1. This invention relates to a four-wheel drive 11 (driving force distribution control device) that controls a power distribution control device for both rear wheels and left and right wheels.

(従来の技術) 従来の四輪駆動市川駆動力配分制御装置としては1例え
ば11F開閉61−67632吋公報に記11.1され
ている装置が知られている。
(Prior Art) As a conventional four-wheel drive Ichikawa drive force distribution control device, for example, the device described in 11.1 of the 11F Opening/Closing 61-67632-inch publication is known.

この従来装置は、スタック脱出等を[1的と巳だもので
、車両のドライブシャフトに連結したクラッチを接合さ
せて前輪と後輪とを連結することにより、ち該11(両
の駆動方式を2輪駆動から4輪駆動に切換える駆動方式
切換装置において、1111記前輪及び後輪に取付けて
それぞれ1i1輪及び後輪の回転数を常時検出する回転
数センサと、常時駆動される側の小輪の左右各輪の回転
数を常時検出する他の同転数センサとを有し、これらの
回転数センサによって得られた値より、前輪及び後輪の
回転数差が所定値よりも大の場合には、先ず車両を4輪
駆動に切換え、次に、常時駆動される側の車輪の左右輪
回転数差を基準値と比較し、該左右輪間にすへりが生じ
ていると判断した場合には、差動制限機構を作動させ該
左右輪のすべりによる差動も阻止するものである。
This conventional device is capable of preventing stuck escape, etc. by engaging a clutch connected to the drive shaft of the vehicle to connect the front wheels and the rear wheels. In a drive system switching device for switching from two-wheel drive to four-wheel drive, a rotation speed sensor is attached to the front wheel and the rear wheel described in 1111 and constantly detects the rotation speed of the 1i single wheel and the rear wheel, respectively, and a small wheel on the side that is constantly driven. and other rotational speed sensors that constantly detect the rotational speed of each of the left and right wheels, and if the difference in rotational speed between the front and rear wheels is larger than a predetermined value from the value obtained by these rotational speed sensors. In this case, the vehicle is first switched to four-wheel drive, and then the difference in rotational speed between the left and right wheels of the wheel that is constantly driven is compared with a reference value, and it is determined that there is a gap between the left and right wheels. In this case, a differential limiting mechanism is activated to prevent differential movement due to slippage between the left and right wheels.

(発明が解決しようとする問題点) しかしながら、このような従来の四輪駆動11(円部動
力配分制御装置は、駆動輪がスタック(2輪駆動状態で
駆動輪の一方が空転すると他方の車輪が静+17− L
、車両が動かなくなる現象)した場合に、2輪駆動状態
から4輪駆動状態に切り換えると共に常時駆動される側
の車輪の左右輪にすべりが生じている場合には該左右輪
の差動も制限してスタック脱出性の向上を図ろうとする
ものであるが、」−足固制御はそれぞれ各回転数センサ
からの信号により互いが制御されるものであったために
、以下に列挙するような問題点があった。
(Problems to be Solved by the Invention) However, in the conventional four-wheel drive system 11 (circular power distribution control device), the drive wheels become stuck (when one of the drive wheels spins in a two-wheel drive state, the other wheel is still +17- L
, a phenomenon in which the vehicle stops moving), the system switches from two-wheel drive to four-wheel drive, and if there is slippage between the left and right wheels of the wheels that are constantly being driven, the differential between the left and right wheels is also limited. However, since the foot lock control was mutually controlled by the signals from each rotation speed sensor, there were problems as listed below. was there.

・□() 必ず4個の回転数センサを要しコストが高く
なる。
・□() Always requires four rotational speed sensors, increasing cost.

(′2)  前後輪間にすべりが生じる様な路面では、
常時駆動する左右輪間にもすべりが発生する可能性が高
いにもかかわらず、左右の回転差が生じた東を検出して
から、初めて差動制限機構を作動開始する為、無駄な左
右輪間のすべりを未然に防ぐことができない。
('2) On road surfaces where there is slippage between the front and rear wheels,
Although there is a high possibility that slipping will occur between the left and right wheels that are constantly driven, the differential limiting mechanism starts operating only after detecting the difference in rotation between the left and right wheels, so the left and right wheels are wasted. It is not possible to prevent slippage between the parts.

(3)  前後輪、左右輪間のすべりを阻1Fユする手
段が0N−OFF的に切換えられるものである為、切換
ショックや車両のステア特性の急変化を招くものである
(3) Since the means for preventing slippage between the front and rear wheels and the left and right wheels is switched in an ON-OFF manner, it causes a switching shock and a sudden change in the steering characteristics of the vehicle.

(問題点を解決するための手段) 本発明は、■−述のような問題点を解決することを11
的としてなされたもので、このI]的達成のために本発
明では、以下に述べるような解決手段とした。
(Means for solving the problems) The present invention aims to solve the problems as described in 11.
In order to achieve this objective, the present invention employs the following solution.

本発明の解決手段を、第1図に示すクレーム概念図によ
り説明すると、車両の走行状況に応じてクラッチ締結力
を可変とし、前後輪への駆動力配分を制御する前後輪駆
動力配分制御装置lと、車両の走行状況に応じてクラッ
チ締結力を可変とし、左右輪への駆動力配分を制御する
差動制限制御装置2とを備え、前記差動制限制御装置2
のフランチ締結力制御作動を、前記前後輪駆動力配分制
御装置1のクラッチ締結力制御作動と連動させる津動手
段3を有し、前記差動制限制御装置2のフランチ締結力
を前記前後輪駆動力配分制御装置1のフランチ締結力に
応じた値として付与することを特徴とする。
The solution of the present invention will be explained with reference to the conceptual diagram of the claim shown in FIG. 1. A front and rear wheel drive force distribution control device that makes the clutch engagement force variable according to the driving situation of the vehicle and controls the drive force distribution to the front and rear wheels. 1, and a differential limiting control device 2 that makes the clutch engagement force variable depending on the driving condition of the vehicle and controls the distribution of driving force to the left and right wheels, the differential limiting control device 2
The flanch engagement force control operation of the front and rear wheel drive force distribution control device 1 is linked with the clutch engagement force control operation of the front and rear wheel drive force distribution control device 1. It is characterized in that it is given as a value according to the flanch fastening force of the force distribution control device 1.

