JPS62292239A - Powder calcined mold - Google Patents

Powder calcined mold

Info

Publication number
JPS62292239A
JPS62292239A JP13492086A JP13492086A JPS62292239A JP S62292239 A JPS62292239 A JP S62292239A JP 13492086 A JP13492086 A JP 13492086A JP 13492086 A JP13492086 A JP 13492086A JP S62292239 A JPS62292239 A JP S62292239A
Authority
JP
Japan
Prior art keywords
powder
binder
base material
mold
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13492086A
Other languages
Japanese (ja)
Inventor
Saburo Kato
三郎 加藤
Naonobu Yasukawa
安川 直伸
Hiroshi Yasuda
博 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP13492086A priority Critical patent/JPS62292239A/en
Publication of JPS62292239A publication Critical patent/JPS62292239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To improve the bending strength of a calcined mold and to additionally expand the application range thereof by mixing a metallic binder which is lower in m.p. than a base material and has the higher heat conductivity together with an inorg. binder with metallic powder which is the base material and sintering the mixture. CONSTITUTION:The metallic powder is added and mixed together with the inorg. binder such as silica or bentonite to and with the metallic powder which is the base material such as, for example, iron powder. The metallic binder is required to be the metal having the lower m.p. and higher heat conductivity than the m.p. and heat conductivity of the metallic powder which is the base material. Said binder is adequately Al, Cu, or Zn if the base material is the iron powder. The metallic binder is in the state of the metallic powder in the stage of the raw material before calcination. The metallic binder, when subjected to the calcination treatment, is melted and flows between the particles of the metallic powder of the base material to act as the powerful binder. The bending strength and compressive strength of the calcined bound body are thereby improved and the mold is usable particularly to a mold for injection molding of resins, etc. to which a particularly high pressure is loaded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の技術分野〕 本発明は金属粉を基材にして焼結して製造した粉末焼成
型に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a powder firing mold manufactured by sintering a metal powder as a base material.

〔従来技術〕[Prior art]

従来、樹脂成形用型として、金属粉末を焼結して作った
粉末焼成型が提案されている。この粉末焼成型は、一般
の切削金型や放電加工金型に比べて製作の手間が簡単で
コストが安いという利点がある。
Conventionally, a powder firing mold made by sintering metal powder has been proposed as a mold for resin molding. This powder firing mold has the advantage of being easier to manufacture and cheaper than general cutting molds or electrical discharge machining molds.

しかし、その反面で、この粉末焼成型は曲げ強度に弱い
ため全ての用途の成形型へ適用することができず、適用
範囲が制約されるという欠点がある。特に高圧が負荷さ
れる樹脂射出成形用型等には、無理とされている。
However, on the other hand, this powder firing mold has a weak bending strength, so it cannot be applied to molds for all purposes, and the range of application is restricted. In particular, this is considered impossible for resin injection molding molds and the like that are subjected to high pressure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述のような従来の粉末焼成型におけ
る問題点を解消し、基材の金属粉末の結合力を強化し、
適用範囲の一層の拡大を可能にすると共に、さらに成形
作業性を一層向上することができる粉末焼成型を提供す
ることにある。
The purpose of the present invention is to solve the problems in the conventional powder firing mold as described above, strengthen the bonding force of the metal powder of the base material,
It is an object of the present invention to provide a powder firing mold that can further expand the range of application and further improve molding workability.

〔発明の構成〕[Structure of the invention]

上記目的を達成するため、本発明の粉末焼結型は、基材
の金属粉に無機質バインダーと、基材より低融点で高い
熱伝導率を有する金属バインダーとを混合焼結させたこ
とを特徴とするものである。
In order to achieve the above object, the powder sintering mold of the present invention is characterized by mixing and sintering the metal powder of the base material with an inorganic binder and a metal binder having a lower melting point and higher thermal conductivity than the base material. That is.

