JPS61267736A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS61267736A
JPS61267736A JP10963985A JP10963985A JPS61267736A JP S61267736 A JPS61267736 A JP S61267736A JP 10963985 A JP10963985 A JP 10963985A JP 10963985 A JP10963985 A JP 10963985A JP S61267736 A JPS61267736 A JP S61267736A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal element
substrate
length
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10963985A
Other languages
Japanese (ja)
Other versions
JPH0547086B2 (en
Inventor
Akira Tsuboyama
明 坪山
Kazuharu Katagiri
片桐 一春
Junichiro Kanbe
純一郎 神辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10963985A priority Critical patent/JPS61267736A/en
Priority to US06/862,978 priority patent/US4775225A/en
Publication of JPS61267736A publication Critical patent/JPS61267736A/en
Publication of JPH0547086B2 publication Critical patent/JPH0547086B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)

Abstract

PURPOSE:To improve monodomain formability or initial orientation and to decrease the generation rate of defects by specifying the length on the side of a projecting body along the direction perpendicular to the uniaxial orientation treatment direction at 0-20mum. CONSTITUTION:A spacer 307 to be used for this liquid crystal element is obtd. by providing an insulating coated film formed of a resin such as PVA, polyimide or polyparaxylene or inorg. insulating film of SiO, SiO2 or TiO2 on a substrate 302 formed thereon with an orientation control film 306, then etching the film to a prescribed shape by an ordinary photolithographic process. The length on the side (a) of the spacer 307 along the direction perpendicular to the uniaxial orientation treatment direction 312 is specified at 0-20mum. The generation of orientation defects is thoroughly eliminated if the length (b) of the component in parallel with the direction 312 of the spacer 307 is made more particularly preferably <=300mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示素子や液晶−光シヤツタアレイ等に
適用する液晶素子に関し、詳しくは液晶分子の初期配向
状痩を改善することにょシ、表示ならびに駆動特性を改
善した液晶素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid crystal element applied to a liquid crystal display element, a liquid crystal-optical shutter array, etc. This invention relates to a liquid crystal element with improved display and driving characteristics.

〔従来の技術〕[Conventional technology]

従来の液晶素子としては、例えばエム、シャット(M、
 8chadt)とダブり二一、ヘルフリッヒ(W、 
He1frich )著1アプライド・フィジックス・
レターズ” (@Applied Physics L
etters”)第18巻、第4号(1971年2月1
5日発行)。
Conventional liquid crystal elements include, for example, M, Shut (M,
8chadt) and double 21, Helfrich (W,
He1frich) 1 Applied Physics
Letters” (@Applied Physics L
etters”) Volume 18, No. 4 (February 1, 1971
(published on the 5th).

第127頁〜128頁の1ボルテージ・ディペンダント
・オプティカル・アクティビティ−・オブ・ア・ツィス
テッド・ネマチック・リキッド・クリスタル”(@Vo
ltage DependentOptical Ac
tivity of a Twisted Nemat
icLiquid Crystal″)に示されたツィ
ステッド・ネマチック(twisted nemati
c )液晶を用いたものが知られている。このTN液晶
は、画素密度を高くしたマトリクス電極構造を用いた時
分割駆動の時、クロストークを発生する問題点があるた
め、画素数が制限されていた。
1 Voltage Dependent Optical Activity - of a Twisted Nematic Liquid Crystal” (@Vo
ltage Dependent Optical Ac
tivity of a Twisted Nemat
Twisted nematic shown in icLiquid Crystal
c) Those using liquid crystal are known. This TN liquid crystal has a problem in that crosstalk occurs during time division driving using a matrix electrode structure with high pixel density, so the number of pixels is limited.

又、各画素に薄膜トランジスタによるスイッチング素子
を接続し、各画素毎をスイッチングする方式の表示素子
が知られているが、基板上に薄膜トランジスタを形成す
る工程が極めて煩雑な上、大面積の表示素子を作成する
ことが難かしい問題点がある。
Furthermore, a display element is known in which a switching element using a thin film transistor is connected to each pixel, and each pixel is switched. However, the process of forming the thin film transistor on the substrate is extremely complicated, and it is difficult to use a display element with a large area. There are some problems that make it difficult to create.