(作 用) 本発明の四輪駆動車用駆動力配分制御装置では、1.述
のような手段としたことで、スタック時や低摩擦係数路
走行時等で、前後輪駆動力配分制御装置のクラッチ締結
作動により4輪駆動側の駆動力配分となる時には、連動
手段により差動制限作動もなされて、左右輪のうち低回
転側の駆動力を増大させる差動制限トルクが発生する。
(Function) In the driving force distribution control device for a four-wheel drive vehicle of the present invention, 1. By using the above-mentioned means, when the clutch engagement of the front and rear wheel drive force distribution control device causes the drive force to be distributed to the four-wheel drive side, such as when stuck or when driving on a road with a low friction coefficient, the interlocking means can make a difference. A motion limiting operation is also performed, and a differential limiting torque is generated that increases the driving force on the low rotation side of the left and right wheels.

従って、スタック脱出性の向上、低摩擦係数路での加速
性・登板性等の向にを図ることができる。
Therefore, it is possible to improve the ability to get out of the stack, and to improve acceleration and climbing performance on roads with a low friction coefficient.

また、アスファルト乾燥路等での通常走行時で1前後輪
駆動勾配分制御装置のクラッチ解放により2輪駆動側の
駆動力配分の時には、連動手段により差動制限作動もな
いため、左右輪の差動による円滑な旋回走行ができる。
In addition, during normal driving on asphalt dry roads, etc., when the clutch of the front and rear wheel drive gradient control device is released to distribute the driving force to the two-wheel drive side, the interlocking means does not operate to limit the differential, so the difference between the left and right wheels is reduced. Smooth turning movement is possible due to the movement.

さらに、左右輪の差動制限制御装置のクラッチ締結力制
御特性の感度を、前後輪駆動力配分制御装置のクラッチ
締結力制御特性の感度より鈍く設定した場合には、左右
輪の差動装置が急にロック側に制御されることがなく、
車両のステア特性の急変を防1[−することができる。
Furthermore, if the sensitivity of the clutch engagement force control characteristic of the left and right wheel differential limiting control device is set to be lower than the sensitivity of the clutch engagement force control characteristic of the front and rear wheel drive force distribution control device, It will not be suddenly controlled by the lock side,
Sudden changes in the vehicle's steering characteristics can be prevented.

(実施例) 以下、本発明の実施例を図面によりl’l’F述する。(Example) Hereinafter, embodiments of the present invention will be described with reference to the drawings.

尚、この実施例を述べるにあたって、後輪駆動をベース
にし、リヤディファレンシャル装置に差動制限クラッチ
が設けられている四輪駆動Qj用駆動力配分制御装置を
例にとる。
In describing this embodiment, a driving force distribution control system for a four-wheel drive Qj, which is based on rear wheel drive and has a rear differential device provided with a differential limiting clutch, will be taken as an example.

まず、実施例の構成を説明する。First, the configuration of the embodiment will be explained.

第1実施例の駆動力配分制御装置AIが適用される四輪
駆動11(の駆動系は、第2図に示すように、エンジン
10、トランスミッション11、ミッション出力fit
h12、トランスファ装置13、リヤプロペラシャフト
14、リヤディファレンシャル装置15、リヤドライブ
シャフト16,17、後輪18,19、フロントプロペ
ラシャフト20、フロントディファレンシャル9212
1、フロントドライブシャフト22.23、前輪24゜
25を備えている。
As shown in FIG. 2, the drive system of the four-wheel drive 11 (to which the driving force distribution control device AI of the first embodiment is applied) includes an engine 10, a transmission 11, a mission output fit
h12, transfer device 13, rear propeller shaft 14, rear differential device 15, rear drive shafts 16, 17, rear wheels 18, 19, front propeller shaft 20, front differential 9212
1. It is equipped with a front drive shaft of 22.23 degrees and a front wheel of 24 degrees and 25 degrees.

前記トランスファ装、113には、クラッチ締結力に応
じて前輪24.25側へエンジン駆動力を配分する湿式
多板クラッチ構造のトランスファクラッチ30と、前輪
24.25側への駆動力伝達手段としてのギヤトレーン
31と、がトランスファケース32の内部に設けられて
いて、前記トランスファクラッチ30はクラッチピスト
ン33への外部からのクラッチ油圧Pによりクラッチ締
結力が付与される。
The transfer device 113 includes a transfer clutch 30 having a wet multi-plate clutch structure that distributes the engine driving force to the front wheels 24.25 side according to the clutch engagement force, and a transfer clutch 30 as a means for transmitting the driving force to the front wheels 24.25 side. A gear train 31 is provided inside a transfer case 32, and a clutch engagement force is applied to the transfer clutch 30 by a clutch hydraulic pressure P applied to a clutch piston 33 from the outside.

尚、トランスファ装置13への入力軸であるミッション
出力軸12には、出力軸の一方であるリヤプロペラシャ
フト14が同軸直結状態で設けられ、出力軸の他方であ
るフロントプロペラシャフト20がトランスファクラッ
チ30及びギヤI・レーン31を介して設けられている
The mission output shaft 12, which is the input shaft to the transfer device 13, is provided with a rear propeller shaft 14, which is one of the output shafts, in a coaxially directly connected state, and the front propeller shaft 20, which is the other output shaft, is connected to the transfer clutch 30. and a gear I lane 31.

1ii記リヤデイフアレンシヤル装置15には、左右の
後輪18.19に差動を許しながらエンジン駆動力を配
分するディファレンシャルギヤ40と、該ディファレン
シャルギヤ40への駆動人力部と駆動出力部との間に設
けられ、クラッチ締結力に応じて左右後輪18.19の
差動を制限する湿式多板クラッチ構造の差動制限クラッ
チ41と、がディファレンシャルケース42の内部に設
けられていて、前記差動制限クラッチ41はクラッチピ
ストン43への外部からのクラッチ油圧P′によりクラ
ッチ締結力が付与される。
The rear differential device 15 described in 1ii includes a differential gear 40 that distributes engine driving force while allowing differential movement between the left and right rear wheels 18 and 19, and a drive manual section and a drive output section for the differential gear 40. A differential limiting clutch 41 having a wet multi-disc clutch structure is provided between the differential wheels 18 and 19 to limit the differential movement between the left and right rear wheels 18 and 19 according to the clutch engagement force, and is provided inside the differential case 42. A clutch engagement force is applied to the differential limiting clutch 41 by external clutch oil pressure P' applied to the clutch piston 43.