本発明において粉末焼成型の基材にする金属粉としては
、入手しやすくかつ安価である鉄粉が最適であるが、ニ
ッケル、アルミナ、クロム。
In the present invention, iron powder, which is easily available and inexpensive, is most suitable as the metal powder to be used as the base material of the powder firing mold, but nickel, alumina, and chromium are also suitable.

チタン、タングステン等の金属粉末も適用可能である。Metal powders such as titanium and tungsten are also applicable.

鉄粉としては、鋳鉄粉、純鉄粉、鋼粉等が好ましく使用
される。
As the iron powder, cast iron powder, pure iron powder, steel powder, etc. are preferably used.

この金属粉を原料として使用するときの粒径は、粒径1
0μ−以下の粒子による累積重量が基材全重量の40%
以上、さらに好ましくは50%を占めるような粒度分布
を有するものが好ましい。すなわち金属粉を、孔径10
μ−の多数の透孔を有する篩にかけたとき、その篩を通
過した金属粉の全重量が、基材全重量に対して40%以
上であるような粒度分布を有していることが好ましい。
When using this metal powder as a raw material, the particle size is 1
The cumulative weight of particles of 0 μ or less is 40% of the total weight of the base material.
It is preferable to have a particle size distribution that accounts for 50% of the above. In other words, the metal powder has a pore diameter of 10
It is preferable that the particle size distribution is such that when passed through a sieve having a large number of μ-holes, the total weight of the metal powder passing through the sieve is 40% or more based on the total weight of the base material. .

また、このような粒子分布からなる金属粉は、好ましく
は粒径4〜7μ■範囲の微粉と粒径10〜100μ蒙範
囲の細粉とを、前者を主成分として混合配合したものが
好適である。このような粒度分布とすることにより、成
形体にしたときに細密充填化が進み、クランクの発生を
極めて少なくすることができる。
The metal powder having such a particle distribution is preferably a mixture of a fine powder with a particle size of 4 to 7 μm and a fine powder with a particle size of 10 to 100 μm, with the former as the main component. be. By having such a particle size distribution, when formed into a molded product, it is possible to achieve close packing and extremely reduce the occurrence of cranks.

本発明に使用する無機質バインダーは特に限定されない
が、シリカ、ベントナイト等が好ましく使用される。こ
のうちシリカは上記金属粉末と混合してスラリーにする
原料の段階では、コロイダルシリカ、エチルシリケート
等の溶液状態であるが、特にコロイダルシリカとして使
用するときは、スラリーが乾燥して成形体になるときや
、さらに成形体が焼成されて焼成結合体になるとき、溶
媒の蒸発に基づくクランクの発生を少なくし、平滑な肌
面を得る上で有利である。
The inorganic binder used in the present invention is not particularly limited, but silica, bentonite, etc. are preferably used. Among these, silica is in the form of a solution such as colloidal silica or ethyl silicate when it is mixed with the metal powder and made into a slurry, but especially when used as colloidal silica, the slurry dries and becomes a molded product. This is advantageous in reducing the occurrence of cranks due to evaporation of the solvent and obtaining a smooth skin surface when the compact is further fired to form a fired composite.

このコロイダルシリカの場合も、基材の金属粉同様に、
分散するシリカ粒子の粒度が異なるものを分布させたも
のが好ましい。その粒径としては、4〜6mμ−範囲の
微粉、7〜9mμ麟範囲の細粉、10〜20mμ麟範囲
の中粉、70〜100mμ霧範囲の粗粉を混合したもの
がよい。
In the case of this colloidal silica, as well as the base metal powder,
Preferably, the silica particles to be dispersed have different particle sizes. The particle size is preferably a mixture of fine powder in the range of 4 to 6 mμ, fine powder in the range of 7 to 9 mμ, medium powder in the range of 10 to 20 mμ, and coarse powder in the range of 70 to 100 mμ.