このような従来型の液晶素子の欠点を改善するものとし
て、双安定性を有する液晶朱子の使用がクラーク(C1
ark )およびラガウェル(Lagerwall )
により提案されている(特開昭56−107216号公
報、米国特許第4367924号明細書等)。双安定性
を有する液晶としては、一般に、カイラルスメクチック
C相(SmC”)又けH相(8mH”)を有する強誘電
性液晶が用いられる。この液晶の膜厚は強誘電性液晶の
螺旋構造が解除されるのに充分小さく保たれ、このため
電界に対して第1の光学的安定状態と第2の光学安定状
態からなる双安定状態をもつことkなる。このため、前
述のTN型の液晶で用いられた光学変調素子とは異なり
、例えば一方の電界ベクトルに対して第1の光学的安定
状態に液晶が配向し、他方の電界ベクトルに対しては第
2の光学的安定状11に液晶が配向される。
Clark (C1
ark) and Lagerwall
(Japanese Unexamined Patent Publication No. 56-107216, US Pat. No. 4,367,924, etc.). As a liquid crystal having bistability, a ferroelectric liquid crystal having a chiral smectic C phase (SmC") and an H phase (8 mH") is generally used. The film thickness of this liquid crystal is kept small enough to release the helical structure of the ferroelectric liquid crystal, thus creating a bistable state consisting of a first optically stable state and a second optically stable state in response to an electric field. Motsukotok becomes. Therefore, unlike the optical modulation element used in the above-mentioned TN-type liquid crystal, for example, the liquid crystal is oriented in a first optically stable state with respect to one electric field vector, and in a first optically stable state with respect to the other electric field vector. The liquid crystal is aligned in the optically stable state 11 of 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の双安定性を有する液晶を用いた光学変調素子が所
定の駆動特性を発揮するためには、一対の平行基板間に
配置される液晶が、2つの安定配向状態間での変換が効
果的に起るような分子配列状態にあることが必要である
In order for the optical modulation element using the above-mentioned bistable liquid crystal to exhibit predetermined drive characteristics, the liquid crystal placed between a pair of parallel substrates must be effectively converted between two stable alignment states. It is necessary for the molecules to be arranged in a state similar to that occurring in

しかしながら、前述した様な螺旋構造が解除されて双安
定性が付与されたカイラルスメクチック液晶素子は、そ
の素子を作成する上で極めて難かしい問題が存在してい
る。すなわち、本発明1者らの研究から、前述したカイ
ラルスメクチック液晶の双安定性を堅固なものとするた
めに、液晶の膜厚(一対の基板間の間隔に対応している
)を薄くする必要があるが、この膜厚を薄くすればする
程、配向欠陥の発生基が増大していく傾向になることが
判明した。しかも、前述の配向欠陥の発生は、液晶の膜
厚を素子の面全体に亘って均一な膜厚とするために配置
した間隔制御部材(スペーサ)の存在が原因となってい
ることが判明した。
However, the chiral smectic liquid crystal device in which the helical structure is released and bistability is imparted as described above is extremely difficult to manufacture. In other words, the research conducted by the present inventors has shown that in order to ensure the bistability of the chiral smectic liquid crystal described above, it is necessary to reduce the film thickness of the liquid crystal (corresponding to the distance between the pair of substrates). However, it has been found that the thinner the film thickness is, the more groups that generate orientation defects tend to increase. Moreover, it was discovered that the occurrence of the alignment defects mentioned above was caused by the presence of a spacer, which was placed to maintain a uniform liquid crystal film thickness over the entire surface of the device. .

従って、本発明の目的は上述した事情に鑑み高速応答性
、高密度画素と大面積を有する表示素子あるいけ高速度
のシャッタースピードを有する光学シャッター等として
強誘電性液晶などの液晶、特に双安定性を有する強誘電
性液晶を使用した光学変調素子において、従来問題であ
ったモノドメイン形成性ないしは、初期配向性を改善す
ることによシその特性を充分に発揮させ得る液晶素子を
提供することにある。
Therefore, in view of the above-mentioned circumstances, it is an object of the present invention to provide a liquid crystal such as a ferroelectric liquid crystal, particularly a bistable liquid crystal, as an optical shutter having a high shutter speed for display elements having high-speed response, high-density pixels, and a large area. To provide a liquid crystal element that can fully exhibit its characteristics by improving the monodomain formation property or initial orientation, which has been a problem in the past in an optical modulation element using a ferroelectric liquid crystal having properties. It is in.

〔問題点を解決するための手段、作用〕本発明は、前述
のスペーサが液晶、特に双安定性が付与された強誘電性
液晶中に存在しているにもかかわらず、液晶素子の面全
体に亘って配向欠陥の発生がなく、しかも良好な双安定
性を発現することができるもので、スペーサとなる微細
な突起体を有し、且つ一方向に一軸性配向処理を施した
第1の基板と、該第1の基板に対向するPa2の基板と
を有し、該第1の基板と第2の基板との間に液晶を配置
した液晶素子において、前記一軸性配向処理方向に対す
る垂直方向に沿った前記突起体の辺の長さを0μm〜2
0μm(0/Jmは多角柱体を突起体とした時の頂点又
は円柱体若しくは惰円柱体を突起体とした時の接点を意
味する)とした点に特徴を有し2ている。
[Means and effects for solving the problems] The present invention provides that although the spacers described above are present in the liquid crystal, particularly in the ferroelectric liquid crystal imparted with bistability, the entire surface of the liquid crystal element is The first type has no alignment defects and exhibits good bistability over a period of time, and has fine protrusions that serve as spacers and is uniaxially aligned in one direction. In a liquid crystal element having a substrate and a substrate of Pa2 opposite to the first substrate, and in which a liquid crystal is disposed between the first substrate and the second substrate, a direction perpendicular to the uniaxial alignment treatment direction; The length of the side of the protrusion along the line is 0 μm to 2
It is characterized in that it is 0 μm (0/Jm means the apex when a polygonal prism is used as a protrusion, or the contact point when a cylindrical body or an inert cylindrical body is used as a protrusion).