尚、前記フロントディファレンシャル装置21としては
、ディファレンシャルケース45内にディファレンシャ
ルギヤ40のみが納められた通常の差動装置が用いられ
ている。
Incidentally, as the front differential device 21, a normal differential device in which only a differential gear 40 is housed in a differential case 45 is used.

次に、第1実施例の駆動力配分制御装置A1は、第2図
及び第3図に示すように、前記トランスファクラッチ3
0と差動制限クラッチ41を、締結させるための油圧力
を発生させる外部装置としての油圧発生装置50と、こ
の油圧発生装置50からの油圧を所定のクラッチ油圧P
、P’ に制御する油圧制御装置60とを備えている。
Next, as shown in FIGS. 2 and 3, the driving force distribution control device A1 of the first embodiment includes the transfer clutch 3.
0 and the differential limiting clutch 41, and a hydraulic pressure generating device 50 as an external device that generates hydraulic pressure for engaging the differential limiting clutch 41, and the hydraulic pressure from the hydraulic pressure generating device 50 is set to a predetermined clutch hydraulic pressure P.
, P'.

尚、第1実施例では、トランスファクラッチ圧油路53
から差動制限クラッチ圧油路54を分岐させ、同じ圧力
レベルのクラッチ油圧P 、 P’ をトランスファク
ラッチ30と差動制限クラッチ41に作用させることで
、前後輪駆動力配分制御と左右後輪差動制限制御とに連
動関係をもたせている。ただし、差動制限クラッチ41
側のクラッチ油圧P′は、トランスファクラッチ30側
のクラッチ油圧Pに比較して、オリフィス70aを有す
る遅延回路70によって、油圧の立上りが時間的に8れ
が出るようにしている。
In addition, in the first embodiment, the transfer clutch pressure oil passage 53
The differential limiting clutch pressure oil passage 54 is branched from the differential limiting clutch pressure oil passage 54, and the clutch hydraulic pressures P and P' having the same pressure level are applied to the transfer clutch 30 and the differential limiting clutch 41, thereby controlling the front and rear wheel drive force distribution and adjusting the difference between the left and right rear wheels. It has an interlocking relationship with motion restriction control. However, the differential limiting clutch 41
Compared to the clutch hydraulic pressure P on the transfer clutch 30 side, the clutch hydraulic pressure P' on the transfer clutch 30 side is configured such that the rising time of the hydraulic pressure is delayed by a delay circuit 70 having an orifice 70a.

前記油圧発生装置50は、オイルポンプ51、ポンプ圧
油路52、トランスファクラッチ圧油路53、差動制限
クラッチ圧油路54、分岐ドレーン油路55.リザーブ
タンク56、吸込油路57を備えている。
The hydraulic pressure generating device 50 includes an oil pump 51, a pump pressure oil path 52, a transfer clutch pressure oil path 53, a differential limiting clutch pressure oil path 54, a branch drain oil path 55. A reserve tank 56 and a suction oil passage 57 are provided.

1五1記油圧制御装置60は、検知手段として左前輪回
転センサ61.右前輪回転センサ62.後輪回転センサ
63を備え、制御回路としてコントロールユニット64
を備え、制御アクチュエータとして、前記分岐ドレーン
油路55の途中に設けられ、チェック油路65aからの
油圧力とバルブソレノイド65bによる電磁力とで開閉
作動する電磁比例減圧弁65が設けられている。
151 The hydraulic control device 60 includes a left front wheel rotation sensor 61. as a detection means. Right front wheel rotation sensor 62. Equipped with a rear wheel rotation sensor 63, and a control unit 64 as a control circuit.
As a control actuator, an electromagnetic proportional pressure reducing valve 65 is provided in the middle of the branch drain oil passage 55 and is opened and closed by hydraulic pressure from the check oil passage 65a and electromagnetic force from a valve solenoid 65b.

左前輪回転センサ61.右前輪回転センサ62、後輪回
転センサ63は、それぞれフロントドライブシャフト2
2.23とリヤプロペラシャフト14に固定されるセン
サロータに近接配置され、回転による磁束変化を正弦波
電圧信号に代えるセンサ等が用いられ、これらの回転セ
ンサ61.62.63力警らは軸回転に応じた回転信号
(nf+ )、(nf2)、(nr)が出力される。
Left front wheel rotation sensor 61. The right front wheel rotation sensor 62 and the rear wheel rotation sensor 63 are connected to the front drive shaft 2, respectively.
2.23 and a sensor fixed to the rear propeller shaft 14 A sensor or the like is used that is placed close to the rotor and converts changes in magnetic flux due to rotation into a sinusoidal voltage signal. Rotation signals (nf+), (nf2), and (nr) corresponding to the rotational speed are output.

尚、これら回転センサ61,62.63としては、アン
チスキッドブレーキ制御装置に用いられるセンサを共用
してもよい。
Incidentally, as these rotation sensors 61, 62, and 63, sensors used in an anti-skid brake control device may be used in common.

前記コントロールユニット64は、車載のマイクロコン
ピュータを中心とし、インタフェースやRAMやROM
やCPU等の内部回路を有する制御回路が用いられ、制
御内容としては、前記回転センサ61,62.63から
の信号を入力情報とし、前後輪の回転速度差ΔNが大き
くなるに従ってクラッチ油圧P 、 P’を高め、駆動
力配分を4輪駆動側に近づけると共に、左右後輪18.
19に差動制限トルクを発生させるようにしている。
The control unit 64 is mainly an in-vehicle microcomputer, and has an interface, RAM, and ROM.
A control circuit having an internal circuit such as a CPU or the like is used, and the control content uses signals from the rotation sensors 61, 62, and 63 as input information, and as the rotational speed difference ΔN between the front and rear wheels increases, the clutch oil pressure P, P' is increased, driving force distribution is brought closer to the four-wheel drive side, and the left and right rear wheels 18.
19 to generate differential limiting torque.

