JPS62291620A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS62291620A
JPS62291620A JP13377786A JP13377786A JPS62291620A JP S62291620 A JPS62291620 A JP S62291620A JP 13377786 A JP13377786 A JP 13377786A JP 13377786 A JP13377786 A JP 13377786A JP S62291620 A JPS62291620 A JP S62291620A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
substrate
monomolecular
tilt angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13377786A
Other languages
Japanese (ja)
Other versions
JPH0468605B2 (en
Inventor
Takeshi Eguchi
健 江口
Harunori Kawada
河田 春紀
Kunihiro Sakai
酒井 邦裕
Akira Tsuboyama
明 坪山
Yoshinori Tomita
佳紀 富田
Hiroshi Matsuda
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13377786A priority Critical patent/JPS62291620A/en
Publication of JPS62291620A publication Critical patent/JPS62291620A/en
Priority to US07/376,940 priority patent/US5009489A/en
Publication of JPH0468605B2 publication Critical patent/JPH0468605B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Abstract

PURPOSE:To improve the transmittivitity when a picture element shutter is open by forming the film of one substrate of a monomolecular film or cumulative monomercular film of a high-polymer compd. having a hydrophilic part and hydrophobic part in combination within the same molecule and orienting the films preferentially in one direction on the substrate surface. CONSTITUTION:This liquid crystal element is provided with a pair of the upper substrate 11a and lower substrate 11b which are disposed in parallel with each other and have fine ruggedness on the surface and transparent electrodes 12a and 12b wired to the respective substrates. A ferroelectric liquid crystal 13 having the non-spiral structure to exhibit two stable states is disposed between the upper substrate 11a and the lower substrate 11b. Orientation control films 14a and 14b formed of the monomolecular films or cumulative monomercular films of the high-polymer compd. are respectively disposed on the substrates 11a and 11b and the high-polymer compds. has the hydrophilic part and hydrophobic part in combination within the molecule. An external factor is given to the monomolecular film developed on a liquid surface at the time of transferring said film to the substrate, by which the arrangement or orientation of the film constituting element after the accumulation is additionally improved in the case of forming the cumulative monomolecular film. The uniaxial orientation control function is thereby improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野コ 本発明は、液晶表示素子や液晶−光シャッタ等で用いる
液晶素子、特に強誘電性液晶を用いた液晶素子に関し、
更に詳しくは液晶分子の初期配向状態を改善することに
より、表示特性を改善した液晶素子に関するものである
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a liquid crystal element used in a liquid crystal display element, a liquid crystal-optical shutter, etc., particularly a liquid crystal element using ferroelectric liquid crystal. ,
More specifically, the present invention relates to a liquid crystal element with improved display characteristics by improving the initial alignment state of liquid crystal molecules.

[従来の技術] 強誘電性液晶分子の屈折率異方性を利用して偏光素子と
の組み合わせにより透過光線を制御する型の表示素子が
クラーク(C1ark)及びラガーウオル(Lager
wal l)により提案されている(特開昭56−10
7216号公報、米国特許第4367924号明細書等
)。この強誘電性液晶は、一般に特定の温度域において
、カイラルスメクチックC相(Sac”)又はH相(S
mH”)を有し、この状態において、加えられる電界に
応答して第1の光学的安定状態と第2の光学的安定状態
のいずれかを取り、且つ電界の印加のないときはその状
態を維持する性質、すなわち双安定性を有し、また電界
の変化に対する応答も速やかであり、高速ならびに記憶
型の表示素子としての広い利用が期待されている。
[Prior Art] Clark and Lager Wall display devices utilize the refractive index anisotropy of ferroelectric liquid crystal molecules to control transmitted light in combination with a polarizing element.
wal l) (Japanese Unexamined Patent Publication No. 56-10
No. 7216, US Pat. No. 4,367,924, etc.). This ferroelectric liquid crystal generally has a chiral smectic C phase (Sac") or an H phase (Sac") in a specific temperature range.
mH"), and in this state, it assumes either the first optically stable state or the second optically stable state in response to an applied electric field, and maintains that state when no electric field is applied. It has the property of maintaining its stability, that is, bistability, and also has a quick response to changes in electric field, and is expected to be widely used as a high-speed and memory-type display element.

この双安定性を有する液晶を用いた光学変調素子が所定
の駆動特性を発揮するためには、一対の平行基板間に配
置される液晶が、電界の印加状態とは無関係に、上記2
つの安定状態の間での変換か効果的に起るような分子配
列状態にあることが必要である。たとえばSac”また
はSsH”相を有する強誘電性液晶については、 5t
aC”またはSmH”相を有する液晶分子相が基板面に
対して垂直で、したがって液晶分子軸が基板面にほぼ平
行に配列した領域(モノドメイン)が形成される必要か
ある。
In order for an optical modulation element using this bistable liquid crystal to exhibit predetermined driving characteristics, the liquid crystal disposed between a pair of parallel substrates must be
It is necessary that the molecules be in such a state that conversion between two stable states can effectively occur. For example, for ferroelectric liquid crystals with Sac" or SsH" phase, 5t
It is necessary to form a region (monodomain) in which the liquid crystal molecular phase having the aC" or SmH" phase is perpendicular to the substrate surface, and therefore the liquid crystal molecular axes are arranged substantially parallel to the substrate surface.

ところで、強誘電性液晶の配向方法としては、一般にラ
ビング処理や側方蒸着処理などによる一軸性配向処理を
施した配向制御膜を用いる方法が知られている。
By the way, as a method for aligning ferroelectric liquid crystals, a method using an alignment control film that has been subjected to a uniaxial alignment treatment such as a rubbing treatment or a lateral evaporation treatment is generally known.

この従来からの配向方法は、そのほとんどか双安定性を
示さないらせん構造をもつ強誘電性液晶に対するもので
あった。例えば、特開昭60−230635号公報に開
示された配向方法は、双安定性を示さないらせん構造の
状態下で強誘電性液晶をラビング処理したポリイミド膜
によって配向制御するものであった。
This conventional alignment method has mostly been applied to ferroelectric liquid crystals with a helical structure that exhibits no bistability. For example, the alignment method disclosed in Japanese Patent Application Laid-Open No. 60-230635 involves controlling the alignment of a ferroelectric liquid crystal using a polyimide film subjected to rubbing treatment in a state of a helical structure that does not exhibit bistability.

しかしながら、前述した如きの従来の配向制御膜をクラ
ークとラガウオールによって発表された双安定性を示す
非らせん構造の強誘電性液晶に対する配向制御に適用し
た場合には、下達の如き問題点を有していた。
However, when the conventional alignment control film as described above is applied to control the alignment of a ferroelectric liquid crystal with a non-helical structure that exhibits bistability as announced by Clark and Lagauer, it has the following problems. was.

[発明が解決しようとする問題点] すなわち、本発明者らの実験によれば、従来の配向制御
膜によって配向させて得られた非らせん構造の強誘電性
液晶でのチルト角(後述の第3図に示す角度)がらせん
構造をもつ強誘電性液晶でのチルト角■(後述の第2図
に示す三角錐の頂角の 1/2に相当する)と較べて小
さくなっていることが判明した。特に、従来の配向制御
膜によって配向させて得た非らせん構造の強誘電性液晶
でのチルト角0は、一般にlO°程度で、その時の透過
率はせいぜい3〜5%程度であった。
[Problems to be Solved by the Invention] According to experiments conducted by the present inventors, the tilt angle of a ferroelectric liquid crystal with a non-helical structure obtained by alignment using a conventional alignment control film (see below) The angle shown in Figure 3) is smaller than the tilt angle (corresponding to 1/2 of the apex angle of the triangular pyramid shown in Figure 2 below) in a ferroelectric liquid crystal with a helical structure. found. In particular, the tilt angle 0 of a ferroelectric liquid crystal with a non-helical structure obtained by alignment using a conventional alignment control film is generally about 10°, and the transmittance at that time is about 3 to 5% at most.

この様に、クラークとラガウオールによれば双安定性を
実現する非らせん構造の強誘電性液晶でのチルト角がら
せん構造をもつ強誘電性液晶でのチルト角と同一の角度
をもつはずであるが、実際には非らせん構造でのチルト
角θの方がらせん構造でのチルト角■より小さくなって
いる。しかも、この非らせん構造でのチルト角θからせ
ん構造でのチルト角■より小さくなる原因が非らせん構
造ての液晶分子のねじれ配列に帰因していることが判明
した。つまり、非らせん構造をもつ強誘電性液晶では、
液晶分子か第4図に示す様に基板の法線に対して上基板
に隣接する液晶分子の軸42より下基板に隣接する液晶
分子の軸43(ねじれ配夕哩の方向44)へ連続的にね
じれ角δでねじれて配列しており、このことが非らせん
構造てのチルト角0がらせん構造でのチルト角■より小
さくなる原因となっている。
Thus, according to Clark and Lagauer, the tilt angle of a ferroelectric liquid crystal with a non-helical structure that achieves bistability should be the same as the tilt angle of a ferroelectric liquid crystal with a helical structure. However, in reality, the tilt angle θ in the non-helical structure is smaller than the tilt angle ■ in the helical structure. Furthermore, it has been found that the reason why the tilt angle θ in the non-helical structure becomes smaller than the tilt angle 2 in the helical structure is due to the twisted arrangement of the liquid crystal molecules in the non-helical structure. In other words, in a ferroelectric liquid crystal with a non-helical structure,
As shown in FIG. 4, the liquid crystal molecules are continuous from the axis 42 of the liquid crystal molecules adjacent to the upper substrate to the axis 43 (twisted direction 44) of the liquid crystal molecules adjacent to the lower substrate with respect to the normal to the substrates. They are arranged in a twisted manner with a twist angle δ, and this causes the tilt angle 0 of the non-helical structure to be smaller than the tilt angle 2 of the helical structure.

尚、図中41は上下基板に形成したラビング処理や斜方
蒸着処理によって得られた一軸性配向軸を表わしている
Note that 41 in the figure represents a uniaxial alignment axis obtained by rubbing treatment or oblique vapor deposition treatment formed on the upper and lower substrates.