〔実施例〕〔Example〕

以下、必要に応じて図面を参照[2つつ、本発明を更に
詳細に説明する。
Hereinafter, the present invention will be described in further detail with reference to the drawings as necessary.

第1図は、強誘電性液晶の動作説明のために、セルの例
を模式的に描いたものである。21a電極で被覆された
基板(ガラス板)であり、その、間に液晶分子層22が
ガラス面に垂直になるよう配向したSmC”和文け8m
H相の液晶が封入されている。太線で示した線23が液
晶分子を表わしており、この液晶分子23はその分子に
直交した方向に双極子モーメyト(P上)24を有して
いる。基板21aと21b上の電極間に一定の閾値以上
の電圧を印加すると、液晶分子23のらせん構造がほど
け、双極子モーメン) (P工)24がすべて電界方向
に向くよう、液晶分子23け配向方向を変えることがで
きる。
FIG. 1 schematically depicts an example of a cell for explaining the operation of a ferroelectric liquid crystal. A substrate (glass plate) covered with an electrode 21a, between which a liquid crystal molecular layer 22 is oriented perpendicularly to the glass surface.
H-phase liquid crystal is sealed. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (on P) 24 in a direction perpendicular to the molecule. When a voltage higher than a certain threshold is applied between the electrodes on the substrates 21a and 21b, the helical structure of the liquid crystal molecules 23 is unraveled, and the liquid crystal molecules 23 are aligned so that the dipole moment (P) 24 is all oriented in the direction of the electric field. You can change direction.

液晶分子23け、細長い形状を有しており、その長軸方
向と短軸方向で屈折高異方性を示[1、従って例えばガ
ラス面の上下に互いにクロスニコルの偏光子を置けば、
電圧印加極性によって光学特性が変わる液晶光学変調素
子となることけ、容易に理解される。
23 liquid crystal molecules have an elongated shape and exhibit high refractive anisotropy in the long and short axis directions [1. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface,
It is easy to understand that this is a liquid crystal optical modulation element whose optical characteristics change depending on the polarity of applied voltage.

本発明の液晶素子で用いられる液晶セルは、その厚さを
充分に薄く(例えば10μ以下)することができる。こ
のように液晶層が薄くなるにしたがい、第2図に示すよ
うに電界を印加していない状態でも、充分に間隔が小さ
くされた基板間の壁面効果により液晶分子のらせん構造
がほどけ、非らせん構造を採ることができる。
The thickness of the liquid crystal cell used in the liquid crystal element of the present invention can be made sufficiently thin (for example, 10 μm or less). As the liquid crystal layer becomes thinner, the helical structure of the liquid crystal molecules unravels due to the wall effect between the substrates, which are spaced sufficiently apart, even when no electric field is applied, as shown in Figure 2. structure can be adopted.

その双極子モーメン)Paまたはpbけ上向き(34a
)又は下向き(34b)のどちらかの状態をとる。この
ようなセルに、第2図に示す如く一定の閾値以上の極性
の異る′ル界Ha又はgbを電圧印加手段31aと31
bにより付与すると、双極子モーメントは、電界Ea又
けEbの電界ベクトルに対応して上向き34a又は下向
き34bと向きを変え、それに応じて液晶分子は、第1
の安定状態33aかあるいは第2の安定状態33bの何
れが1方に配向する。
Its dipole moment) Pa or pb upwards (34a
) or downward (34b). As shown in FIG. 2, voltage application means 31a and 31 apply a voltage field Ha or gb of different polarity above a certain threshold to such a cell.
b, the dipole moment changes its direction upward 34a or downward 34b in response to the electric field vector across the electric field Ea and Eb, and accordingly, the liquid crystal molecules
Either the stable state 33a or the second stable state 33b is oriented in one direction.

このような強誘電性を光学変調素子として用いることの
利点は、先にも述べたが2つある。
As mentioned earlier, there are two advantages to using such ferroelectricity as an optical modulation element.

その第1は、応答速度が極めて速いことであり、第2は
液晶分子の配向が双安定性を有することである。第2の
点を、例えば第2図によって更に説明すると、電界Ea
を印加すると液晶分子は第1の安定状gaaaに配向す
るが、この状′gは電界を切っても安定である。又、逆
向きの電界Bbを印加すると、液晶分子は第2の安定状
態33bに配向してその分子の向きを変えるが、やはり
電界を切ってもこの状態に留っている。又、与える電界
Baが一定の閾値を越えない限シ、それぞれの配向状態
にやけり維持されている。このような応答速度の速さと
、双安定性が有効に実現されるにはセルとしては出来る
だけ薄い方が好ましい。
The first is that the response speed is extremely fast, and the second is that the alignment of liquid crystal molecules has bistability. To further explain the second point, for example with reference to FIG. 2, the electric field Ea
When the electric field is applied, the liquid crystal molecules are aligned in the first stable state gaaa, but this state 'g is stable even when the electric field is turned off. Furthermore, when an electric field Bb in the opposite direction is applied, the liquid crystal molecules are oriented to a second stable state 33b and change their orientation, but they remain in this state even after the electric field is turned off. Further, as long as the applied electric field Ba does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable that the cell be as thin as possible.