尚、前記コントロールユニット64の記憶回路には、第
3図に示すように、前後輪の回転速度差ΔNと指令電流
値i′xとの制御特性マツプMが表(テーブル)の形で
予め記憶設定されているし、また、コントロールユニッ
ト64には、左前輪回転速度Nf+ と右前輪回転速度
Nf2から前輪回転速度Nfを演算する演算回路641
や、前後輪の回転速度差ΔN (=Nr−Nf)を演算
する演算回路642や、指令電流値isを制御電流値i
まで増幅する増幅器643を備えている。
As shown in FIG. 3, the control characteristic map M of the rotational speed difference ΔN between the front and rear wheels and the command current value i'x is stored in advance in the memory circuit of the control unit 64 in the form of a table. The control unit 64 also includes a calculation circuit 641 that calculates the front wheel rotation speed Nf from the left front wheel rotation speed Nf+ and the right front wheel rotation speed Nf2.
, an arithmetic circuit 642 that calculates the rotational speed difference ΔN (=Nr-Nf) between the front and rear wheels, and a control current value i that changes the command current value is.
It is equipped with an amplifier 643 that amplifies the signal up to .

前記電磁比例減圧弁65は、前記コントロールユニット
64からの制御電愉値iによる制御電流信号−(i)に
より作動する弁で、制御電流値i=0の場合にはオイル
ポンプ51からの油が全てドレーンされてクラッチ油圧
P 、 P’がゼロとなり、制御電流値iが高まるに従
ってドレーン油j1;゛が少なくなり、第5図の油圧特
性に示すように、クラッチ油圧P 、 P’を高めるこ
とができる。
The electromagnetic proportional pressure reducing valve 65 is a valve that is operated by a control current signal - (i) based on a control electric value i from the control unit 64, and when the control current value i=0, the oil from the oil pump 51 is When all of the oil is drained, the clutch oil pressures P and P' become zero, and as the control current value i increases, the drain oil j1;' decreases, increasing the clutch oil pressures P and P' as shown in the hydraulic characteristics in Fig. 5. Can be done.

尚、クラッチ油圧P 、 P’ と前輪側への伝達トル
ク及び差動制限トルクは比例関係にある。
Note that the clutch oil pressures P, P', the torque transmitted to the front wheels, and the differential limiting torque are in a proportional relationship.

前記遅延回路70は、前記差動制限クラッチ圧油路54
の途中に設けられ、オリフィス70a。
The delay circuit 70 is connected to the differential limiting clutch pressure oil passage 54.
An orifice 70a is provided in the middle of the hole.

オリフィスバイパス油路70b、チェックバルブ70c
を備えている。
Orifice bypass oil passage 70b, check valve 70c
It is equipped with

尚、 +fii記オリフィス70aにより、差!IJJ
11限クラッチ41への作動油供給時の流量制限作用で
クラッチ油圧P′のケーヒリ特性を時間的に遅らせ、ま
た、オリフィスバイパス油路70b及びチェ・シフバル
ブ70cにより、差動制限クラッチ41からの油抜きを
トランスファクラッチ30と同じタイミングで時間的な
遅れが出ないようにしている。
Furthermore, due to +fii orifice 70a, there is a difference! IJJ
The flow rate restriction effect when supplying hydraulic oil to the 11th limit clutch 41 temporally delays the Koehli characteristic of the clutch oil pressure P'. The removal is performed at the same timing as the transfer clutch 30 so that there is no time delay.

次に、第1実施例の作用を説明する。Next, the operation of the first embodiment will be explained.

まず、駆動力配分制御作動の流れを、第4図に示すフロ
ーチャート図により述べる。
First, the flow of the driving force distribution control operation will be described with reference to the flowchart shown in FIG.

駆動力配分制御作動はイグニッションスインチからのO
N信号により開始され、ステップ100→ステップ10
1−ステップ102→ステツプ103峠ステツプ104
→ステツプ105へと進む流れが制御起動時間毎に行な
われる。
Drive force distribution control is activated by O from the ignition switch.
Started by N signal, step 100 → step 10
1-Step 102 → Step 103 Pass Step 104
→The flow of proceeding to step 105 is performed every control activation time.

ステップ100は、左前輪回転速度Nf+ と右前輪回
転速度Nf2の読み込みステップである。
Step 100 is a step of reading the left front wheel rotation speed Nf+ and the right front wheel rotation speed Nf2.

ステップ101は、前記左右前輪回転速度Nf+  、
Nf2とファイナルギヤ比iFとから前輪回転速度Nf
を演算する演算ステップである。
In step 101, the left and right front wheel rotational speed Nf+,
Front wheel rotation speed Nf from Nf2 and final gear ratio iF
This is a calculation step for calculating .

F 尚、拒f算式は、Nf=−・(Nf++Nf2)である
F The rejection f formula is Nf=-.(Nf++Nf2).

ステップ102は、後輪回転速度Nrの読み込みステッ
プである。
Step 102 is a step of reading the rear wheel rotational speed Nr.

ステップ103は、前記前輪回転速度Nfと後輪回転速
度Nrから前後輪の回転速度差ΔNを演算する演算ステ
ップである。
Step 103 is a calculation step for calculating the rotational speed difference ΔN between the front and rear wheels from the front wheel rotational speed Nf and the rear wheel rotational speed Nr.

尚、演算式は、ΔN=Nr−Nfである。Note that the arithmetic expression is ΔN=Nr−Nf.

ステップ104は、前後輪の回転速度差ΔNと制御特性
マツプMとから指令電流値i Xをテーブルル・シフア
ップするステップである。
Step 104 is a step in which the command current value iX is table-shifted based on the rotational speed difference ΔN between the front and rear wheels and the control characteristic map M.