ところで、液晶の複屈折を利用した液晶素子の場合、直
交ニコル下ての透過率は、 て表わされる。前述の非らせん構造におけるチルト角θ
は第1と第2の配向状態でのねじれ配列した液晶分子の
平均分子軸方向の角度として現われることになる。上式
によれば、かかるチルト角θか22.5°の角度の時最
大の透過率となるが、双安定性を実現する非らせん構造
でのチルト角θは大きくてlO°程度の角度であり、従
って表示装置としての適用を考慮した時にはその透過率
は3〜5%程度で十分なものとはならない問題がある。
By the way, in the case of a liquid crystal element that utilizes the birefringence of liquid crystal, the transmittance under crossed Nicols is expressed as follows. Tilt angle θ in the non-helical structure mentioned above
appears as an angle between the average molecular axes of the twisted liquid crystal molecules in the first and second alignment states. According to the above equation, the maximum transmittance occurs when the tilt angle θ is 22.5°, but in a non-helical structure that achieves bistability, the tilt angle θ is as large as about 10°. Therefore, when considering application as a display device, there is a problem that the transmittance is about 3 to 5%, which is not sufficient.

従って、本発明の目的は、前述の問題点を解決すること
、すなわち少なくとも2つの安定状態、特に双安定性を
実現する非らせん構造の強誘電性液晶でのチルト角を増
大し、これによって画素シャッタ開口時の透過率を向上
させた液晶素子を提供することにある。
It is therefore an object of the present invention to solve the aforementioned problems, namely to increase the tilt angle in a ferroelectric liquid crystal with a non-helical structure that achieves at least two stable states, in particular bistability, and thereby An object of the present invention is to provide a liquid crystal element with improved transmittance when the shutter is opened.

本発明の別の目的は、強誘電性液晶のモノドメイン形成
に適した配向制g1膜を用いた液晶素子を提供すること
にある。
Another object of the present invention is to provide a liquid crystal element using an alignment control g1 film suitable for forming monodomains of ferroelectric liquid crystal.

[問題点を解決するための手段]及び[作 用]すなわ
ち、本発明は一対の平行基板と、該一対の平行基板の面
に対して垂直又は略垂直な複数の層を形成している分子
の配列をもつ強誘電性液晶とを有する液晶素子において
、前記一対の平行基板のうち少なくとも一方の基板が前
記複数の層を一方向に優先して配向させる高分子物質の
被膜を有し、特に該高分子物質の被膜が同一分子内に親
木性部分と疎水性部分を併有した高分子化合物の単分子
膜又は単分子累積膜により形成され、さらに前記基板表
面に前記単分子膜又は単分子累積膜を一方向に優先して
配向させるための配向処理が施されていることを特徴と
する液晶素子である。
[Means for Solving the Problem] and [Operation] That is, the present invention comprises a pair of parallel substrates and molecules forming a plurality of layers perpendicular or substantially perpendicular to the planes of the pair of parallel substrates. In a liquid crystal element having a ferroelectric liquid crystal having an alignment, at least one of the pair of parallel substrates has a coating of a polymeric substance that preferentially orients the plurality of layers in one direction, and in particular, The coating of the polymeric substance is formed of a monomolecular film or a monomolecular cumulative film of a polymeric compound having both a linophilic part and a hydrophobic part in the same molecule, and the film is further coated on the surface of the substrate. This liquid crystal element is characterized by being subjected to an alignment treatment for preferentially aligning a molecular accumulation film in one direction.

特に、本発明の液晶素子は、基板表面に配向処理が施さ
れ、具体的には単分子膜又は単分子累積膜を一方向に優
先して配向させるために、前記基板表面に微細な凸凹を
有している液晶素子、あるいは前記基板表面を一定方向
にラビングした液晶素子である。
In particular, in the liquid crystal element of the present invention, the substrate surface is subjected to an alignment treatment, and specifically, fine irregularities are formed on the substrate surface in order to preferentially orient a monomolecular film or a monomolecular cumulative film in one direction. or a liquid crystal element in which the surface of the substrate is rubbed in a certain direction.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は、本発明の液晶素子の一実施悪様を示す断面図
である。第1図に示す液晶素子は、一対の平行配置した
表面に微細な凸凹を有している上基板11a及び下基板
ttbと、それぞれの基板に配線した透明電極12aと
12bを備えている。上基板11aと下基板11bとの
間には強誘電性液晶、好ましくは少なくとも2つの安定
状態を示す非らせん構造の強誘電性液晶13が配置され
ている。
FIG. 1 is a sectional view showing one implementation of the liquid crystal element of the present invention. The liquid crystal element shown in FIG. 1 includes a pair of upper and lower substrates 11a and ttb, which are arranged in parallel and have fine irregularities on their surfaces, and transparent electrodes 12a and 12b wired to each substrate. A ferroelectric liquid crystal, preferably a non-helical ferroelectric liquid crystal 13 exhibiting at least two stable states, is arranged between the upper substrate 11a and the lower substrate 11b.

前述した透明電極12aと12bは、強誘電性液晶13
をマルチプレクシング駆動するために、それぞれストラ
イプ形状て配線され、且つそのストライプ形状が互いに
交差して配置されていることが好ましい。
The transparent electrodes 12a and 12b described above are made of ferroelectric liquid crystal 13.
In order to perform multiplexing driving, it is preferable that the wiring be arranged in a stripe shape, and that the stripe shapes be arranged to intersect with each other.

本発明の液晶素子は、基板11aとllbにそれぞれ高
分子化合物の単分子膜又は単分子累積膜により形成され
た配向制御膜14aと14bが配置されている。
In the liquid crystal element of the present invention, alignment control films 14a and 14b formed of a monomolecular film or a monomolecular cumulative film of a polymer compound are arranged on substrates 11a and llb, respectively.

本発明における単分子膜又は単分子累積膜を構成する高
分子化合物は、その分子内に疎水性部分及び親木性部分
を併有して、それらが高次構造上バランス良く配置して
いる高分子化合物であれば使用可能である。一般に疎水
性部分の構成要素として代表的なものは、アルキル基や
不飽和の炭化水素基であって、直鎖状のものも分枝状の
ものも使用しつる。さらにはフェニル、ナフチル、アン
トラニル等の如き縮合多環フェニル基、ビフェニル、タ
ーフェニル等の鎖状多環フェニル基等の疎水基等が挙げ
られる。これらは各々単独又はその複数が組み合されて
上記分子の疎水性部分を構成する。
The polymer compound constituting the monomolecular film or monomolecular cumulative film in the present invention has both a hydrophobic part and a woody part in its molecule, and these are arranged in a well-balanced manner in terms of higher order structure. Any molecular compound can be used. In general, typical constituent elements of the hydrophobic moiety are alkyl groups and unsaturated hydrocarbon groups, and both linear and branched groups can be used. Further examples include hydrophobic groups such as fused polycyclic phenyl groups such as phenyl, naphthyl, and anthranyl, and chain polycyclic phenyl groups such as biphenyl and terphenyl. Each of these may be used alone or in combination to form the hydrophobic portion of the molecule.

一方、親水性部分の構成要素として最も代表的なものは
3例えばカルボキシル基及びその金属塩並びにアミン塩
、スルホン酸基及びその金属塩並びにアミ゛ン塩、スル
ホンアミド基、アミド基、アミノ基、イミノ基、ヒドロ
キシル基、4級アミノ基、オキシアミノ基、オキシイミ
ノ基、ジアゾニウム基、グアニジン基、ヒドラジン基、
リン酸基、ケイ酸基、アルミン酸基等の親水性基等が挙
げられる。これらも各々単独又はその複数が組み合わさ
れて上記分子の親木性部分を構成する。
On the other hand, the most typical constituent elements of the hydrophilic part are 3, such as carboxyl groups and their metal salts and amine salts, sulfonic acid groups and their metal salts and amine salts, sulfonamide groups, amide groups, amino groups, imino group, hydroxyl group, quaternary amino group, oxyamino group, oximino group, diazonium group, guanidine group, hydrazine group,
Examples include hydrophilic groups such as phosphoric acid groups, silicic acid groups, and aluminic acid groups. These also constitute the tree-like part of the above molecule either singly or in combination.

ここて、分子内に親木性部分及び疎水性部分を有すると
は、例えば分子か上記のような親木基及び疎水基の両者
を分子内に1つずつ有するか、又は分子内に1つ以上の
親木基及び疎水基を有する場合には、分子全体の構成に
おいである部分が他の部分との関係において親木性であ
り、一方後者の部分は前者の部分との関係において疎水
性の関係を有することをいう。
Here, having a woody group and a hydrophobic group in a molecule means, for example, that a molecule has both one woody group and a hydrophobic group as described above in the molecule, or one in the molecule. When it has the above woody group and hydrophobic group, in the structure of the entire molecule, one part is woody in relation to other parts, while the latter part is hydrophobic in relation to the former part. It means having a relationship of

高分子化合物においては疎水性基と親木性基は一次元配
列のみならず、α−へソックスやβ−シート構造等の二
次構造やさらには立体的構造などの高次構造を有してい
るため、疎水性基と親木性基が高次構造的にバランス良
く分布していることか必要である。そして、これら高次
構造をもつ分子を高秩序に配列配向することにより、従
来の配向制御膜にない配向制御機能が発現されるものと
期待される。
In polymer compounds, hydrophobic groups and lignophilic groups have not only one-dimensional arrays but also secondary structures such as α-hesox and β-sheet structures, and even higher-order structures such as three-dimensional structures. Therefore, it is necessary that the hydrophobic group and the woody group are distributed in a well-balanced higher-order structure. By arranging and orienting molecules having these higher-order structures in a highly ordered manner, it is expected that an orientation control function not found in conventional orientation control films will be exhibited.

本発明における単分子膜又は単分子累積膜を構成する上
記の如き高分子化合物の具体例としては、例えば下記の
如き高分子が挙げられる。
Specific examples of the above-mentioned polymer compounds constituting the monomolecular film or monomolecular cumulative film in the present invention include the following polymers.

■、ポリペプチド誘導体 例えば、合成ポリペプチドとしては ■ポリーγ−メチルーL−グルタメイト(PMLG)■
ポリーγ−ベンジルーし一グルタメイト(PBLG) ■ポリーε−ベンジルオキシカルボニル−し−リジン(
PBCL) などのアミノ酸及びその誘導体を脱水重合して得られる
分子量1万〜百万、好ましくは分子量lO万〜70万の
ポリペプチド。
■ Polypeptide derivatives For example, as a synthetic polypeptide, ■ Poly γ-methyl-L-glutamate (PMLG) ■
Polyγ-benzyloxycarbonyl-lysine (PBLG) Polyε-benzyloxycarbonyl-lysine (
A polypeptide having a molecular weight of 10,000 to 1 million, preferably a molecular weight of 100,000 to 700,000, obtained by dehydration polymerization of amino acids such as PBCL) and their derivatives.