第3図は、本発明の液晶素子を具体的に示したもので、
第3図(A)はその断面図で、第3図(B)はその平面
図である。
FIG. 3 specifically shows the liquid crystal element of the present invention.
FIG. 3(A) is a sectional view thereof, and FIG. 3(B) is a plan view thereof.

第3図に示す液晶素子300け、基板3(10)(好ま
しくは、可撓性ガラス、可撓性プラスチッり)と基板3
02(好ましくけ、ガラスプレート)とを有しており、
基板3(10)にはストライプ状の透明電極303と、
その上に絶縁性物質で形成した配向制御膜304が塗設
されている。
300 liquid crystal elements shown in FIG. 3, a substrate 3 (10) (preferably made of flexible glass or flexible plastic) and a substrate 3
02 (preferably, glass plate),
The substrate 3 (10) has a striped transparent electrode 303,
An alignment control film 304 made of an insulating material is coated thereon.

又、基板302には透明電極303と直交するストライ
ブ形状の透明電極305と、その上に絶縁性物質で形成
したスペーサ307と312方向に一軸性配向処理(ラ
ビング処理など)を施した配向制御膜306が塗設され
ている。
In addition, the substrate 302 has a striped transparent electrode 305 orthogonal to the transparent electrode 303, a spacer 307 made of an insulating material thereon, and an alignment control film that is subjected to uniaxial alignment treatment (rubbing treatment, etc.) in the 312 direction. A membrane 306 is applied.

本発明で用いるスペーサ307は、配向制御膜306を
形成した基板302の上に、ポリビニルアルコール、ポ
リイミド、ポリアミドイミド、ポリエステルイミド、ポ
リパラキシレリン、ポリエステル、ポリカーボネート、
ポリビニルアセタール、ポリ塩化ビニル、ポリ酢酸ビニ
ル、ポリアミド、ポリスチレン、セルロース樹脂、メラ
ミン樹脂、ユリャ樹脂、アクリル樹脂などの樹脂類によ
って形成した絶縁被膜あるいはSi0 、8i02やT
 iO,などの無機系絶縁被膜を設けた後、通常のフオ
) IJソ工程を採用して所定の形状にエツチングする
ことによって得られる。
The spacer 307 used in the present invention is made of polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyparaxylerin, polyester, polycarbonate, etc. on the substrate 302 on which the alignment control film 306 is formed.
Insulating coatings formed from resins such as polyvinyl acetal, polyvinyl chloride, polyvinyl acetate, polyamide, polystyrene, cellulose resin, melamine resin, Urya resin, acrylic resin, or Si0, 8i02, T
It is obtained by forming an inorganic insulating film such as iO, etc., and then etching it into a predetermined shape using a conventional photo-IJ process.

この際、スペーサ307となる絶縁被膜の乾燥膜厚がス
ペーサの高さに相当する様になる。
At this time, the dry film thickness of the insulating film that becomes the spacer 307 corresponds to the height of the spacer.

本発明では、前述の一軸性配向処理方向312の垂直方
向に沿ったスペーサ3070辺aの長さを(10)1m
〜20μmとし、特に好ましくけスペーサ307におけ
る一軸性配向処理方向312と平行方向の成分の長さb
を300μm以下とした時にけ配向欠陥の発生を皆無と
することができる。この点に関しては、下達で更に詳細
に説明する。
In the present invention, the length of the side a of the spacer 3070 along the direction perpendicular to the uniaxial alignment treatment direction 312 described above is (10) 1 m.
~20 μm, particularly preferably the length b of the component in the direction parallel to the uniaxial alignment treatment direction 312 in the spacer 307
When it is set to 300 μm or less, no alignment defects can occur. This point will be explained in more detail below.

本発明の好ましい具体例ではスペーサ307け、液晶素
子300の平面1 mm”当り0.1個〜100個の割
合で設けられていると、配向欠陥の発生を有効に防止す
ることができる。特に、液晶素子300の平面1 mm
”当シ0.5個〜50個の割合でスペーサ307が設け
られていると、基板3(10)と302の間隔を充分に
小さくした時(0,5μm〜5μm)の液晶膜厚で付与
される双安定性モノドメインにけ配向欠陥の発生を皆無
とすることができる。
In a preferred embodiment of the present invention, if the spacers 307 are provided at a rate of 0.1 to 100 spacers per 1 mm'' of the plane of the liquid crystal element 300, the occurrence of alignment defects can be effectively prevented. , the plane of the liquid crystal element 300 is 1 mm
"If the spacers 307 are provided at a ratio of 0.5 to 50, the thickness of the liquid crystal film will be increased when the distance between the substrate 3 (10) and 302 is sufficiently small (0.5 μm to 5 μm). It is possible to completely eliminate the occurrence of orientation defects in the bistable monodomains.