ステップ105は、指令電流値1本を所定の制御電流値
iに増幅した上で、制御電流信号(i)を電磁比例減圧
弁65に出力する出力ステップで、第5図に示すように
、制御電流値iの大きさに応じたクラッチ油圧Pが得ら
れる。
Step 105 is an output step of amplifying one command current value to a predetermined control current value i and outputting the control current signal (i) to the electromagnetic proportional pressure reducing valve 65, as shown in FIG. A clutch oil pressure P can be obtained depending on the magnitude of the current value i.

ここで、クラッチ油圧P 、 P’の春上り特性を第6
図により述べると、制御′Iti、流値i=0から所定
の制御電流値iを流すと、トランスファクラッチ30側
のクラッチ油圧Pは実線で示すような油圧1”’t−1
−り特性を示し、11標のクラッチ油圧Pに達する。こ
れに対し、差動制限クラッチ41側のクラ、チ油圧P′
は一点鎖線で示すように、オリフィス70aを経過する
ことで、時間を方向しこガれを生じ、クラッチ油圧p、
p’の関係がP≧P′となり、かつ、クラッチ油圧Pに
比べ、りラッチ油圧P′が滑らかな油圧特性となる。
Here, the spring rising characteristics of the clutch oil pressures P and P' are expressed as
To describe it in a diagram, when a predetermined control current value i is applied from a flow value i=0 under control 'Iti, the clutch oil pressure P on the transfer clutch 30 side becomes an oil pressure 1"'t-1 as shown by the solid line.
The clutch oil pressure P reaches the 11 mark. On the other hand, the clutch oil pressure P′ on the differential limiting clutch 41 side
As shown by the dashed line, passing through the orifice 70a, the clutch pressure p,
The relationship of p' is P≧P', and the latch oil pressure P' has smoother hydraulic characteristics than the clutch oil pressure P.

ここで、クラッチ油圧P′をクラッチ油圧Pに比べて立
」ニリ遅れをもつ滑らかな特性としたのは、リヤディフ
ァレンシャル装、115が急にロック側に制御された場
合の車両のステア特性急変を防止する為である。(即応
性を重視するとクラッチ油圧P 、 P’が共に早く立
上ることが望ましいが、クラッチ油圧P′の場合は、特
にステア特性に影響を与える要素が大きい為、徐々に立
上る油圧特性となるようにしている。) 以上、説明してきたように第1実施例の駆動力配分制御
装置A1にあっては、同じ制御内容に基づいて発生する
制御油圧を両クラッチ油圧P。
Here, the reason why the clutch oil pressure P' is made to have a smooth characteristic with a lagging delay compared to the clutch oil pressure P is to avoid sudden changes in the steering characteristics of the vehicle when the rear differential system 115 is suddenly controlled to the lock side. This is to prevent this. (If you place emphasis on quick response, it is desirable for both clutch oil pressures P and P' to rise quickly, but in the case of clutch oil pressure P', there are many factors that affect steering characteristics in particular, so the oil pressure characteristics will rise gradually. As described above, in the driving force distribution control device A1 of the first embodiment, the control oil pressure generated based on the same control content is the same as the both clutch oil pressures P.

P′ として共用することで、トランスファクラッチ3
0と差動制限クラッチ41のクラッチ締結力作動を連動
させるようにしているため、以下に夕1挙する効果が得
られる。
By sharing it as P', transfer clutch 3
0 and the clutch engagement force operation of the differential limiting clutch 41, the following effects can be obtained.

、p 駆動輪である後輪18.19のうち片輪が脱落し
たりして空転しスタック状態となった時には、前後輪に
大きな回転速度差ΔNが発生することから、高いクラッ
チ油圧P 、 P’がトランスファクラッチ30と差動
制限クラフチ41に作用し、前輪24.25側へ駆’p
h力が伝達されると」(に、後輪18.19の空転も抑
えられることになる。
, p When one of the rear wheels 18.19, which is the drive wheel, falls off or idles and becomes stuck, a large rotational speed difference ΔN occurs between the front and rear wheels, so a high clutch oil pressure P , P ' acts on the transfer clutch 30 and differential limiting clutch 41, and drives the front wheels to the 24.25 side.
When the force is transmitted, it also prevents the rear wheels from spinning.

従って、エンジンjOからの駆動力が前後輪に伝達され
ると共に、空転による駆動ロスが抑えられて高いスタッ
ク脱出性を示す。
Therefore, the driving force from the engine jO is transmitted to the front and rear wheels, and drive loss due to idling is suppressed, resulting in high stuck escape performance.

・2)1[i路や雪路等での低yf:擦係数路での加速
時や登板時等であって、駆動輪である後輪18.19に
スリップが発生した時には、トランスファクラッチ30
と差動制限クラッチ41とに高いクラッチ油圧P 、 
P’が作用し、4輪駆動側に駆動力配分が変更されると
共に、左右の後輪18,19に回転速度差が発生しなく
ても高い差動制限トルクが付与されることになる。
・2) 1 [Low yf on i roads, snowy roads, etc.: When accelerating on friction coefficient roads or climbing a hill, when slipping occurs in the rear wheels (18.19), which are the driving wheels, the transfer clutch 30
and a high clutch oil pressure P for the differential limiting clutch 41,
P' acts, and the driving force distribution is changed to the four-wheel drive side, and a high differential limiting torque is applied to the left and right rear wheels 18, 19 even if there is no difference in rotational speed.

従って、低摩擦係数路での加速時や登板時等では、4輪
駆動状態でしかも左右の後輪18.19には等配分で駆
動力が伝達されることになり、加速性能や登板性能が高
まる。
Therefore, when accelerating on a low-friction coefficient road or when climbing a hill, driving force is transmitted equally to the left and right rear wheels18.19 in a four-wheel drive state, which improves acceleration performance and climbing performance. It increases.

(■ トランスファクラッチ30と差動制限クラッチ4
1のクラッチ締結力制御は互いに連動関係にあるので、
クラッチ油圧p 、 p’の発生が無い時や非常に小さ
い時、すなわち後輪駆動状態の詩には差動制限トルクの
発生もないことになる。
(■ Transfer clutch 30 and differential limiting clutch 4
Since the clutch engagement force control in 1 is interlocked with each other,
When the clutch oil pressures p and p' are not generated or are very small, that is, when the rear wheels are driven, no differential limiting torque is generated.