本発明に使用する金属バインダーとしては、基材の金属
粉よりも低融点で、かつ高熱伝導率を有する金属である
ことが必要である。この金属バインダーとしては、基材
が鉄粉(融点1536℃、熱伝導率0. 17cal/
cm、deg)である場合は、好ましくはアルミニウム
(融点660℃、熱伝導率0. 57cal/cs、d
eg) 、銅(融点1080℃、熱伝導率0. 94c
al/cm、deg) 。
The metal binder used in the present invention needs to be a metal that has a lower melting point than the metal powder of the base material and high thermal conductivity. For this metal binder, the base material is iron powder (melting point 1536°C, thermal conductivity 0.17 cal/
cm, deg), preferably aluminum (melting point 660°C, thermal conductivity 0.57 cal/cs, d
eg), copper (melting point 1080℃, thermal conductivity 0.94c
al/cm, deg).

亜鉛(融点419℃、熱伝導率0. 265cal/c
m、deg)が好適である。これらの低融点、高熱伝導
率の金属は1種類だけを混合してもよく、あるいは2種
類以上を組み合わせて混合してもよい。
Zinc (melting point 419℃, thermal conductivity 0.265cal/c
m, deg) is preferred. These metals having a low melting point and high thermal conductivity may be used alone or in combination of two or more types.

この金属バインダーは焼成前の原料の段階では金属粉末
の状態であるが、焼成処理によって溶融されて基材の金
属粉の間に流れ込み、強力なバインダーとして作用する
。そのため、焼成結合体の曲げ強度や圧縮強度が向上し
、樹脂成形用型として優れたものにすることができる。
This metal binder is in the state of metal powder when it is a raw material before firing, but it is melted during the firing process and flows between the metal powders of the base material, acting as a strong binder. Therefore, the flexural strength and compressive strength of the fired combined body are improved, and it can be made into an excellent mold for resin molding.

特に、高圧が負荷される樹脂射出成形用の型としても使
用可能になる。
In particular, it can also be used as a mold for resin injection molding where high pressure is applied.

また、焼成結合体の熱伝導性が向上するため、樹脂成形
用型に適用したとき、溶融樹脂の流れを良好にして成形
性を向上し、かつ高い放熱効果により成形後の冷却固化
を促進するため脱型までの時間を短縮し、成形作業性を
著しく向上することができる。
In addition, since the thermal conductivity of the fired composite is improved, when applied to a resin molding mold, it improves the flow of molten resin and improves moldability, and its high heat dissipation effect promotes cooling and solidification after molding. Therefore, the time required for demolding can be shortened and molding workability can be significantly improved.

このような金属バインダーの基材金属粉に対する混合量
としては、10〜30重量%の範囲が好ましい。金属バ
インダーの量が少なすぎると焼成結合体の強度向上や熱
伝導性向上の効果は少なくなり、また多すぎても基材金
属による本来の強度に影響を与えることになる。
The amount of such metal binder mixed with the base metal powder is preferably in the range of 10 to 30% by weight. If the amount of the metal binder is too small, the effect of improving the strength and thermal conductivity of the fired composite will be reduced, and if it is too large, the inherent strength of the base metal will be affected.

本発明の粉末焼成型を製造するには、上述した基材の金
属粉に無機質バインダーの溶液と金属バインダーの粉末
を混合してスラリーを調整し、このスラリーを原型に流
し込んで乾燥固化したのち、焼成処理することにより得
ることができる。
In order to manufacture the powder firing mold of the present invention, a slurry is prepared by mixing an inorganic binder solution and a metal binder powder with the metal powder of the base material described above, and after pouring this slurry into a master mold and drying and solidifying it, It can be obtained by firing.