又、本発明で用いるスペーサ307の形状としては、前
述の四角柱体の他に第4図〜第6図に示す円柱体、惰円
柱体及び六角柱体を用いることができる。第4図〜第6
図中のa及びb並びに312は、第3図のa及びb並び
に312と同一のものを意味している。
Further, as the shape of the spacer 307 used in the present invention, in addition to the above-mentioned quadrangular prism, a cylinder, an inert cylinder, and a hexagonal prism shown in FIGS. 4 to 6 can be used. Figures 4 to 6
A, b, and 312 in the figure mean the same as a, b, and 312 in FIG. 3.

特に、fa4図及び第5図のaは、それぞれ一軸性配向
処理方向312に対する円柱体及び惰円柱体の接点を意
味している。又、第5図のCは惰円柱体の短軸を表わし
ており、一軸性配向処理方向312に対して直交してい
る。第6図に示す六角柱体は幅dと長さbで形成され、
幅dの方向は一軸性配向処理方向312に対し7て直交
している。
In particular, a in FIGS. Further, C in FIG. 5 represents the short axis of the cylindrical body, which is perpendicular to the uniaxial orientation processing direction 312. The hexagonal prism shown in FIG. 6 is formed with a width d and a length b,
The direction of the width d is perpendicular to the direction 312 of the uniaxial alignment process.

前述のスペーサ307け、第4図に示す円柱体の場合で
長さbの5〜50倍のピッチ、好ましくは10〜20倍
のピッチで設けられ、その基板面内の直径に相当する長
さbを50μm以下とすることが好ましい。第5図に示
す惰円柱体の場合で長dcの5〜50倍のピッチ、好ま
しくけ10〜20倍のピッチで設けられ、ラビング方向
と平行の成分に相当する長軸すを300μm以下とする
ことが好ましい。又第6図に示す六角柱体の場合で長さ
dの5〜50倍のピッチ、好ましくけ10〜20倍のピ
ッチで設けられ、ラビング方向と平行の成分に相当する
長さbを300μm以下とすることが好ましい。
In the case of the cylindrical body shown in FIG. 4, the spacers 307 described above are provided at a pitch of 5 to 50 times, preferably 10 to 20 times, the length b, and have a length corresponding to the diameter in the plane of the substrate. It is preferable that b is 50 μm or less. In the case of the inertia cylindrical body shown in Fig. 5, the pitch is 5 to 50 times the length dc, preferably 10 to 20 times the length dc, and the long axis corresponding to the component parallel to the rubbing direction is 300 μm or less. It is preferable. In the case of the hexagonal prism shown in Fig. 6, they are provided at a pitch of 5 to 50 times the length d, preferably 10 to 20 times, and the length b corresponding to the component parallel to the rubbing direction is 300 μm or less. It is preferable that

又、第3図に示す液晶、特に強誘電性カイラA/スメク
チック液晶308#−1,基板3(10)と302の周
辺建設けたシール材309(例えば、エポキシ系接着剤
)によってシーリングされる。
Further, the liquid crystal shown in FIG. 3, particularly the ferroelectric Kyra A/smectic liquid crystal 308#-1, and the periphery of the substrates 3 (10) and 302 are sealed with a sealing material 309 (e.g., epoxy adhesive).

本発明の液晶素子300け、クロスニフルの偏光子31
0と311がそれぞれ基板3(10)と302の両側に
配置されている。
300 liquid crystal elements of the present invention, 31 cross-niffle polarizers
0 and 311 are arranged on both sides of the substrates 3 (10) and 302, respectively.

又、本発明の液晶素子300で用いる配向制御膜304
と306は、例えば−酸化ケイ素、二酸化ケイ素、酸化
アルミニウム、ジルコニア、7ツ化マグネシウム、酸化
セリウム、フッ化セリウム、シリコン窒化物シリコン炭
化物、ボウ素窒化物、などの化合物を用いて例えば蒸着
により被膜形成して得ることができる。またそれ以外に
も、例えばポリビニルアルコール、ポリイミド、ポリア
ミドイミド、ポリエステルイミド、ポリバラキシレリン
、ポリエステル、ポリカーボネート、ポリビニルアセタ
ール、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアミド、
ポリスチレン、セルロース樹脂、メラミン樹脂、ユリャ
樹脂やアクリル樹脂などの樹脂類の塗膜として形成する
こともできる。配向制御膜304と306の膜厚は、材
料のもつ電荷注入防止能力と、液晶層の厚さにも依存す
るが、通常50八〜5μ、好適には、500A〜500
0Aの範囲で設定される。
Moreover, the alignment control film 304 used in the liquid crystal element 300 of the present invention
and 306 are coated, for example, by vapor deposition, using compounds such as - silicon oxide, silicon dioxide, aluminum oxide, zirconia, magnesium heptadide, cerium oxide, cerium fluoride, silicon nitride, silicon carbide, boron nitride, etc. It can be obtained by forming. In addition, for example, polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyvaraxylerin, polyester, polycarbonate, polyvinyl acetal, polyvinyl chloride, polyvinyl acetate, polyamide,
It can also be formed as a coating film of resins such as polystyrene, cellulose resin, melamine resin, urea resin, and acrylic resin. The thickness of the alignment control films 304 and 306 depends on the charge injection prevention ability of the material and the thickness of the liquid crystal layer, but is usually 508 to 5μ, preferably 500A to 500μ.
It is set within the range of 0A.