従って、後輪駆動状態での旋回走行時に、左右後輪18
.19に差動制限トルクが発生することはなく、旋回性
能、特に旋回初期に左右後輪18゜19が差動制限され
ることにより曲がりにくいということが防11−される
Therefore, when turning in a rear wheel drive state, the left and right rear wheels 18
.. No differential limiting torque is generated in the steering wheel 19, and the turning performance is prevented, especially in the early stages of turning, where the left and right rear wheels 18.degree. 19 are difficult to turn due to differential limiting.

さらに、第1実施例の駆動力配分制御装置A1にあって
は、差動制限クラッチ圧油路54にR延ト1路70を設
けて、クラッチ油圧Pに対し、クラッチ油圧P′の立上
り感度を鈍らせるようにしているため、以下に述べる効
果が得られる。
Furthermore, in the driving force distribution control device A1 of the first embodiment, an R extension path 70 is provided in the differential limiting clutch pressure oil path 54, and the rise sensitivity of the clutch oil pressure P' with respect to the clutch oil pressure P is The effect described below can be obtained by making it dull.

・4) ステア特性に大きな影響を与える差動制限トル
クの制御が、4輪駆動側への駆動力配分制御よりも少し
遅れながらの追従関係となることで、・l(両挙動変化
を引き起すステア特性の急変を防止できる。
・4) The differential limiting torque control, which has a large effect on steering characteristics, follows the drive force distribution control to the four-wheel drive side with a slight delay, resulting in Sudden changes in steering characteristics can be prevented.

次に、第2実施例の駆動力配分制御装置A2について説
明する。
Next, the driving force distribution control device A2 of the second embodiment will be explained.

この第2実施例装置A2は、第7図に示すように、コン
トロールユニット64への人力情報は第1実施例と同様
であるが、制御特性マツプとして前後輪駆動力配分制御
特性マツプM1と差動制限開制御特性マツプM2との2
つのマツプを設定され、油圧制御する制御アクチュエー
タも、第1 :B磁比例減圧弁65と第2電磁比例減圧
弁66を備えている。
As shown in FIG. 7, in this second embodiment device A2, the human power information to the control unit 64 is the same as that in the first embodiment, but the control characteristic map is different from the front and rear wheel drive force distribution control characteristic map M1. 2 with motion limit opening control characteristic map M2
The control actuator, which is set with two maps and performs hydraulic control, also includes a first:B magnetic proportional pressure reducing valve 65 and a second electromagnetic proportional pressure reducing valve 66.

尚、両制御特性マツプMl、M2は、第7図に示すよう
に2前後輪の回転速度差ΔNに対する指令電流値1本 
 i 7本が、1束〉i′本となるように設定されてい
て、コントロールユニット64には2つの増幅器643
.644が設けられている。
In addition, both control characteristic maps Ml and M2 are one command current value for the rotational speed difference ΔN between the two front and rear wheels, as shown in FIG.
The control unit 64 includes two amplifiers 643.
.. 644 are provided.

また、前記第2電磁比例減圧弁67は、オイルポンプ5
1を共用するように、分岐ポンプ圧路58の途中に1没
けられているが、別々のオイルポンプを用いてもよい。
Further, the second electromagnetic proportional pressure reducing valve 67 is connected to the oil pump 5.
Although one oil pump is sunk in the middle of the branch pump pressure line 58 so that the oil pump 1 is shared, separate oil pumps may be used.

従っC1この第2実施例装P1A2では、第8図に示す
ように、駆動力配分制御作動の流れは、トランスファク
ラッチ30のクラッチ締結力制御作動と、差動制限クラ
ッチ41のクラッチ締結力制御作動(ステップ106→
ステツプ107)とに別れ、それぞれ、制御電流値信号
(i)、(i’ )が出力される。
Therefore, in this second embodiment P1A2, as shown in FIG. (Step 106→
In step 107), control current value signals (i) and (i') are output, respectively.

そして、クラッチ油圧P 、 P’の立上り特性は、第
9図に示すように、クラッチ油圧Pに比べてクラッチ油
圧P′の方が、時間を方向に遅れると共に、油圧レベル
も低圧となる特性を示す。
As shown in Fig. 9, the rise characteristics of the clutch oil pressures P and P' are such that the clutch oil pressure P' lags behind the clutch oil pressure P in terms of time and has a lower oil pressure level. show.

次に、第3実施例の駆動力配分制御装置A3について説
明する。
Next, a driving force distribution control device A3 according to a third embodiment will be explained.

この第3実施例装置A3は、第10図に示すように、コ
ントロールユニット64は第1実施例と同様であるが、
制御アクチュエータである第1電磁比例減圧弁65を経
過したクラッチ油圧Pを一次圧とする第2電磁比例減圧
弁67が設けられ。
As shown in FIG. 10, the third embodiment device A3 has the same control unit 64 as the first embodiment, but
A second proportional electromagnetic pressure reducing valve 67 whose primary pressure is the clutch oil pressure P that has passed through the first proportional electromagnetic pressure reducing valve 65 which is a control actuator is provided.

クラッチ油圧P′の圧力レベルをクラッチ油圧Pの圧力
レベルよりも小さくなるようにした例である。
This is an example in which the pressure level of clutch oil pressure P' is set to be lower than the pressure level of clutch oil pressure P.

従って、第3実施例装置A3での、クラッチ油圧のヴ1
−り特性は、第11図に示すように、クラッチ油圧Pに
対してクラッチ油圧P′の圧力レベルが低くなる特性を
示す。
Therefore, in the device A3 of the third embodiment, the clutch hydraulic pressure V1
As shown in FIG. 11, the lowering characteristic indicates a characteristic in which the pressure level of the clutch oil pressure P' is lower than the clutch oil pressure P.

尚、第2実施例及び第3実施例の作用については、クラ
ッチ油圧特性Pに対しクラッチ油圧P′の感度の鈍らせ
方が異なるものの、第1実施例と作用的に同じとなる。
The operations of the second and third embodiments are the same as those of the first embodiment, although the way in which the sensitivity of the clutch oil pressure P' is dulled with respect to the clutch oil pressure characteristic P is different.