第1図はこの粉末焼成型の製造フローの一例を示したも
のである。Aは上記スラリーを型枠に流し込む工程で、
定盤2の上に木、樹脂、ゴム等の材料から製品形状に形
取った模型1をセットし、その周囲に型枠3を立てるこ
とにより原型IOが構成されている。この原型10に容
器4からスラリー5を流し込む。
FIG. 1 shows an example of the manufacturing flow of this powder firing mold. A is the process of pouring the above slurry into the formwork,
A prototype IO is constructed by setting a model 1 shaped into a product shape from a material such as wood, resin, or rubber on a surface plate 2, and erecting a formwork 3 around it. Slurry 5 is poured into this master mold 10 from a container 4.

原型10に流し込んだスラリー5は、そのまま放置して
自然乾燥させるか、または約40〜50℃の温度で加熱
して強制乾燥することにより固化させる。固化したのち
原型10から脱型し、Bに示すような模型1に対応する
型面1”を有する成形体5°を得る。原型10から脱型
した成形体5°は、次にCに示すように焼成炉11にて
600〜1000℃の温度で、約1〜10時間焼成する
。この焼成により強固な焼成結合体5”が形成される0
次いでDに示すように、得られた焼成結合体5”にエジ
ェクタービン孔7の加工や、ガイドビン8.・−−−−
−−,8の取付は等の後加工を施し、これを別途同じよ
うにして鉄粉から作った焼成結合体5aの型(第1図で
はオス型)と組み付けることにより、樹脂射出成形用型
12等として完成させる。
The slurry 5 poured into the master mold 10 is left to dry naturally, or is solidified by heating at a temperature of about 40 to 50°C and forced drying. After solidification, the mold 10 is demolded to obtain a molded body 5° having a mold surface 1'' corresponding to model 1 as shown in B.The molded body 5° demolded from the master mold 10 is then demolded as shown in C. It is fired in a firing furnace 11 at a temperature of 600 to 1000°C for about 1 to 10 hours. Through this firing, a strong fired composite body 5'' is formed.
Next, as shown in D, the ejector turbine hole 7 and the guide bin 8.
--, 8 is attached by performing post-processing such as, and by assembling it with a mold (male mold in Fig. 1) of the fired composite body 5a separately made from iron powder in the same manner, a mold for resin injection molding is made. It will be completed as 12th mag.

上述のように樹脂成形用の型に加工された焼成結合体5
”の断面を見ると、第3図に示すように粒径の異なる基
材の金属粉末6.−・・−16が細密充填状態になって
おり、かつこれら金属粉末6,6同士の界面にコロイダ
ルシリカから変じたシリカが膜状のバインダーとなって
介在して鉄粉の結合を補助すると共に、さらに金属バイ
ンダーが溶融して流れ込んでおり、強固な結合を行って
いる。
The fired composite body 5 processed into a mold for resin molding as described above
”, as shown in Fig. 3, the base metal powders 6.--16 with different particle sizes are in a close packed state, and the interface between these metal powders 6. Silica, which has been changed from colloidal silica, acts as a film-like binder to help bond the iron powder, and a metal binder also melts and flows in, creating a strong bond.

また、前述したように、金属バインダーは樹脂成形用型
の熱伝導性を上げるため、成形時の樹脂の流れを速やか
にし、かつ成形後は放熱速度を促進するため冷却をはや
め、脱型までの時間を短縮する。そのため成形作業性を
著しく向上する。
In addition, as mentioned above, the metal binder increases the thermal conductivity of the resin molding mold by speeding up the flow of the resin during molding, and by stopping cooling after molding to promote the heat dissipation rate, and by removing the mold from the mold. Reduce time. Therefore, molding workability is significantly improved.

〔実施例〕〔Example〕

基材として次の組成の鉄粉を、無機質バインダーとして
次の組成のコロイダルシリカを、および金属バインダー
として次の亜鉛粉をそれぞれ用意し、これらを混合して
スラリーを調整した。
Iron powder having the following composition as a base material, colloidal silica having the following composition as an inorganic binder, and zinc powder having the following composition as a metal binder were prepared, and these were mixed to prepare a slurry.