この配向制御膜304と306は、一軸性液晶(強誘電
性カイラルスメクチック液晶相より高温側で現出するス
メクチックA相、ネマチック相など)の分子方向を一方
向に配向させる効果をもつことができる。具体的な一軸
性配向処理法としては、基板の平面を一方向にラビング
する方法あるいは斜め蒸着法を用いることができる(図
中、312けラビング方向)。
The alignment control films 304 and 306 can have the effect of aligning the molecular direction of the uniaxial liquid crystal (smectic A phase, nematic phase, etc. that appears at a higher temperature than the ferroelectric chiral smectic liquid crystal phase) in one direction. . As a specific uniaxial alignment treatment method, a method of rubbing the plane of the substrate in one direction or an oblique vapor deposition method can be used (in the figure, the rubbing direction is 312 degrees).

本発明の液晶素子300で用いる強誘電性カイラルスメ
クチック液晶308としては、クーリング(徐冷;0.
5℃/時間〜5℃/時間)下で等方相(Iso )→コ
レステリック相(ah)→スメクチックA相(8mA)
→カイラルスメクチック相に相転移を生じるものや等吉
相→8mA→カイラルスメクチック相に相転移を生じる
ものが好ましい。
The ferroelectric chiral smectic liquid crystal 308 used in the liquid crystal element 300 of the present invention is cooled (slow cooling;
Isotropic phase (Iso) → cholesteric phase (ah) → smectic A phase (8 mA) under
Preferably, those that cause a phase transition from → chiral smectic phase or those that cause a phase transition from Tokichitic phase → 8 mA → chiral smectic phase.

以下、本発明を実施例に従って説明する。Hereinafter, the present invention will be explained according to examples.

実施例1〜23 ITOのストライプ状パターン電極を設けたガラス基板
の上にポリイミド形成液(ピロメリット酸二無水物と4
,4゛−ジアミノジフェニルエーテルとの脱水縮合によ
って得たポリアミド酸のN−メチルピロリドン溶液)を
加熱硬化後の膜厚が150 OAとなる様に塗布した後
、加熱硬化してポリイミド膜を形成した。このポリイミ
ド膜を設けたガラス基板を2枚用意した。こ02枚のガ
ラス基板のうち、1枚のガラス板に別のポリイミド形成
液(日立化成工業(株)のrPIQJ)を、硬化後の膜
厚が1μmとなる様に塗布した。
Examples 1 to 23 A polyimide forming solution (pyromellitic dianhydride and
, 4'-N-methylpyrrolidone solution of polyamic acid obtained by dehydration condensation with diaminodiphenyl ether) was coated to give a film thickness of 150 OA after heat curing, and then heat cured to form a polyimide film. Two glass substrates provided with this polyimide film were prepared. Among these two glass substrates, one glass plate was coated with another polyimide forming liquid (rPIQJ, manufactured by Hitachi Chemical Co., Ltd.) so that the film thickness after curing was 1 μm.

次いで、ポジ型レジスト溶液(5hipley社製O@
AZ1350’)をスピナー塗布し、プリベークした。
Next, a positive resist solution (O@ manufactured by Hipley Co., Ltd.
AZ1350') was applied using a spinner and prebaked.

このレジスト層上忙、マクスピッチ3mmのマスクを用
いて露光した。この際に用いたマスクの形状は、正方形
又は長方形状とし、第3図中のaとbに相当する長さを
第1表に示す値のものとした。次いで、テトラメチルア
ンモニウムハイドロオキサイド含有の現像液”MF31
2”で現倫することにより、露光部分のレジスト膜とそ
の下層のポリイミド膜のエツチングを行ないスルーホー
ルを形成させ、水洗、乾燥を行なった後、メチルエチル
ケトンを用いて未露光部のレジスト膜を除去した。しか
る後、200℃で60分間、350t4’30分間の加
熱により硬化を行ない、ポリイミドイソインドロキナゾ
リンジオンのスペーサを形成した。
This resist layer was exposed to light using a mask with a maximum pitch of 3 mm. The shape of the mask used in this case was square or rectangular, and the lengths corresponding to a and b in FIG. 3 were set to the values shown in Table 1. Next, a developer containing tetramethylammonium hydroxide "MF31" was applied.
By etching at 2", the resist film in the exposed area and the underlying polyimide film are etched to form through holes. After washing and drying, the resist film in the unexposed area is removed using methyl ethyl ketone. Thereafter, it was cured by heating at 200°C for 60 minutes and 350t4' for 30 minutes to form a spacer of polyimide isoindoquinazolinedione.