以」、―、本発明の実施例を図面により詳述してきたが
、具体的な構成はこの実施例に限られるものではなく、
本発明の要旨を逸脱しない範囲における設計変更等があ
っても本発明に含まれる。
Hereinafter, the embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment.
Even if there are design changes within the scope of the present invention, they are included in the present invention.

例えば、実施例では後輪駆動ベースの四輪駆動車の例を
示したが、前輪駆動ベースの四輪駆動車にも適用できる
し、差動制限クラッチも前輪や前後輪に適用してもよい
For example, although the example shows a four-wheel drive vehicle based on rear wheel drive, it can also be applied to a four-wheel drive vehicle based on front wheel drive, and the differential limiting clutch may also be applied to the front wheels or front and rear wheels. .

また、実施例ではクラッチ締結力を油圧により得る例を
示したが、クラッチとして電磁クラッチを用い電磁力に
より得るようにしてもよい。
Further, in the embodiment, an example has been shown in which the clutch engagement force is obtained by hydraulic pressure, but an electromagnetic clutch may be used as the clutch and it may be obtained by electromagnetic force.

また、クラッチ締結力の制御内容は、実施例の制御特性
マー7ブに示される内容に限られず、路面の摩擦係数等
能の入力情報を付加したり、全く異なる入力情報により
行なうものであってもよい。
Further, the control content of the clutch engagement force is not limited to the content shown in the control characteristic mark 7 of the embodiment, but may be performed by adding input information such as the coefficient of friction of the road surface, or using completely different input information. Good too.

具体的にはアクセル開度より駆動力の付与状態を推定し
、駆動輪の空転を防止すべく本案に示す制御を実施する
ものでもよい。
Specifically, the application state of the driving force may be estimated from the accelerator opening degree, and the control shown in the present invention may be implemented in order to prevent the driving wheels from spinning.

(発明の効果) 以上説明してきたように、本発明の四輪駆動車用駆動力
配分制御装置にあっては、差動制限制御装置のクラッチ
締結力制御作動を、前記前後輪駆動力配分制御装置のク
ラ−2チ締結力制御作動と連動させる連動手段を有して
いるため、各輪のすべり状7Mの発生を検出するまでも
なくクラッチ締結作動が連動して行なわれ、スタック脱
出性の向りや低摩擦係数路での加速性及び登板性等の向
[−を図ることができると共に、クラッチ解放も連動し
て行なわれるため、円滑な旋回走行を確保できるという
効果が得られる。
(Effects of the Invention) As explained above, in the drive force distribution control device for a four-wheel drive vehicle of the present invention, the clutch engagement force control operation of the differential limiting control device is controlled by the front and rear wheel drive force distribution control. Since it has an interlocking means that interlocks with the clutch 2 clutch engagement force control operation of the device, the clutch engagement operation is performed in conjunction without detecting the occurrence of slippage 7M on each wheel, which improves the ability to escape from the stuck. It is possible to improve the direction of the vehicle, acceleration performance on a road with a low friction coefficient, climbing performance, etc., and since the clutch release is also performed in conjunction with this, it is possible to obtain the effect of ensuring smooth cornering.

各実施例は、l二足共通効果に加えて、さらに、左右輪
の差動制限制御装置のクラッチ締結力制御特性の感度は
、前後輪駆動力配分制御装置のクラッチ締結力制御特性
の感度より鈍く設定したため、ステア特性の急変を防止
できるという効果が得られる。
In each embodiment, in addition to the two-wheel common effect, the sensitivity of the clutch engagement force control characteristic of the left and right wheel differential limiting control device is greater than the sensitivity of the clutch engagement force control characteristic of the front and rear wheel drive force distribution control device. Since it is set to be dull, it is possible to prevent sudden changes in steering characteristics.

また、クラッチの締結制御は0N−OFF的でなく連続
的に行なわれる為、締結によるショックも低減できると
いう効果が11)られる。
Furthermore, since the clutch engagement control is performed continuously rather than in an ON-OFF manner, there is an effect (11) in that the shock caused by engagement can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の四輪駆動・it用短駆動力配分制御装
置クレーム概念図、第2図は第1実施例の駆動力配分制
御装置を適用した四輪駆動車を示す図、第3図は第1実
施例装置の制御系を示すブロック図、第4図は第1実施
例装置のコントロールユニットでの駆動力配分制御作動
の流れを示すフローチャート図、第5図は制御電流値に
対するクラッチ油圧特性図、第6図は第1実施例装置の
クラッチ油圧の立」−り特性図、第7図は第2実施例装
置の制御系を示すブロック図、第8図は第2実施例装置
のコントロールユニットでの駆動力配分制御作動の流れ
を示すフローチャート図、第9図は第2実施例装置のク
ラッチ油圧の立上り特性図、第10図は第3実施例装置
の制御系を示すブロック図、第11図は第3実施例装置
のクラッチ油圧立上り特性図である。 1・・・前後輪駆動力配分制御装置 2・・・差動M1限制御装置 3・・・連動手段 特  許  出  願  人 (]産自動車株式会社 第4図 第5図 第6図 t (vTI四) 第9図
Fig. 1 is a conceptual diagram of the claim of the four-wheel drive/IT short drive force distribution control device of the present invention, Fig. 2 is a diagram showing a four-wheel drive vehicle to which the drive force distribution control device of the first embodiment is applied, and Fig. 3 The figure is a block diagram showing the control system of the device of the first embodiment, FIG. 4 is a flowchart showing the flow of driving force distribution control operation in the control unit of the device of the first embodiment, and FIG. Fig. 6 is a hydraulic characteristic diagram of the clutch oil pressure of the device of the first embodiment, Fig. 7 is a block diagram showing the control system of the device of the second embodiment, and Fig. 8 is a diagram of the control system of the device of the second embodiment. 9 is a flowchart showing the flow of the driving force distribution control operation in the control unit, FIG. 9 is a diagram showing the rise characteristics of the clutch oil pressure of the device of the second embodiment, and FIG. 10 is a block diagram showing the control system of the device of the third embodiment. , FIG. 11 is a clutch oil pressure rise characteristic diagram of the third embodiment device. 1... Front and rear wheel drive force distribution control device 2... Differential M1 limit control device 3... Interlocking means patent applicant (] San Jidosha Co., Ltd. Figure 4 Figure 5 Figure 6 t (vTI 4) Figure 9