さらには天然の蛋白質として、例えば ■バクテリオロドプシン ■チトクロームC ■カイモトリプシン ■ウシ血清アルブミン ■トリプシン などの粒状蛋白質が挙げられる。Furthermore, as natural proteins, for example, ■Bacteriorhodopsin ■Cytochrome C ■Kymotrypsin ■Bovine serum albumin ■Trypsin Particulate proteins such as

■、無水アレイン酸ポリマー誘導体 例えば、 ■ポリーn−オクタデシルビニルエーテル−マレイック
アンハイトライド [株]ポリーオクタデセンー1−マレイックアンハイド
ライド ■ポリースチレンーマレイックアンハイドライド が挙げられる。分子z t、ooo〜100,000の
ものか好ましくい。
(1) Areic anhydride polymer derivatives Examples include (1) Poly n-octadecyl vinyl ether-maleic anhydride (Co., Ltd.) Polyoctadecene-1-maleic anhydride (2) Polystyrene-maleic anhydride. Preferably, the number of molecules z t, ooo to 100,000.

■、ポリアミド酸誘導体 3.3’、 4.4’−ジフェニルテトラカルボン酸O
又はピロメット酸O等の酸無水物とp−フェニレンジア
ミン[株]、4,4′−ジアミノジフェニル■及び4.
4′−ジアミノターフェニル[相]、さらには4.4′
−ジアミノジフェニルエーテルO等のジアミノ化合物と
の1:1脱水縮合により得られるポリアミド酸の長鎖ア
ルキルアミン塩(例えばN(Cl13)2+CH2q 
CI+3.10≦n≦25)か挙げられる。
■, polyamic acid derivative 3.3', 4.4'-diphenyltetracarboxylic acid O
or an acid anhydride such as pyrometic acid O, p-phenylenediamine [Co.], 4,4'-diaminodiphenyl and 4.
4'-diaminoterphenyl [phase], and also 4.4'
- Long chain alkylamine salts of polyamic acids obtained by 1:1 dehydration condensation with diamino compounds such as diaminodiphenyl ether O (e.g. N(Cl13)2+CH2q
CI+3.10≦n≦25).

これらのポリアミド酸の単分子膜は酸および熱処理によ
りポリイミド単分子膜になり、このポリイミド被膜を配
向制御膜として使用する。
These polyamic acid monomolecular films are turned into polyimide monomolecular films by acid and heat treatment, and this polyimide film is used as an alignment control film.

本発明における単分子膜又は単分子膜m膜の作成方法の
4!!要につき、一般に広く知られているクーン(にu
hm)の研究グループが考案したラングミュア・プロジ
ェット法の成膜装置を使用する場合を例として説明する
。尚、本例では単分子膜を展開する液体を水として説明
を行う。
4 of the method for creating a monomolecular film or a monomolecular film in the present invention! ! The main point is that Kuhn, who is widely known to the general public,
An example of using a Langmuir-Prodgett method film forming apparatus devised by the research group of HM) will be described. In this example, the liquid for developing the monomolecular film is water.

まず、前述の分子な成膜分子とし、これをベンゼン、ク
ロロホルム等の揮発性溶媒に溶解する。
First, the above-mentioned film-forming molecules are prepared and dissolved in a volatile solvent such as benzene or chloroform.

この溶液を入れた槽(トラフ)にスポイト等て滴下し、
水相上に該成膜分子の単分子膜を展開する。次に、単分
子膜が水相上を自由に拡散して拡がりすぎないようにす
るために設けられている浮子(または仕切板)を動かし
、単分子膜の展開面積を縮小して単分子膜が二次元固体
膜の状態になるまて、単分子膜に表面圧をかける。この
表面圧を維持しながら、基板を水面に垂直に且つこれを
横切るように静かに上下させることにより、単分子膜を
基板上に移し取る。単分子膜は以上て製造されるが、単
分子累積膜は、前記の上下の操作を繰り返すことにより
所望の累積度の単分子累積膜か形成される。
Drop this solution into the tank (trough) using a dropper,
A monomolecular film of the film-forming molecules is developed on the aqueous phase. Next, the float (or partition plate) provided to prevent the monomolecular film from spreading freely on the aqueous phase and spreading too much is moved to reduce the spread area of the monomolecular film and to prevent the monomolecular film from spreading too much. Surface pressure is applied to the monolayer until it becomes a two-dimensional solid film. While maintaining this surface pressure, the monomolecular film is transferred onto the substrate by gently moving the substrate up and down perpendicular to and across the water surface. A monomolecular film is produced as described above, and a monomolecular cumulative film having a desired degree of accumulation is formed by repeating the above-mentioned up and down operations.

以上、クーン(Kuhm)の成膜装置によって単分子膜
又は単分子累積膜を作成する場合を示したが、本発明に
おける単分子膜又は単分子累積膜を作成するための装置
は上記例に限定されるものではなく、その他水平付着方
法や円筒回転法等のラングミュア・プロジェット法の原
理に基く成膜装置を広く使用することが可能である。
Although the case where a monomolecular film or a monomolecular cumulative film is created using Kuhm's film forming apparatus has been described above, the apparatus for creating a monomolecular film or a monomolecular cumulative film in the present invention is limited to the above example. However, it is possible to widely use other film forming apparatuses based on the principles of the Langmuir-Prodgett method, such as the horizontal deposition method and the cylindrical rotation method.

このようにして、基板上に形成された高分子化合物の単
分子膜又は単分子累積膜は基板引き上げ方向に対して膜
構成分子が一定の配向特性を示すことが知られている。
It is known that in a monomolecular film or a monomolecular cumulative film of a polymer compound formed on a substrate in this manner, the molecules constituting the film exhibit a constant orientation characteristic with respect to the direction in which the substrate is pulled up.

即ち、該高分子化合物の単分子膜又は単分子累積膜は、
そのディピング方向に一軸性の配向制御効果を持つと考
えられる。そして、これらの配向膜は、絶縁膜としての
機能ももたせることが可能で、通常50A〜IJL程度
、好ましくは100A〜100OAの範囲の膜厚で形成
される。
That is, the monomolecular film or monomolecular cumulative film of the polymer compound is
It is thought that it has a uniaxial orientation control effect in the dipping direction. These alignment films can also have a function as an insulating film, and are usually formed with a thickness in the range of about 50A to IJL, preferably 100A to 100OA.

前述した液面上に展開した単分子膜を基板に移し取る際
に、外因子を与えることで、累積後の膜構成分子の配列
もしくは配向をさらに高めることができる。−軸性配向
制御機能を向上させることが可能となる。外因子とは、
具体的には基板表面形状(凸凹)であり、本発明では、
溝を有する基板、詳しくは0.1pm〜1昨重程度、好
ましくは0.lル1〜1μ−程度のピッチの溝(以下グ
ループと称す)を有する基板又は一定方向にラビングを
施した基板を用いることで得られる。
By applying an external factor when transferring the monomolecular film developed on the liquid surface to the substrate, the arrangement or orientation of the film constituent molecules after accumulation can be further enhanced. - It becomes possible to improve the axial orientation control function. What is an external factor?
Specifically, it is the substrate surface shape (unevenness), and in the present invention,
A substrate having grooves, specifically about 0.1 pm to 1 pm, preferably 0.1 pm to 1 pm. This can be obtained by using a substrate having grooves (hereinafter referred to as groups) with a pitch of about 1 to 1 μm or a substrate rubbed in a certain direction.

単分子膜又は単分子累積膜の構成分子の配列や配向性を
著しく高め、−軸性配向処理を施した配向膜m膜14a
と14bを得ることができる。本発明においては、ガラ
ス基板表面を公知のリソグラフィー技術によりドライエ
ツチングすることによりグループを形成することができ
る。そして、該クループ上に ITO電極をスパッタリ
ングし、透明電極基板とする。しかし、ガラス基板に、
まずITO電極を形成した後、該電極基板表面に有機レ
ジスト又は5in2のグループを作成したものを透明電
極基板として用いることもできる。そして該グループの
形状としては20A〜100OA程度、好ましくは10
0八〜500Aの溝の深さを有するエツジの鋭いものが
好ましい。
Alignment film m film 14a which has undergone -axial orientation treatment by significantly enhancing the arrangement and orientation of constituent molecules of a monomolecular film or a monomolecular cumulative film.
and 14b can be obtained. In the present invention, the groups can be formed by dry etching the surface of the glass substrate using a known lithography technique. Then, an ITO electrode is sputtered onto the croup to form a transparent electrode substrate. However, on a glass substrate,
It is also possible to first form an ITO electrode and then form an organic resist or 5 in 2 groups on the surface of the electrode substrate and use this as the transparent electrode substrate. The shape of the group is about 20A to 100OA, preferably 10A to 100OA.
Sharp edges with a groove depth of 0.8 to 500 A are preferred.

次に、本発明の液晶素子に用いられる一対の平行基板の
面に対して垂直な複数の層を形成している分子の配列を
もつ強誘電性液晶について説明する。
Next, a ferroelectric liquid crystal having molecular alignment forming a plurality of layers perpendicular to the planes of a pair of parallel substrates used in the liquid crystal element of the present invention will be described.

第2図は、らせん構造を用いた強誘電性液晶セルの例を
模式的に描いたものである。21aと21bは、In、
Q、 、 5n02やITO(Indium Tin 
0xide)等の透明電極がコートされた基板(ガラス
板)であり、その間に複数の液晶分子層22がガラス基
板面に対して垂直な層となるよう配向した5taC” 
(カイラルスメクチックC相)の液晶が封入されている
。太線で示したa23が液晶分子を表わしており、この
液晶分子23は、その分子に直交した方向に双極子モー
メント(Pよ)24を有している。この時の三角錐の頂
角をなす角度がかかるらせん構造のカイラルスメクチッ
ク相でのチルト角■を・表わしている。基板21aと2
1b上の電極間に一定の閾値以上の電圧を印加すると、
液晶分子23のらせん構造かほどけ、双極子モーメント
(PA ) 24はすべて電界方向に向くよう、液晶分
子23の配向方向な変えることができる。
FIG. 2 schematically depicts an example of a ferroelectric liquid crystal cell using a helical structure. 21a and 21b are In,
Q, , 5n02 and ITO (Indium Tin)
It is a substrate (glass plate) coated with a transparent electrode such as 0xide), between which a plurality of liquid crystal molecular layers 22 are oriented to form a layer perpendicular to the surface of the glass substrate.
(chiral smectic C phase) liquid crystal is sealed. The bold line a23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P) 24 in a direction perpendicular to the molecule. At this time, the angle forming the apex angle of the triangular pyramid represents the tilt angle ■ in the chiral smectic phase of the helical structure. Substrates 21a and 2
When a voltage above a certain threshold is applied between the electrodes on 1b,
The orientation direction of the liquid crystal molecules 23 can be changed so that the helical structure of the liquid crystal molecules 23 is unwound and the dipole moment (PA) 24 is all oriented in the direction of the electric field.