次いで、四角柱体(スペーサ)の辺すの方向と垂直方向
に沿って、布により、ラビング処理を行なった後、水と
アセトンにより順次洗浄し、乾燥させた。
Next, a rubbing treatment was performed with a cloth along the sides and a direction perpendicular to the square prism (spacer), followed by washing with water and acetone sequentially, and drying.

次に、前述のポリイミド膜を設けたもう1方のガラス基
板(予め、ラビング処理した後、周辺に注入口なる個所
を除いてエポキシ系接着剤をスクリーン印刷法によって
塗布した)とスペーサとなる四角柱体を設けたガラス基
板と重ね合せ、エポキシ系接着剤を硬化させることによ
ってセルを作成した。この時、2枚のガラス基板に施し
たラビング方向が互に平行となり、且つストライブ状パ
ターン電極が互に直交する様にセル組みした。
Next, the other glass substrate on which the polyimide film described above was provided (after rubbing in advance, epoxy adhesive was applied around it by screen printing except for the injection port) and the four substrates that would become spacers. A cell was created by stacking the glass substrate with a prismatic body and curing the epoxy adhesive. At this time, the cells were assembled so that the rubbing directions applied to the two glass substrates were parallel to each other and the striped pattern electrodes were perpendicular to each other.

次いで、このセルを真空槽の中に入れ、充分にセル内部
を真空に引いた後、セルの注入口に下記の液晶材料を接
触させることによって、セル内部と外部とを遮断した後
、真空槽を大気圧に戻すと、液晶材料がセル内部に注入
された。
Next, this cell is placed in a vacuum chamber, the inside of the cell is sufficiently evacuated, and the liquid crystal material described below is brought into contact with the injection port of the cell to isolate the inside and outside of the cell. When the cell was returned to atmospheric pressure, liquid crystal material was injected into the cell.

この注入工程は、液晶材料を等労相(75℃)下で行な
った。
This injection step was carried out under conditions where the liquid crystal material was in constant phase (75° C.).

液晶材料 液晶材料をセル内部に注入した後、注入口を封止し、等
労相下にある液晶材料を約0.5℃/時間の割合で徐冷
して等労相から順次コレステリック相、スメクチック人
相及びカイラルスメクチックC相に相転移を生じさせる
ことによって、28℃で強誘電性カイラルスメクチック
液晶素子(記憶性素子)を作成した。
Liquid crystal material After the liquid crystal material is injected into the cell, the injection port is sealed, and the liquid crystal material in the liquid crystal phase is slowly cooled at a rate of about 0.5°C/hour, starting from the liquid crystal phase to the cholesteric phase and then to the smectic phase. A ferroelectric chiral smectic liquid crystal device (memory device) was produced at 28° C. by causing a phase transition in the phase and the chiral smectic C phase.

この液晶素子の配向状態を直交ニコル下で偏光顕微値に
より観察した。又、この液晶素子に30ボルトと一30
ボルトの電圧を印加して双安定性の評価を行なった。
The alignment state of this liquid crystal element was observed using a polarized light microscope under crossed Nicols. Also, 30 volts and -30 volts are applied to this liquid crystal element.
Bistability was evaluated by applying a voltage of volts.

これらの実験結果を第1表に示す。表中の○は配向欠陥
が全くない良好な配向状態を示し、且つ良好な双安定性
を示したサンプルで、Δけ多少の配向欠陥があったが、
実用可能な範囲での双安定性を示し、たサンプルで、×
は第7図に示す配向欠陥71が多数発生し、実用が不可
能なサンプルである。尚、第7図中の何カのうち、第3
図と同−何カのものけ、それと同一の部材を示している
The results of these experiments are shown in Table 1. In the table, ○ indicates a good alignment state with no alignment defects and also good bistability, while Δ had some alignment defects.
In a sample that shows bistability within a practical range,
This is a sample in which a large number of orientation defects 71 shown in FIG. 7 occur, making it impossible to put it to practical use. Of the numbers in Figure 7, the third
Same as the figure - several items showing the same parts.

第1表 (1)     5    300    Q(7) 
    10    100    Q(8)    
 10    50     Q(10)     2
0    300     Δ(11)     20
    150     Δ(16’)     25
    300     X(’17)     25
    150     X(18)     25 
   100     X(19)     25  
   50     X(20)     25   
  25     X(21)     30    
200     X(22)     30     
50     Xこれらの実験によれば、辺aの長さを
20μm以下と設定することによって配向欠陥が皆無の
液晶素子とすることができ、この際の四角柱体スペーサ
の長さbけ、配向欠陥の発生に対する大きな要因となっ
ていないことが判る。
Table 1 (1) 5 300 Q(7)
10 100 Q(8)
10 50 Q(10) 2
0 300 Δ(11) 20
150 Δ(16') 25
300 X ('17) 25
150 X (18) 25
100 X (19) 25
50 X(20) 25
25 X(21) 30
200 X (22) 30
50X According to these experiments, by setting the length of side a to 20 μm or less, a liquid crystal element with no alignment defects can be obtained. It can be seen that this is not a major factor in the occurrence of