基材            (重量部)鉄の微粉(4
〜 7μm)   50部の    (10〜100μ
m)   50計100部 (この基材の粒径lOμ−以下の粒子による累積重量は
52%であった。) 無機質バインダー(コロイダルシリカ)微粉(4〜 6
mμm)   2.4部細粉(7〜 9mμm)   
2.6部中粉(10〜20mμm)   2.9部(7
0〜100mμm)2.9 計10.8部 (基材1kg当たり88cc) 金属バインダー 亜鉛粉末(50μm以下)   10部上記スラリーを
、表面粗度133の木型模型をセットした型枠に流し込
み、20℃の温度で8時間自然乾燥して固化した。型枠
から脱型した成形体には、クランクやピンホールは全く
認められなかった。
Base material (parts by weight) Fine iron powder (4
~7μm) 50 parts of (10~100μm)
m) 50 total 100 parts (The cumulative weight of particles with a particle size of lOμ or less of this base material was 52%.) Inorganic binder (colloidal silica) fine powder (4 to 6
mμm) 2.4 parts fine powder (7 to 9 mμm)
2.6 parts medium flour (10-20 mμm) 2.9 parts (7
0 to 100 mm) 2.9 Total 10.8 parts (88 cc per 1 kg of base material) Metal binder zinc powder (50 μm or less) 10 parts Pour the above slurry into a formwork set with a wooden model with a surface roughness of 133, It was air-dried for 8 hours at a temperature of °C to solidify. No cranks or pinholes were observed in the molded product removed from the mold.

次いで、上記成形体を焼成炉に入れ、600〜800℃
の温度で5時間焼成を行って焼成結合体にした。この焼
成結合体にはクラックやピンホールはなく、上記表面粗
度13Sの木型模型に対応する型の肌面粗度は153で
あり、極めて平滑性に優れていた。
Next, the above molded body is placed in a firing furnace and heated to 600 to 800°C.
A fired composite was obtained by firing at a temperature of 5 hours. This fired composite had no cracks or pinholes, and the surface roughness of the mold corresponding to the wooden model with the surface roughness of 13S was 153, showing extremely excellent smoothness.

また、焼成結合体の圧縮強度および曲げ強度を測定した
ところ、それぞれ2 ton/cm”+  5 kg/
閣−3であった。
In addition, when the compressive strength and bending strength of the fired composite were measured, they were 2 ton/cm" + 5 kg/cm, respectively.
It was Kaku-3.

一方、比較として、上記原料から金属バインダーの亜鉛
だけを除いた組成で、全く同じ条件で成形および焼成し
て焼成焼結体を得た。
On the other hand, for comparison, a fired sintered body was obtained by molding and firing under exactly the same conditions using the above raw materials except for zinc as a metal binder.

この焼成焼結体の圧縮強度および曲げ強度を特定したと
ころ、それぞれ1 、 6 ton/c*”+ 3 k
g/+u+”であり、強度は上記実施例のもに比べて低
下していた。
The compressive strength and bending strength of this fired sintered body were determined to be 1 and 6 ton/c*”+3k, respectively.
g/+u+'', and the strength was lower than that of the above example.

(発明の効果) 本発明の粉末焼成型は、基材の金属粉末に対し無機質バ
インダーと共に、基材より低融点で高い熱伝導率を有す
る金属バインダーを混合焼結させているため、基材の金
属粉末の結合力を強化し、それによって従来適用できな
かった成形用型への適用を可能にして適用範囲の一層の
拡大を図ることができる。さらに、成形用型の熱伝導性
を高めるため、それによって樹脂の流れを促進し、かつ
成形後の冷却速度を速くするため、成形作業性を一層向
上する。
(Effects of the Invention) The powder firing mold of the present invention mixes and sinters the metal powder of the base material with an inorganic binder and a metal binder having a lower melting point and higher thermal conductivity than the base material. By strengthening the bonding force of the metal powder, it is possible to apply the present invention to molds that could not be applied in the past, thereby further expanding the range of application. Furthermore, since the thermal conductivity of the mold is increased, the flow of the resin is promoted, and the cooling rate after molding is increased, so that molding workability is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の粉末焼成型の製造フローの一例を示す
説明図、第2図は本発明による粉末焼成型の断面の一部
を示す断面図である。 1・・・模型、 3・・・型枠、 4・・・容器、 5
・・・スラリー、 5゛・・・成形体、 5”・・・焼
成結合体。
FIG. 1 is an explanatory diagram showing an example of the manufacturing flow of the powder firing mold according to the present invention, and FIG. 2 is a sectional view showing a part of the cross section of the powder firing mold according to the present invention. 1...Model, 3...Formwork, 4...Container, 5
...slurry, 5゛...molded body, 5''...fired combined body.