しかし、このらせん構造を用いた強誘電性液晶は、電界
無印加時には、もとのらせん構造に復帰するもので、下
達する双安定性を示さない。
However, a ferroelectric liquid crystal using this helical structure returns to its original helical structure when no electric field is applied, and does not show any decline in bistability.

本発明の好ましい具体例では、少なくとも2つの安定状
態、特に双安定状態をもつ第3図に示す強誘電性液晶素
子を用いることがてきる。すなわち、液晶セルの厚さを
充分に薄くした場合(例えばIg)には、第3図に示す
ように電界を印加していない状態でも液晶分子のらせん
構造はほどけ、非らせん構造となり、その双極子モーメ
ントPa又はpbは上向き(34a)又は下向き(34
b)のどちらかの状悪なとり、双安定状態か形成される
。このようなセルに第3図に示す如く一定の閾値以上の
極性の異なる電界EaまたはEbを付与すると、双極子
モーメント電界Ea又はEbは電界ベクトルに対応して
上向き34a又は、下向き34bと向きを変え、それに
応じて液晶分子は第1の安定状7f、33aかあるいは
第2の安定状7g3:+bの何れか一方に配向する。こ
の時の第1と第2の安定状態のなす角度の1/2がチル
ト角θに相当している。
In a preferred embodiment of the invention, a ferroelectric liquid crystal element as shown in FIG. 3 may be used which has at least two stable states, especially a bistable state. In other words, when the thickness of the liquid crystal cell is made sufficiently thin (for example, Ig), the helical structure of the liquid crystal molecules unravels even in the absence of an applied electric field and becomes a non-helical structure, as shown in Figure 3. The child moment Pa or pb is directed upward (34a) or downward (34
If either of b) is bad, a bistable state is formed. When such a cell is given an electric field Ea or Eb of different polarity above a certain threshold as shown in FIG. 3, the dipole moment electric field Ea or Eb will be directed upward 34a or downward 34b in accordance with the electric field vector. Accordingly, the liquid crystal molecules are oriented in either the first stable state 7f, 33a or the second stable state 7g3:+b. At this time, 1/2 of the angle formed by the first and second stable states corresponds to the tilt angle θ.

このような強誘電性液晶を光学変調素子として用いるこ
との利点は2つある。第1に、応答速度が極めて速いこ
と、第2に液晶分子の配向が双安定性を有することであ
る。第2の点を、例えば第3図によって説明すると、電
界Eaを印加すると液晶分子は第1の安定状態33aに
配向するが、この状態は電界を切っても安定である。又
、逆向きの電界Ebを印加すると、液晶分子は第2の安
定状態33bに配向して、その分子の向きを変えるが、
やはり電界を切ってもこの状態に留っている。このよう
な応答速度の速さと、双安定性によるメモリー効果が有
効に実現されるには、セルとしては出来るだけ薄い方が
好ましく、一般的には、0.5膳〜20JL、特にlル
ー5ルが適している。この種の強誘電性液晶を用いたマ
トリクス電極構造を有する液晶−電気光学装置は、例え
ばクラークとラガハルにより、米国特許第436792
4号明細書で提案されている。
There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has bistability. To explain the second point with reference to FIG. 3, for example, when the electric field Ea is applied, the liquid crystal molecules are oriented in a first stable state 33a, and this state remains stable even when the electric field is turned off. Furthermore, when an electric field Eb in the opposite direction is applied, the liquid crystal molecules are oriented to the second stable state 33b and the orientation of the molecules is changed.
It remains in this state even if the electric field is turned off. In order to effectively realize such fast response speed and memory effect due to bistability, it is preferable for the cell to be as thin as possible. is suitable. A liquid crystal-electro-optical device having a matrix electrode structure using ferroelectric liquid crystals of this kind is disclosed, for example, by Clark and Lagahar in US Pat. No. 4,367,992.
This is proposed in Specification No. 4.

本発明の液晶r;子で用いることができる強誘電性液晶
としては、例えばp−デシロキシベンジリデン−p′−
アミノ−2−メチルブチルシンナメート(DOBAMB
C) 、 p−ヘキシロキシベンジリデン−p’−アミ
ノ−2−クロルプロピルシンナメート(HOBACPC
)、p−デシロキシベンジリデン−p’−アミノ−2−
メチルブチル−α−シアノシンナメー)−(DOBAM
BCC)、P−テトラデシロキシベンジリデン−p′−
アミノ−2−メチルブチル−α−シアノシンナメー)−
(TDOBAMBCC) 、 P−オクチルオキシベン
ジリデン−p′−アミノ−2−メチルブチル−α−クロ
ロシンナメート(OOBAMBCC)、p−オクチルオ
キシベンジリデン−p′−アミノ−2−メチルブチル−
α−メチルシンナメート、4.4′−アゾキシシンナミ
ックアシッド−ビス(2−メチルブチル)エステル、4
−o−(2−メチル)プチルレゾシリデンー4′−オク
チルアニリン、 4−(2’−メチルブチル)フェニル
−4′−オクチルオキシビフェニル−4−カルボキシレ
ート、4−へキシルオキシフェニル−4−(2″−メチ
ルブチル)ビフェニル−4′−カルボキシレート、4−
才クチルオキシフェニル−4−(2″−メチルブチル)
ビフェニル−4′−カルボキシレート、4−へブチルフ
ェニル−4−(4″−メチルヘキシル)ビフェニル−4
′−カルボキシレート、4− (2”−メチルブチル)
フェニル−4−(4”−メチルヘキシル)ビフェニル−
4′−カルボキシレートなどを挙げることかでき、これ
らは単独又は2種以上組合せて用いることができ、又強
誘電性を示す範囲で他のコレステリック液晶やスメクチ
ック液晶を含有させることができる。
Examples of the ferroelectric liquid crystal that can be used in the liquid crystal of the present invention include p-decyloxybenzylidene-p'-
Amino-2-methylbutylcinnamate (DOBAMB)
C), p-hexyloxybenzylidene-p'-amino-2-chloropropyl cinnamate (HOBACPC
), p-decyloxybenzylidene-p'-amino-2-
Methylbutyl-α-cyanosinname)-(DOBAM
BCC), P-tetradecyloxybenzylidene-p'-
Amino-2-methylbutyl-α-cyanosinname)-
(TDOBAMBCC), P-octyloxybenzylidene-p'-amino-2-methylbutyl-α-chlorocinnamate (OOBAMBCC), p-octyloxybenzylidene-p'-amino-2-methylbutyl-
α-Methylcinnamate, 4.4′-azoxycinnamic acid-bis(2-methylbutyl) ester, 4
-o-(2-methyl)butylresocylidene-4'-octylaniline, 4-(2'-methylbutyl)phenyl-4'-octyloxybiphenyl-4-carboxylate, 4-hexyloxyphenyl-4- (2″-methylbutyl)biphenyl-4′-carboxylate, 4-
methyloxyphenyl-4-(2″-methylbutyl)
Biphenyl-4'-carboxylate, 4-hebutylphenyl-4-(4''-methylhexyl)biphenyl-4
'-Carboxylate, 4- (2''-methylbutyl)
Phenyl-4-(4”-methylhexyl)biphenyl-
Examples include 4'-carboxylate, which may be used alone or in combination of two or more, and may contain other cholesteric liquid crystals or smectic liquid crystals as long as they exhibit ferroelectricity.

又、本発明では強誘電性液晶としてカイラルスメクチッ
ク相を用いることができ、具体的には、カイラルスメク
チックC相(S+s(:”) 、 H相(SIIH”)
 、 I相(Sml”) 、 K相(SaK’)やG相
(SsG”)を用いることかできる。
Furthermore, in the present invention, a chiral smectic phase can be used as the ferroelectric liquid crystal, and specifically, chiral smectic C phase (S+s(:''), H phase (SIIH''))
, I phase (Sml''), K phase (SaK'), or G phase (SsG'') can be used.

次に、本発明においては、前述の様なグループ軸又はラ
ビング軸により制御された上下配向制御膜の一軸性配向
軸は互いに平行又は交差させることができるが、本発明
では第5図に示す様に一軸性配向軸を交差させることが
好ましい。
Next, in the present invention, the uniaxial alignment axes of the upper and lower alignment control films controlled by the group axis or rubbing axis as described above can be parallel to or intersect with each other, but in the present invention, as shown in FIG. It is preferred that the uniaxial orientation axes intersect.

即ち、第5図に示す様に、上基板と下基板に形成する一
軸性配向処理面では、無電界時にそれぞれの一軸性配向
軸51と52が第4図に示すねじれ配列の方向44とは
反対方向55の角度で交差している。この様な一軸性配
向処理面の存在下にカイラルスメクチック相を該相より
高温側の相よりの降温で配向させた時に、上下基板に隣
接する液晶分子の軸53は互いに平行となる。このカイ
ラルスメクチック相では降温下で一軸性配向軸51と5
2の中間の角度をもって配向したスメクチックA相(S
mA)での液晶分子の軸54からチルト角θ(又は−〇
)をもって液晶分子が配向し、第1と第2の安定状成(
チルト角θのとき第1の安定状態、チルト角−θの一時
第2の安定状態)を形成することかできる。
That is, as shown in FIG. 5, on the uniaxially oriented surfaces formed on the upper and lower substrates, in the absence of an electric field, the uniaxially oriented axes 51 and 52 are twisted in the direction 44 shown in FIG. 4. They intersect at angles in opposite directions 55. When the chiral smectic phase is aligned in the presence of such a uniaxially aligned surface by lowering the temperature of the phase higher than the phase, the axes 53 of the liquid crystal molecules adjacent to the upper and lower substrates become parallel to each other. In this chiral smectic phase, the uniaxial orientation axes 51 and 5 are
The smectic A phase (S
The liquid crystal molecules are aligned with a tilt angle θ (or -〇) from the axis 54 of the liquid crystal molecules at mA), and the first and second stable states (
When the tilt angle is θ, a first stable state can be formed, and when the tilt angle is −θ, a second stable state can be formed.