Claims (1)

【特許請求の範囲】 1)車両の走行状況に応じてクラッチ締結力を可変とし
、前後輪への駆動力配分を制御する前後輪駆動力配分制
御装置と、 車両の走行状況に応じてクラッチ締結力を可変とし、左
右輪への駆動力配分を制御する差動制限制御装置とを備
え、 前記差動制限制御装置のクラッチ締結力制御作動を、前
記前後輪駆動力配分制御装置のクラッチ締結力制御作動
と連動させる連動手段を有し、前記差動制限制御装置の
クラッチ締結力を前記前後輪駆動力配分制御装置のクラ
ッチ締結力に応じた値として付与することを特徴とする
四輪駆動車用駆動力配分制御装置。 2)前記左右輪の差動制限制御装置のクラッチ締結力制
御特性の感度は、前後輪駆動力配分制御装置のクラッチ
締結力制御特性の感度より鈍く設定したことを特徴とす
る特許請求の範囲第1項記載の四輪駆動車用駆動力配分
制御装置。
[Scope of Claims] 1) A front and rear wheel drive force distribution control device that varies clutch engagement force according to vehicle running conditions and controls drive force distribution to front and rear wheels; a differential limiting control device that makes the force variable and controls driving force distribution to the left and right wheels; A four-wheel drive vehicle, characterized in that it has an interlocking means that interlocks with the control operation, and applies the clutch engagement force of the differential limiting control device as a value corresponding to the clutch engagement force of the front and rear wheel drive force distribution control device. Driving force distribution control device. 2) The sensitivity of the clutch engagement force control characteristic of the left and right wheel differential limiting control device is set to be lower than the sensitivity of the clutch engagement force control characteristic of the front and rear wheel drive force distribution control device. The driving force distribution control device for a four-wheel drive vehicle according to item 1.
JP13547186A 1986-06-11 1986-06-11 Power distribution controller for four wheel drive vehicle Pending JPS62292529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13547186A JPS62292529A (en) 1986-06-11 1986-06-11 Power distribution controller for four wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13547186A JPS62292529A (en) 1986-06-11 1986-06-11 Power distribution controller for four wheel drive vehicle

Publications (1)

Publication Number Publication Date
JPS62292529A true JPS62292529A (en) 1987-12-19

Family

ID=15152489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13547186A Pending JPS62292529A (en) 1986-06-11 1986-06-11 Power distribution controller for four wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPS62292529A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232125A (en) * 1990-12-28 1992-08-20 Mitsubishi Motors Corp Differential limit control unit for four-wheel drive vehicle
US5701247A (en) * 1994-06-17 1997-12-23 Nissan Motor Co., Ltd. Integrated control system for 4WD vehicles for controlling driving torque distribution
WO2005035295A1 (en) * 2003-09-27 2005-04-21 Zf Friedrichshafen Ag Drive train of an all-wheel drive vehicle comprising clutches and method for controlling and regulating a drive train
WO2005080116A3 (en) * 2004-02-23 2006-01-19 Magna Drivetrain Ag & Co Kg Drive train of an all-wheel drive vehicle
EP1837225A3 (en) * 2006-03-24 2008-07-09 Audi Aktiengesellschaft Vehicle all-wheel drive system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232125A (en) * 1990-12-28 1992-08-20 Mitsubishi Motors Corp Differential limit control unit for four-wheel drive vehicle
US5701247A (en) * 1994-06-17 1997-12-23 Nissan Motor Co., Ltd. Integrated control system for 4WD vehicles for controlling driving torque distribution
WO2005035295A1 (en) * 2003-09-27 2005-04-21 Zf Friedrichshafen Ag Drive train of an all-wheel drive vehicle comprising clutches and method for controlling and regulating a drive train
WO2005080116A3 (en) * 2004-02-23 2006-01-19 Magna Drivetrain Ag & Co Kg Drive train of an all-wheel drive vehicle
US7553250B2 (en) 2004-02-23 2009-06-30 Magna Drivetrain Ag & Co Kg Drive train of an all-wheel drive vehicle
EP1837225A3 (en) * 2006-03-24 2008-07-09 Audi Aktiengesellschaft Vehicle all-wheel drive system

Similar Documents

Publication Publication Date Title
JP3319838B2 (en) Vehicle traction control device
JPH03125633A (en) Traction control device for four-wheel drive vehicle
KR100662136B1 (en) Method for influencing a shift process connected with a change in transmission ratio when driving a motor vehicle
JPS62292529A (en) Power distribution controller for four wheel drive vehicle
JP3010075B2 (en) Vehicle braking control device
JP3294351B2 (en) Vehicle drive system
JP3536841B2 (en) Vehicle drive system
JPS63137027A (en) Driving force distribution control device for four-wheel-drive vehicle
JPH09309352A (en) Four-wheel drive vehicle
JP3393665B2 (en) Vehicle drive system
JP2970917B2 (en) Transmission control device for continuously variable transmission
JP2774134B2 (en) Automotive slip control device
JPS63207761A (en) Power transmission method for part time type four-wheel-drive automobile provided with anti-skid device
JP2003094971A (en) Front-rear wheel driving force distribution control device for hydraulically driven vehicle
JPH03258932A (en) Slip control device
JP3294350B2 (en) Vehicle drive system
JPH06166350A (en) Driving device for vehicle
JPS62279132A (en) Clutch controller for vehicle driving system
JPS5973663A (en) Lock-up clutch controller for torque converter
JPH0381541A (en) Driving control method of vehicle
JPS62253528A (en) Drive system clutch control device for vehicle
JPH03204463A (en) Variable speed control device for continuous variable transmission
JPS62279133A (en) Driving power distribution controller for four-wheel drive vehicle
JPH0676019B2 (en) Drive system clutch controller for four-wheel drive vehicle
JPH05116555A (en) Vehicle slip controller