Claims (2)

【特許請求の範囲】[Claims] (1)基材の金属粉に無機質バインダーと、基材より低
融点で高い熱伝導率を有する金属バインダーとを混合焼
結させてなる粉末焼成型。
(1) A powder sintering mold made by mixing and sintering metal powder as a base material with an inorganic binder and a metal binder having a lower melting point and higher thermal conductivity than the base material.
(2)基材の金属粉が鉄粉であり、金属バインダーがア
ルミニウム、銅、亜鉛から選ばれた金属である特許請求
の範囲第1項記載の粉末焼成型。
(2) The powder firing mold according to claim 1, wherein the metal powder of the base material is iron powder, and the metal binder is a metal selected from aluminum, copper, and zinc.
JP13492086A 1986-06-12 1986-06-12 Powder calcined mold Pending JPS62292239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13492086A JPS62292239A (en) 1986-06-12 1986-06-12 Powder calcined mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13492086A JPS62292239A (en) 1986-06-12 1986-06-12 Powder calcined mold

Publications (1)

Publication Number Publication Date
JPS62292239A true JPS62292239A (en) 1987-12-18

Family

ID=15139628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13492086A Pending JPS62292239A (en) 1986-06-12 1986-06-12 Powder calcined mold

Country Status (1)

Country Link
JP (1) JPS62292239A (en)

Similar Documents

Publication Publication Date Title
US5678162A (en) Mold useful for injection molding of plastics, and methods of production and uses thereof
JP2004512957A (en) Metal casting mold
US4298051A (en) Method of die casting utilizing expendable sand cores
JPS649898B2 (en)
CN1074330C (en) Casting-sinter process for preparing Fe-base surface compound material
JPS62292239A (en) Powder calcined mold
US4050500A (en) Method of making a shell mold
JP7592478B2 (en) Composition for furnace core tube, furnace core tube, and method for producing furnace core tube
JPS62289346A (en) Production of powder sintering mold
JPS62227603A (en) Manufacture of ceramics sintered body and molding tool used for said manufacture
CN1185067C (en) Casting with in-situ generated surface cermet layer and its productino process
CN118357441B (en) A ceramic particle composite high manganese steel swing hammer and preparation method thereof
JPS6390350A (en) Production of composite mold by metal and inorganic materials
JPH0196353A (en) Material for electric discharge machining and its manufacture
JP2004225145A (en) Method for manufacturing ceramic-metal matrix composite
SU1570849A1 (en) Method of producing porous inserts for composite castings
JPH04285141A (en) Manufacture of ferrous sintered body
JP2001514153A (en) Method for producing components from powder
JP3090873B2 (en) Mold and its manufacturing method
GB2068801A (en) Expendable cores for die casting
JP3327604B2 (en) Manufacturing method of metal products and core material used for the same
WO1994026438A1 (en) Method and manufacturing of moulding sand, such moulding sand and application thereof
CN118357441A (en) Ceramic particle composite high manganese steel throwing hammer and preparation method thereof
JP2000509340A (en) A simultaneous molding method for producing refractory materials without firing or coke
JPS58179535A (en) Casting mold for vacuum casting