この液晶素子では、直交ニコルの一方の偏光軸56を第
1の安定状態における分子軸方向に対応する液晶分子の
軸53と平行として、他方の偏光軸57を偏光軸56と
直交させた時に最大コントラストを得ることができる。
In this liquid crystal element, when one polarization axis 56 of crossed Nicols is set parallel to the axis 53 of the liquid crystal molecules corresponding to the molecular axis direction in the first stable state, and the other polarization axis 57 is made orthogonal to the polarization axis 56, the maximum You can get contrast.

本発明の好ましい具体例では、交流印加前処理により前
述したチルトθをらせん構造でのチルト0と等しいか、
あるいは同程度の角度まで増大させることができる。こ
の時のチルト角をθ′とする。この際に用いる交流とし
ては、電圧20〜500ボルト、好ましくは30〜15
0ボルトで周波数lO〜5OOIIz 、好ましくは1
0〜20011zを用いることができ、その印加時間を
数秒〜10分間程度で交流印加前処理を施すことができ
る。又、かかる交流印加前処理は、液晶素子を例えば映
像信号や情報信号に応じて書込みを行う前の段階で行な
われ、好ましくはかかる液晶素子を装置に組込み、かか
る装置を操作する時のウェイトタイムで前述の交流印加
前処理を行なうか、あるいはかかる液晶素子の製造時て
も交流印加前処理を施すことができる。
In a preferred embodiment of the present invention, the above-mentioned tilt θ is made equal to the tilt 0 in the helical structure by the AC application pre-processing.
Alternatively, the angle can be increased to the same degree. Let the tilt angle at this time be θ'. The alternating current used in this case has a voltage of 20 to 500 volts, preferably 30 to 15 volts.
At 0 volts the frequency lO~5OOIIz, preferably 1
0 to 20011z can be used, and AC application pretreatment can be performed with the application time being about several seconds to about 10 minutes. Further, such AC application pre-processing is performed at a stage before writing is performed on the liquid crystal element in response to, for example, a video signal or an information signal, and is preferably performed to reduce the wait time when such a liquid crystal element is incorporated into a device and the device is operated. The above-mentioned alternating current application pretreatment can be performed, or alternatively, the alternating current application pretreatment can be performed during the manufacture of such a liquid crystal element.

かかる交流印加前処理は、本発明者らが行なった実験、
すなわち第4図又は第5図に示す双安定状態をもつ強誘
電性液晶素子に交流電場を印加子ると、印加前のチルト
角θがらせん構造でのチルト■と同程度にまで増大させ
たチルト角θ′とすることができ、しかも第5図に示す
状態の場合ではかかる交流印加を除去した後であっても
その増大されたチルト角θ′を維持することができる。
Such alternating current application pretreatment is based on experiments conducted by the present inventors,
In other words, when an alternating current electric field is applied to a ferroelectric liquid crystal element having a bistable state as shown in Fig. 4 or Fig. 5, the tilt angle θ before application increases to the same extent as the tilt ■ in the helical structure. Moreover, in the case of the state shown in FIG. 5, the increased tilt angle θ' can be maintained even after the alternating current application is removed.

又、かかる交流印加前処理は、自発分極の大きい強誘電
性液晶(例えば25°Cて5 nc/c■2以上、好ま
しくは10nc/c會2〜300nc/cm”  : 
ncはナノクーロンを示す単位である)に対して有効で
ある。この自発分極は100 JLセルで三角波印加法
8により測定することができる。
In addition, such AC application pretreatment is performed on a ferroelectric liquid crystal with a large spontaneous polarization (for example, 5 nc/c at 25°C or more, preferably 10 nc/c or 2 to 300 nc/cm):
(nc is a unit indicating nanocoulombs). This spontaneous polarization can be measured by the triangular wave application method 8 in a 100 JL cell.

8ジヤパニーズ・ジャーナル・オブ・アプライド・フィ
ジックス (Japanese Journal of
 AppliedPhysics) 22 (10)号
、661〜663頁(1983年)に掲載されたケー・
ミャサト(に、 Miyasato)らの共著の“ダイ
レックト・メソッド・クイズ・ドライアングラ−・ウエ
ーブズ・フォー・メジャーリング・スボンタナス・ポー
ラリゼーション・イン・フェロエレクトリック・リキッ
ド・クリスタル”(“ Direct  Method
  with  Triangular  Waves
for Measuring 5pontaneous
 Po1arization 1nFerroelec
tric Liquid Crystal”)による。
8 Japanese Journal of Applied Physics
Applied Physics) 22 (10), pp. 661-663 (1983).
“Direct Method Quiz Drying Waves for Measuring Subontaneous Polarization in Ferroelectric Liquid Crystals” co-authored by Miyasato et al.
with Triangular Waves
for Measuring 5pontaneous
Po1arization 1nFerrroelec
tric Liquid Crystal”).

本発明では、前述した配向側gI膜14aと14bのう
ち、一方の配向量g4Hの使用を省略することができる
。又、本発明の別の具体例では、前述した配向制御 W
J 14 aと14bのうち、一方の配向制御膜を別の
配向制御膜とすることも可能である。この他の配向量g
lW1を形成する被膜としては、例えばポリビニルアル
コール、ポリアミド、ポリエステル、ポリイミド、ポリ
アミドイミド、ポリエステルイミドなどの被膜を挙げる
ことができる。又、他の配向制御膜としてSiOやSi
n、などの無機物質を斜方蒸着によって形成したものも
使用可能である。
In the present invention, the use of the orientation amount g4H of one of the orientation side gI films 14a and 14b described above can be omitted. Moreover, in another specific example of the present invention, the above-mentioned orientation control W
It is also possible to use one of the alignment control films of J 14 a and 14b as another alignment control film. Other orientation amount g
Examples of the coating forming lW1 include coatings of polyvinyl alcohol, polyamide, polyester, polyimide, polyamideimide, polyesterimide, and the like. In addition, as other orientation control films, SiO and Si
It is also possible to use an inorganic material such as n, formed by oblique vapor deposition.

[実施例] 以下1本発明を実施例及び比較例を示し、さらに具体例
を挙げて説明する。
[Example] The present invention will be described below by showing Examples and Comparative Examples, and further by giving specific examples.

実施例1 2枚の0.7 am厚のガラス板を用意し、それぞれ中
性洗剤でこすり洗いをし、120℃で30分間熱処理し
た後1表面処理剤HMDS  [東京チッソ■]をスピ
ンコード(2500rpm、30sec) L/て、更
に 150℃で10分間加熱処理した。
Example 1 Two glass plates with a thickness of 0.7 am were prepared, each was scrubbed with a neutral detergent, and heat treated at 120°C for 30 minutes. 2500 rpm, 30 sec) L/L, and further heat-treated at 150° C. for 10 minutes.

このようにして表面処理を行ったガラス基板上に、ネガ
レジスト剤であるHD−2000N−10[日立化成v
4]を下記条件により塗布して、第1回 (I ST)
  40(10rpm  1 sec第2回 (2ND
)  3000 rpm  405ec80℃で20分
間熱処理を行うことにより、膜厚0,71Lffiのレ
ジスト膜を形成した。
A negative resist agent HD-2000N-10 [Hitachi Chemical v.
4] under the following conditions, and the first (I ST)
40 (10 rpm 1 sec 2nd time (2ND)
) A resist film having a film thickness of 0.71 Lffi was formed by performing heat treatment at 3000 rpm, 405 ec, and 80° C. for 20 minutes.

このネガ型レジストをDeep UV露光装置、 PL
八−5oosにより 2.5カウントの間露光してマス
クパターンの潜像を形成した後、この潜像を専用現象液
を用いて、23”Cで80秒間現像した。そして最後に
、純水洗浄、乾燥し、そして60秒ボストリススを行う
ことにより、1pmピッチ(L O,5H/S0.5p
+*)を有するグレーティングパターンをガラス基板表
面に形成した。
This negative resist is exposed to deep UV exposure equipment, PL
After forming a latent image of the mask pattern by exposing for 2.5 counts using 8-5oos, this latent image was developed using a special developing solution at 23"C for 80 seconds.Finally, it was washed with pure water. , dry, and perform a 60 second Bostris to create a 1 pm pitch (LO,5H/S0.5p
+*) was formed on the surface of the glass substrate.

上記のようにして形成したレジストパターンをマスクと
して平行平板型ドライエッチ装置により下記条件で、溝
深さ500Aのグループ(グレーティングパターン)を
ガラス基板表面にエッチングした。
Using the resist pattern formed as described above as a mask, a group (grating pattern) with a groove depth of 500 A was etched on the surface of the glass substrate using a parallel plate dry etching apparatus under the following conditions.

エツチングガス    CF。Etching gas CF.

流  量             10 3CCM圧
  力             7  Pa投入電力
       too w エツチングレート   250 A /win本実施例
ではガラス基板表面のパターン形成はドライエツチング
法を用いたが、Sin、のEB蒸着等従来のリフトオフ
法も用いることも可能である。
Flow rate 10 3 CCM Pressure 7 Pa Input power too w Etching rate 250 A/win In this example, a dry etching method was used to form a pattern on the surface of the glass substrate, but a conventional lift-off method such as EB evaporation of Sin may also be used. is also possible.

このようにして作成したグループ付きのガラス表面上に
100OAの膜厚を有する ITO電極をリフトオフ法
により形成した。
An ITO electrode having a film thickness of 100 OA was formed on the glass surface with groups thus prepared by a lift-off method.

次に、合成ポリペプチドのポリーγ−ベンジル−し一グ
ルタメイト(PBLG■、分子量64万)を塩化メチレ
ンに溶解(a度1 mg/aR) L/た後、温度17
°Cの純水(伝導度0.03隔s/cm )の上に展開
した。
Next, the synthetic polypeptide polyγ-benzyl-glutamate (PBLG, molecular weight 640,000) was dissolved in methylene chloride (1 mg/aR) at a temperature of 17
It was developed on pure water (conductivity 0.03 s/cm ) at °C.

溶媒の塩化メチレンを蒸発除去したのち、表面圧を5 
dyn/cmまて高め、一層の単分子膜を水面上に形成
した。表面圧を5 dyn/c■に保ち、1.5時間放
置した後、前記ITO電極基板のグループ軸か水面を垂
直又は略垂直に横切る方向に上下速度2.5IIIl1
分で静かに上下して20層に累積した。
After removing the solvent methylene chloride by evaporation, the surface pressure was reduced to 5
dyn/cm was increased to form a monolayer film on the water surface. After keeping the surface pressure at 5 dyn/c and leaving it for 1.5 hours, the group axis of the ITO electrode substrate was moved vertically or approximately vertically across the water surface at a vertical speed of 2.5 IIIl1.
It quietly rose and fell in minutes, accumulating 20 layers.

この累積条件では、引き上げ時にのみPBLGか累積さ
れ、Z型の単分子累積膜(膜n約22OA )を得た。
Under these accumulation conditions, PBLG was accumulated only during pulling, yielding a Z-type monomolecular accumulated film (film n approximately 22 OA).

それぞれの上下電極基板におけるグループ軸が;互に平
行となる様に2枚のガラス基板をセル組みした。
Two glass substrates were assembled into cells so that the group axes of the upper and lower electrode substrates were parallel to each other.

セル厚(上下基板の間隔)は下基板に予め形成しておい
たフォトレジストスペーサーて保持した。
The cell thickness (distance between the upper and lower substrates) was maintained by photoresist spacers previously formed on the lower substrate.

この液晶セル(これを1.8μmセルという)に下達の
混合液晶を等吉相下て真空注入してから、等吉相から0
.5℃/hで30℃まで徐冷することにより配向させる
ことができた。以後の実験は30℃で行った。
Into this liquid crystal cell (this is called a 1.8μm cell), the mixed liquid crystal of the lower temperature is injected under vacuum in the Tokichi phase, and then
.. Orientation could be achieved by slow cooling to 30°C at a rate of 5°C/h. Subsequent experiments were conducted at 30°C.

混合液晶 (重量比) CI。mixed lcd (weight ratio) C.I.

CH3 CH。CH3 CH.

(SIIC”の温度範囲;3〜35°C)直交ニコル下
でこのセルをi察すると、一様で欠陥のない非らせん構
造のカイラルスメクチックC相を形成したモノドメイン
が得られていた。 ゛この液晶セルにパルス電界(20
V 、 500psec )を印加することにより、一
方の安定状態に液晶分子方向をそろえ、直交ニコル下で
、液晶セルを回転させながら透過光量が最も低くなる最
暗状態となる位置を見つけ、次に、前のパルスと逆極性
のパルス電界(−20V 、 500漆see )を印
加することによって、もう一方の安定分子配列状態に転
移させて明状態とした後、再び液晶セルを回転させて最
暗状態となる角度を見つけた。以上2つの最暗状態の位
置は、液晶の安定な平均的分子軸を検出していることに
対応し、これら2つの状態の間の角度がチルト角2θに
相当している。
(SIIC" temperature range: 3-35°C) When this cell was inspected under crossed nicol conditions, monodomains were obtained that formed a chiral smectic C phase with a uniform, defect-free, non-helical structure. A pulsed electric field (20
V, 500 psec) to align the direction of the liquid crystal molecules in one stable state, and under crossed Nicols, find the darkest position where the amount of transmitted light is the lowest while rotating the liquid crystal cell, and then: By applying a pulsed electric field (-20 V, 500 lacquer) with the opposite polarity to the previous pulse, the state is transferred to the other stable molecular alignment state and brought to a bright state.The liquid crystal cell is then rotated again to bring it to the darkest state. I found the angle. The positions of the above two darkest states correspond to the detection of a stable average molecular axis of the liquid crystal, and the angle between these two states corresponds to the tilt angle 2θ.

こうして前述の液晶セルのチルト角を測定したところ、
14°であった。すなわち、本例の液晶セルは、双安定
性カイラルスメクチック相で実現したメモリー状態下で
、そのチルト角が従来のものにはない大きなチルト角を
示していた。又、この液晶セルに8ける最明状態ての透
過光量を測定したところ、12%であった。この時の透
過光量の測定は、フォトマルによって行なった。
When we measured the tilt angle of the liquid crystal cell mentioned above, we found that
It was 14°. That is, the liquid crystal cell of this example exhibited a large tilt angle that was not found in the conventional cell under the memory state achieved by the bistable chiral smectic phase. Further, when the amount of transmitted light of this liquid crystal cell in the brightest state was measured, it was 12%. The amount of transmitted light at this time was measured using Photomul.

次に、本発明者らは、前述の液晶セルにおける基板の法
線方向に対する液晶分子のねじれ配列角度とその方向を
測定した。この測定のために、前述の液晶セルで用いた
1、8gmのフォトレジストスペーサに代えて、3.0
μlのアルミナビーズなスペーサとして用いたほかは、
全く同様の方法で液晶セル(3,0gmセルという)を
作成した。
Next, the present inventors measured the twist alignment angle and direction of the liquid crystal molecules with respect to the normal direction of the substrate in the liquid crystal cell described above. For this measurement, instead of the 1.8 gm photoresist spacer used in the liquid crystal cell described above, a 3.0 gm photoresist spacer was used.
In addition to using μl alumina beads as spacers,
A liquid crystal cell (referred to as a 3.0 gm cell) was created in exactly the same manner.

液晶分子のねじれ配列角度の測定は、直交ニコル下での
最暗状態時の交差角から、一方の検光子を回転させて、
その交差角を変化させ、さらに暗い状態となる位置を見
つけ、直交時から一方の検光子を回転させた角度を測定
した。この角度は、前述のねじれ角δに相当している。
To measure the twist alignment angle of liquid crystal molecules, rotate one analyzer from the intersection angle in the darkest state under crossed Nicols.
By changing the intersection angle, we found a position where the light became even darker, and measured the angle at which one analyzer was rotated from the orthogonal position. This angle corresponds to the twist angle δ mentioned above.

従って、前述の3.0Hセルに関して、観察者から見て
、時計まわりを正(1)とし、反時計まわりを負(−)
とすると、検光子を直交ニコルから負方向に5〜6°回
転し、次いて液晶セルを回転して暗状態を捜すことがで
きた。また、偏光子を直交ニコルから正方向に5〜6°
回転しても同様に暗状態が得られた。従って、この素子
での液晶分子は、正方向にねじれ配列を形成しており、
上下基板の隣接面にある液晶分子の長袖が5〜6°のね
じれ角δをもってねじれていることが判った。
Therefore, regarding the above-mentioned 3.0H cell, from the observer's perspective, the clockwise direction is positive (1) and the counterclockwise direction is negative (-).
Then, the analyzer could be rotated 5 to 6 degrees in the negative direction from the crossed Nicols, and then the liquid crystal cell could be rotated to search for a dark state. Also, move the polarizer 5 to 6 degrees in the positive direction from crossed Nicols.
Even with rotation, a dark state was similarly obtained. Therefore, the liquid crystal molecules in this device form a twisted arrangement in the positive direction,
It was found that the long sleeves of liquid crystal molecules on the adjacent surfaces of the upper and lower substrates were twisted with a twist angle δ of 5-6°.

実施例2 実施例1の1.8μ麿セルで用いた平行なうピング軸に
代えて、負方向(−)に45°及び20°の角度で交差
したラビング軸を用いたほかは、実施例1と全く同様の
方法で液晶セルを作成した。
Example 2 Example 1 except that rubbing axes intersecting at angles of 45° and 20° in the negative direction (-) were used in place of the parallel flipping axes used in the 1.8μ Maro cell of Example 1. A liquid crystal cell was created in exactly the same manner.

この液晶セルのチルト角を測定したところ、何れも14
″であった。これら2つの液晶セルは、何れもSac”
の高温側にSmAが存在しているか、5taAの光軸は
交差したラビング軸のなす角度の二等分線上に存在して
いることが判った。
When the tilt angle of this liquid crystal cell was measured, it was 14
Both of these two liquid crystal cells were Sac”.
It was found that SmA exists on the high temperature side of 5taA, or that the optical axis of 5taA exists on the bisector of the angle formed by the crossed rubbing axes.

次いで、上述した2種の液晶セルにそれぞれ電圧70ボ
ルトで周波数70Hzの高電界交流を約5分間印加した
(交流印加前処理)。この時のチルト角θ′を測定した
。この結果を下記の表1に示す。
Next, a high electric field alternating current with a voltage of 70 volts and a frequency of 70 Hz was applied to each of the two types of liquid crystal cells described above for about 5 minutes (alternating current application pretreatment). The tilt angle θ' at this time was measured. The results are shown in Table 1 below.

表    1 この2種の液晶セルについて、前述の3μmセルの液晶
素子でのねじれ角δを測定した時の方法と同様の方法で
第4図に示すねじれ角δを測定したところ、交差角−4
5″と一20@の交差ラビング軸を用いた液晶素子では
、上下基板の法線に対する液晶分子のねじれ角δは観察
されず、上下基板に隣接する液晶分子軸は互いに平行で
あることか判った。しかも交差角−45°と一20°の
交差ラビング軸を用いた液晶素子では+20ボルトと一
20ボルトの駆動用矩形パルスを1 asecで交互に
印加し続けても表1のチルト角θ′を維持することがで
きた。これは、実際に映像信号や情報信号に応じて、こ
の液晶素子に例えば特開昭59−19:1426号公報
や特開昭59−19:147号公報に記載された様な時
分割駆動法を適用した場合であっても、最大チルト角θ
′を維持することができる点に対応したものである。又
、この時の透過率を測定したところ、何れも約17%て
あった。
Table 1 For these two types of liquid crystal cells, the twist angle δ shown in Figure 4 was measured in the same manner as the method used to measure the twist angle δ in the liquid crystal element of the 3 μm cell described above.
In the liquid crystal device using crossed rubbing axes of 5" and 120@, no twist angle δ of the liquid crystal molecules with respect to the normal to the upper and lower substrates was observed, indicating that the liquid crystal molecular axes adjacent to the upper and lower substrates were parallel to each other. Furthermore, in a liquid crystal device using crossed rubbing axes with crossing angles of -45° and -20°, even if driving rectangular pulses of +20 volts and 120 volts are continued to be applied alternately at 1 asec, the tilt angle θ shown in Table 1 will not change. . This is because the liquid crystal element is actually adjusted according to the video signal or information signal as disclosed in, for example, JP-A-59-19:1426 and JP-A-59-19:147. Even when applying the time-division driving method as described, the maximum tilt angle θ
′ can be maintained. Also, when the transmittance was measured at this time, it was about 17% in both cases.

ねじれ角δをもつねじれ配列状態の方向は、基板とその
界面付近の液晶との相互作用により決まる。つまり、界
面付近の液晶分子の分極方向が基板に対して内向きか、
外向きかが、基板の性質により決められ、上下基板とも
同一の配向制御膜を用いた場合、基板間の液晶は強制的
にねじれ配列をもって配向させられる。
The direction of the twisted state with twist angle δ is determined by the interaction between the substrate and the liquid crystal near its interface. In other words, whether the polarization direction of the liquid crystal molecules near the interface is inward with respect to the substrate,
The outward direction is determined by the properties of the substrates, and when the same alignment control film is used for both the upper and lower substrates, the liquid crystal between the substrates is forcibly oriented in a twisted alignment.

基板の法線に沿ったねじれ配列の方向と一軸性配向軸の
ずらし方向が同一方向の場合、基板の界面付近の分子は
各基板の配向軸方向に配列するため、ねじれ配列状態が
より安定化され、前述の交流印加前処理の後のチルト角
θ′の状態では準安定の配向状態となる。
If the direction of the twisted arrangement along the normal line of the substrate and the shift direction of the uniaxial alignment axis are in the same direction, the molecules near the interface of the substrates are aligned in the direction of the orientation axis of each substrate, making the twisted arrangement state more stable. After the above-mentioned alternating current application pretreatment, a state of tilt angle θ' results in a metastable orientation state.

前述の交流印加前処理の後のチルト角θ′の状態では界
面付近の分子の分極が、一方の基板では内向きで、他の
基板では外向きの配列をとる必要かある。
In the state of tilt angle θ' after the above-mentioned alternating current application pretreatment, it is necessary that the polarization of molecules near the interface be oriented inward on one substrate and outward on the other substrate.

液晶のねじれ配列方向と反対方向に一軸性配向軸をずら
した場合、すなわち、ねじれ配列方向と反対方向の角度
で一軸性配向軸を交差した場合、分子分極と界面との相
互作用による安定化エネルギーよりも、−軸配向性軸に
よる強制的なアンカリングによる安定化エネルギーの方
が大きく、従って安定なチルト角θ′をもつ状態が実現
できる。
When the uniaxial alignment axis is shifted in the opposite direction to the twisted alignment direction of the liquid crystal, that is, when the uniaxial alignment axis is crossed at an angle opposite to the twisted alignment direction, the stabilization energy due to the interaction between molecular polarization and the interface The stabilizing energy due to forced anchoring by the -axis orientation axis is larger than that, and therefore a state with a stable tilt angle θ' can be realized.

従って、透過率が高い強誦電性液晶素子を実現するため
には、ねじれ配列状態を解消し、しかも交流印加前処理
によつて付加された理想的な配列状態を安定化する方向
に一輌性配向軸に互いにずらすことが必要である。その
方向とは、液晶と基板界面によって決められるねじれ角
δをもつ液晶のねじれ配列方向の反対方向である。
Therefore, in order to realize a strongly electrostatic liquid crystal element with high transmittance, it is necessary to eliminate the twisted alignment state and to stabilize the ideal alignment state added by the AC application pretreatment. It is necessary to offset the orientation axis from each other. This direction is opposite to the direction in which the liquid crystal is twisted and arranged at a twist angle δ determined by the interface between the liquid crystal and the substrate.

比較例1 実施例1の1,81セルを作成した時に用いた配向制御
膜として、 3.3’ 、4.4’−ジフェニルテトラ
カルボン酸無水物とP−フェニレンジアミンとを1:1
のモル比で脱水縮合反応させて得たポリアミック酸の3
.5重量%N−メチル−2−ピロリドン液による塗布膜
を脱水閉環させて形成したポリイミド塗布膜にラビング
処理したものに代えたこと、さらにグループの無い基板
を使用したほかは、全く同様の方法で液晶セルを作成し
た。
Comparative Example 1 As the alignment control film used when creating the 1,81 cell of Example 1, 3.3',4,4'-diphenyltetracarboxylic acid anhydride and P-phenylenediamine were mixed in a ratio of 1:1.
3 of polyamic acid obtained by dehydration condensation reaction at a molar ratio of
.. The method was exactly the same, except that the coating film of 5% by weight N-methyl-2-pyrrolidone solution was replaced with a polyimide coating film formed by dehydration and ring closure, and then rubbed, and a substrate without groups was used. A liquid crystal cell was created.

この液晶セルにおけるチルト角θと透過率を実施例1と
同様の方法で測定したところ、チルト角0は6″〜8′
で、その時の透過率は3〜5%程度であった。すなわち
5本比較セルは、双安定性カイラルスメクチック相で実
現したメモリー状態下でのチルト角が小さく、又その透
過率は表示装置に適用するには全く不十分である。
When the tilt angle θ and transmittance of this liquid crystal cell were measured in the same manner as in Example 1, the tilt angle 0 was 6″ to 8′.
The transmittance at that time was about 3 to 5%. That is, the five comparative cells have a small tilt angle under the memory state realized by the bistable chiral smectic phase, and their transmittance is completely insufficient for application to a display device.

比較例2 実施例1の!、8%lIセルを作成した時に用いた配向
制御11として、 3.3’、4.4’−ジフェニルテ
トラカルボン酸無水物と4.4′−ジアミノジフェニル
とをl=1のモル比で脱水縮合反応させて得たポリアミ
ック酸の3,5重量%N−メチル−2−ピロリドン液に
よる塗布膜を脱水閉環させて形成したポリイミド塗布膜
にラビング処理したものに代えたこと、さらにグループ
の無い基板を使用したほかは、全く同様の方法で液晶セ
ルを作成した。
Comparative Example 2 Example 1! As the orientation control 11 used when creating the 8% lI cell, 3.3',4.4'-diphenyltetracarboxylic anhydride and 4.4'-diaminodiphenyl were dehydrated at a molar ratio of l=1. A polyimide coating film formed by dehydrating and ring-closing a coating film of a 3.5% by weight N-methyl-2-pyrrolidone solution of polyamic acid obtained by a condensation reaction was replaced with a rubbing treatment, and a substrate without groups. A liquid crystal cell was created in exactly the same manner, except that .

この液晶セルにおけるチルト角0と透過率を実施例1と
同様の方法で測定したところ、チルト角θは6m〜7°
て、その時の透過率は3〜4%程度であった。
When the tilt angle 0 and transmittance of this liquid crystal cell were measured in the same manner as in Example 1, the tilt angle θ was 6 m to 7°.
The transmittance at that time was about 3 to 4%.

比較例3 実施例1の1,81セルを作成した時に用いた配向制御
膜として、コ、コ’、4.4’−ジフェニルテトラカル
ボン酸無水物と4,4′−ジアミノターフェニルとを1
:1のモル比で脱水縮合反応させて得たポリアミック酸
の3.5 重l1%N−メチルー2−ピロリドン液によ
る塗布膜を脱水閉環させて形成したポリイミド塗布膜に
ラビング処理したものに代えたこと、さらにグループの
無い基板を使用したほかは、全く同様の方法で液晶セル
を作成した。
Comparative Example 3 As the alignment control film used when creating the 1,81 cell of Example 1, co, co', 4,4'-diphenyltetracarboxylic acid anhydride and 4,4'-diaminoterphenyl were mixed into 1
A polyimide coating film formed by dehydrating and ring-closing a coating film made from a 3.5% by weight 1% N-methyl-2-pyrrolidone solution of polyamic acid obtained by dehydration condensation reaction at a molar ratio of :1 was replaced with a polyimide coating film formed by rubbing. Furthermore, a liquid crystal cell was created in exactly the same way, except that a substrate without groups was used.

この液晶セルにおけるチルト角θと透過率を実施例1と
同様の方法で測定したところ、チルト角θは5°〜7°
で、その時の透過率は3〜4%程度であった。
When the tilt angle θ and transmittance of this liquid crystal cell were measured in the same manner as in Example 1, the tilt angle θ was 5° to 7°.
The transmittance at that time was about 3 to 4%.

実施例3 実施例1の1.静−セルで用いたグループ付き透明電極
基板に代えて ITO電極のラビング処理な施した透明
電極基板を用いた以外は、実施例1と全く同様の方法で
液晶セルを作成した。
Example 3 Example 1-1. A liquid crystal cell was prepared in exactly the same manner as in Example 1, except that a transparent electrode substrate with ITO electrodes subjected to rubbing treatment was used in place of the grouped transparent electrode substrate used in the static cell.

この液晶セルにおけるチルト角0と透過率を実施例1と
同様の方法で測定したところ、チルト角0は12°で、
その時の透過率は9%でありた。
When the tilt angle 0 and transmittance of this liquid crystal cell were measured in the same manner as in Example 1, the tilt angle 0 was 12°;
The transmittance at that time was 9%.

実施例4 実施例1の1.8Hセルで用いたグループ付き透明電極
基板に代えて、 3.3’、4.4’−ジフェニルテト
ラカルボン酸無水物とP−フェニレンジアミンとをl:
1のモル比で脱水縮合反応させて得たポリアミック酸の
3.511量%N−メチルー2−ピロリドン液による塗
布膜を ITO電極上に形成した後。
Example 4 Instead of the grouped transparent electrode substrate used in the 1.8H cell of Example 1, 3.3',4.4'-diphenyltetracarboxylic acid anhydride and P-phenylenediamine were used.
After forming a coating film on the ITO electrode using a 3.511% N-methyl-2-pyrrolidone solution of polyamic acid obtained by dehydration condensation reaction at a molar ratio of 1:1.

該塗布膜を脱水閉環させて形成したポリイミド塗布膜に
ラビング処理を施した透明電極基板を用いて、実施例1
と同様な方法で、 PBLGを2層累積した。そして実
施例1と全く同様の方法で液晶セルを作成した。この液
晶セルにおけるチルト角θと透過率を実施例1と同様の
方法で測定したところ、チルト角0は13°で、その時
の透過率は10%でありた。
Example 1 was performed using a transparent electrode substrate in which a polyimide coating film formed by dehydrating and ring-closing the coating film was subjected to a rubbing treatment.
Two layers of PBLG were accumulated in a similar manner. A liquid crystal cell was then produced in exactly the same manner as in Example 1. When the tilt angle θ and transmittance of this liquid crystal cell were measured in the same manner as in Example 1, the tilt angle 0 was 13° and the transmittance at that time was 10%.

実施例5〜9 実施例1の1.8pmセルで用いた配向制御IWAを下
記の表2に挙げた高分子化合物の単分子累tB膜に代え
て使用したほかは、¥施例1と全く同様の方法で液晶セ
ルを作成してから、同様の方法で液晶セルにおけるチル
ト角θと、その時の透過率を測定した。その結果を表2
に示す。
Examples 5 to 9 The same procedure as in Example 1 was used, except that the orientation-controlled IWA used in the 1.8 pm cell in Example 1 was used in place of the monomolecular cumulative tB film of the polymer compound listed in Table 2 below. A liquid crystal cell was created in the same manner, and then the tilt angle θ and the transmittance at that time in the liquid crystal cell were measured in the same manner. Table 2 shows the results.
Shown below.

[発明の効果] 本発明の液晶素子による配向制御によれば、強誘電性液
晶、特に非らせん構造によって得られる少なくとも2つ
の安定状態をもつ強誘電性液晶のモノドメインを得るこ
とができる点に第1の効果を有し、さらに強誘電性液晶
の非らせん構造によって発現する少なくとも2つの安定
状態下、特に双安定状態下、(すなわち、メモリー状態
下)でのチルト角θを増大させることかできる点に第2
の優れた効果を有する。
[Effects of the Invention] According to the alignment control using the liquid crystal element of the present invention, it is possible to obtain a ferroelectric liquid crystal, particularly a monodomain of a ferroelectric liquid crystal that has at least two stable states obtained by a non-helical structure. The first effect is to increase the tilt angle θ under at least two stable states, especially a bistable state (i.e., under a memory state) developed by the non-helical structure of the ferroelectric liquid crystal. The second point is that you can do it.
It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の液晶素子の1つの実施態様を表わす断
面図、第2図はらせん構造の強誘電性液晶を用いた液晶
素子を模式的に表わす斜視図、第3図は非らせん構造の
強誘電性液晶を用いた液晶素子を模式的に表わす斜視図
、第4図は基板の一軸性配向軸と非らせん構造の強誘電
性液晶分子の軸との関係を表わす説明図、第5図は本発
明の液晶素子て用いた一軸配向軸と液晶分子の軸との関
係を表わす説明図である。 11a・・・上基板     11b・・・下基板12
a、12b・・・透明電極  13・・・強誘電性液晶
14a、14b −・・配向制御膜 21・・・基板2
2・・・液晶分子層    23・・・液晶分子24・
・・双極子モーメント 33a・・・第1の安定状態3
3b・・・第2の安定状態 34a・・・上向き双極子モーメント 34b・・・下向き双極子モーメント ■・・・らせん構造でのチルト角 0・・・非らせん構造でのチルト角 Ea 、 Eb・・・電界
FIG. 1 is a cross-sectional view showing one embodiment of the liquid crystal device of the present invention, FIG. 2 is a perspective view schematically showing a liquid crystal device using a ferroelectric liquid crystal with a helical structure, and FIG. 3 is a non-helical structure. FIG. 4 is an explanatory diagram showing the relationship between the uniaxial orientation axis of the substrate and the axis of the ferroelectric liquid crystal molecules having a non-helical structure, and FIG. The figure is an explanatory diagram showing the relationship between the uniaxial alignment axis and the axis of liquid crystal molecules used in the liquid crystal element of the present invention. 11a... Upper substrate 11b... Lower substrate 12
a, 12b...Transparent electrode 13...Ferroelectric liquid crystal 14a, 14b -...Orientation control film 21...Substrate 2
2...Liquid crystal molecule layer 23...Liquid crystal molecule 24.
...Dipole moment 33a...First stable state 3
3b...Second stable state 34a...Upward dipole moment 34b...Downward dipole moment ■...Tilt angle in helical structure 0...Tilt angle in non-helical structure Ea, Eb・··electric field

Claims (7)

【特許請求の範囲】[Claims] (1)一対の平行基板と、該一対の平行基板の面に対し
て垂直又は略垂直な複数の層を形成している分子の配列
をもつ強誘電性液晶とを有する液晶素子において、前記
一対の平行基板のうち少なくとも一方の基板が前記複数
の層を一方向に優先して配向させる高分子物質の被膜を
有し、特に該高分子物質の被膜が同一分子内に親水性部
分と疎水性部分を併有した高分子化合物の単分子膜又は
単分子累積膜により形成され、さらに前記基板表面に前
記単分子膜又は単分子累積膜を一方向に優先して配向さ
せるための配向処理が施されていることを特徴とする液
晶素子。
(1) In a liquid crystal element having a pair of parallel substrates and a ferroelectric liquid crystal having a molecular arrangement forming a plurality of layers perpendicular or substantially perpendicular to the planes of the pair of parallel substrates, At least one of the parallel substrates has a coating of a polymeric substance that preferentially orients the plurality of layers in one direction, and in particular, the coating of the polymeric substance has a hydrophilic portion and a hydrophobic portion in the same molecule. The substrate is formed of a monomolecular film or a monomolecular cumulative film of a polymer compound having a part, and is further subjected to an orientation treatment on the surface of the substrate to preferentially orient the monomolecular film or monomolecular cumulative film in one direction. A liquid crystal element characterized by:
(2)基板表面に施された配向処理が基板表面に形成さ
れた微細な凸凹である特許請求の範囲第1項記載の液晶
素子。
(2) The liquid crystal element according to claim 1, wherein the alignment treatment applied to the substrate surface is minute irregularities formed on the substrate surface.
(3)基板表面に施された配向処理がラビング処理であ
る特許請求の範囲第1項記載の液晶素子。
(3) The liquid crystal element according to claim 1, wherein the alignment treatment applied to the substrate surface is a rubbing treatment.
(4)前記強誘電性液晶が少なくとも2つの安定状態を
もつ液晶である特許請求の範囲第1項記載の液晶素子。
(4) The liquid crystal element according to claim 1, wherein the ferroelectric liquid crystal is a liquid crystal having at least two stable states.
(5)前記強誘電性液晶が双安定性をもつ液晶である特
許請求の範囲第1項記載の液晶素子。
(5) The liquid crystal element according to claim 1, wherein the ferroelectric liquid crystal is a bistable liquid crystal.
(6)前記強誘電性液晶がカイラルスメクチック液晶で
ある特許請求の範囲第1項記載の液晶素子。
(6) The liquid crystal device according to claim 1, wherein the ferroelectric liquid crystal is a chiral smectic liquid crystal.
(7)前記強誘電性液晶が非らせん構造のカイラルスメ
クチック液晶である特許請求の範囲第1項記載の液晶素
子。
(7) The liquid crystal device according to claim 1, wherein the ferroelectric liquid crystal is a chiral smectic liquid crystal with a non-helical structure.
JP13377786A 1986-04-04 1986-06-11 Liquid crystal element Granted JPS62291620A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13377786A JPS62291620A (en) 1986-06-11 1986-06-11 Liquid crystal element
US07/376,940 US5009489A (en) 1986-04-04 1989-07-07 Liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13377786A JPS62291620A (en) 1986-06-11 1986-06-11 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPS62291620A true JPS62291620A (en) 1987-12-18
JPH0468605B2 JPH0468605B2 (en) 1992-11-02

Family

ID=15112736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13377786A Granted JPS62291620A (en) 1986-04-04 1986-06-11 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS62291620A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178922A (en) * 1987-12-29 1989-07-17 Nec Corp Production of ferroelectric liquid crystal
EP0584963A2 (en) * 1992-07-30 1994-03-02 Canon Kabushiki Kaisha Liquid crystal display device
EP0703483A1 (en) * 1991-12-10 1996-03-27 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and process for production thereof
US5594571A (en) * 1991-12-10 1997-01-14 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and process for production thereof
KR100621280B1 (en) * 2003-06-30 2006-09-14 세이코 엡슨 가부시키가이샤 Ferroelectric thin film formation composition, ferroelectric thin film and method of fabricating ferroelectric thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01178922A (en) * 1987-12-29 1989-07-17 Nec Corp Production of ferroelectric liquid crystal
EP0703483A1 (en) * 1991-12-10 1996-03-27 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and process for production thereof
EP0703484A1 (en) * 1991-12-10 1996-03-27 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and process for production thereof
US5594571A (en) * 1991-12-10 1997-01-14 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and process for production thereof
EP0584963A2 (en) * 1992-07-30 1994-03-02 Canon Kabushiki Kaisha Liquid crystal display device
EP0584963A3 (en) * 1992-07-30 1994-11-09 Canon Kk Liquid crystal display device.
US5495352A (en) * 1992-07-30 1996-02-27 Canon Kabushiki Kaisha Liquid crystal display device with stripe-shaped unevennesses on the electrodes
US5552914A (en) * 1992-07-30 1996-09-03 Canon Kabushiki Kaisha Liquid crystal display having a fine particle-dispersion layer on at least one side of the liquid crystal layer
US5604613A (en) * 1992-07-30 1997-02-18 Canon Kabushiki Kaisha Liquid crystal display device with pixels having stripe-shaped projections with equal heights
US5644372A (en) * 1992-07-30 1997-07-01 Canon Kabushiki Kaisha Liquid crystal display device having protrusions on the electrodes
KR100621280B1 (en) * 2003-06-30 2006-09-14 세이코 엡슨 가부시키가이샤 Ferroelectric thin film formation composition, ferroelectric thin film and method of fabricating ferroelectric thin film

Also Published As

Publication number Publication date
JPH0468605B2 (en) 1992-11-02

Similar Documents

Publication Publication Date Title
US5620755A (en) Inducing tilted perpendicular alignment in liquid crystals
EP0415447B1 (en) Liquid crystal device
US5543943A (en) Chiral smectic device subjected to a simultaneous thermal and AC field treatment
JPS6377019A (en) Ferroelectric liquid crystal element
US5009489A (en) Liquid crystal device
JPS6298326A (en) Liquid crystal cell
JPS62291620A (en) Liquid crystal element
JPS62237431A (en) Liquid crystal element
JP4503243B2 (en) Manufacturing method of nematic liquid crystal device
JPS62291621A (en) Liquid crystal element
JPS63136024A (en) Liquid crystal orientation film and production thereof
JPS61267736A (en) Liquid crystal element
JPS62291622A (en) Liquid crystal element
US5668616A (en) Ferroelectric liquid crystal device with alignment layers having surface unevenness different from each other
JPS62231937A (en) Liquid crystal element
JPH07333618A (en) Liquid crystal display element
JPS62291619A (en) Liquid crystal element
JPS62231936A (en) Liquid crystal element
JPS62234129A (en) Liquid crystal element
JPS61186932A (en) Liquid crystal element
JPH05273558A (en) Liquid crystal element
JP2748176B2 (en) Liquid crystal element
EP1385040A1 (en) Photoinductive switching liquid crystal device
JP2001133742A (en) Method of manufacturing durable optical memory device coated with polymer
JPS62231935A (en) Liquid crystal element