実施例24〜32 前記実施例1〜23で用いた四角柱体のスペーサに代え
て、第4図に示す円柱体スペーサ(長さbを第2表に示
す)を用い九はかけ、全く同様の方法で液晶素子を作成
し、その評価を行なった。その結果を第2表で明らかに
する。
Examples 24 to 32 In place of the rectangular prism spacer used in Examples 1 to 23, a cylindrical spacer shown in FIG. A liquid crystal device was created using the method described above, and its evaluation was performed. The results are shown in Table 2.

第  2  表 (25)   20    Q (28)   so    0 (29)   80    Δ (30)        90          Δ
(31)   100    Δ (32)   150    X これらの実験によれば、辺aの長が0μm(辺aがラビ
ング処理方向に対して接点となっている)の素子では、
直径(b)を100μm以下とした時に実用可能な配向
状態と双安定性が得られ、特に直径(b)を50μm以
下とした時には配向欠陥が皆無の配向状態の素子が得ら
れたことが判る。
Table 2 (25) 20 Q (28) so 0 (29) 80 Δ (30) 90 Δ
(31) 100 Δ (32) 150
It can be seen that when the diameter (b) was set to 100 μm or less, a practical orientation state and bistability were obtained, and especially when the diameter (b) was set to 50 μm or less, an element with an oriented state with no orientation defects was obtained. .

実施例33〜40 前記実施例1〜23で用いた四角柱体のスペーサに代え
て、第5図に示す惰円柱体スペーサ(長さbとCを第3
表に示す)を用いたほかは、全く同様の方法で液晶素子
を作成し、その評価を行なった。その結果を第3表で明
らかにする。
Examples 33 to 40 Instead of the rectangular prism spacer used in Examples 1 to 23, a cylindrical spacer shown in FIG.
A liquid crystal device was prepared in exactly the same manner except that the liquid crystal device shown in the table was used, and its evaluation was performed. The results are shown in Table 3.

第  3  表 (33)   10 5  Q (36)   Zoo  50 0 (37)         200    100  
   Δ(38)         300    1
50     Δ(39)         350 
   175     X(40)         
400    200     Xこれらの実験によれ
ば、惰円柱体スペーサを用いた液晶素子では、惰円柱体
の長さbを300μm以下とした時には、実用可能な液
晶素子が得られ、特に長さbを100μm以下とした時
にけ配向欠陥を皆無と[、だ液晶素子とすることができ
る点が判る。
Table 3 (33) 10 5 Q (36) Zoo 50 0 (37) 200 100
Δ(38) 300 1
50 Δ(39) 350
175 X (40)
400 200 X According to these experiments, in a liquid crystal element using a spacer having a spacer cylinder, a practically usable liquid crystal element can be obtained when the length b of the cylinder is 300 μm or less, and especially when the length b is 100 μm. It can be seen that a liquid crystal element with no alignment defects can be obtained when the following conditions are met.

実施例41〜67 前記実施例1〜23で用いた四角柱体スペーサに代えて
、第6図に示す六角柱体スペーサ(長さa、bとdを第
4表に示す)を用いたほかは、全く同様の方法で液晶素
子を作成し、その評価を行なった。その結果を第4表に
示す。
Examples 41 to 67 In place of the square columnar spacers used in Examples 1 to 23, hexagonal columnar spacers shown in FIG. 6 (lengths a, b, and d are shown in Table 4) were used. created a liquid crystal device using exactly the same method and evaluated it. The results are shown in Table 4.

第  4  表 (41)  Zoo   5 500 (44)  300  5150 Δ (45)  300  5200 Δ (46)  350  5175 Δ (47)  400  5200 Δ (53)  350  1(10)75 Δ(54) 
 400  10200 Δ(55)     too
      20   50  0(58)     
 3Q0       20   150    Δ(
59)      300      20   20
0    Δ(60)      350      
20  .175    X(61)      40
0       20   200    X(62)
      100      25   50   
 X(63)      200      25  
 100    X(64)      200   
   25   150    X(65)     
 300       25   150    X(
66)      300      25   20
0    X(67)      300      
25   175    Xこれらの実験から、辺の長
さaを20μm以下とした多角柱体スペーサを用いた液
晶素子では、多角柱体の長さbを300Itm以下とし
た時には、液晶素子としての実用化にはほとんど問題が
ないが、多角柱体のbを300μm以上とした場合でけ
配向欠陥が数多く発生し実用不可能なものであることが
判った。
Table 4 (41) Zoo 5 500 (44) 300 5150 Δ (45) 300 5200 Δ (46) 350 5175 Δ (47) 400 5200 Δ (53) 350 1 (10) 75 Δ (54)
400 10200 Δ(55) too
20 50 0 (58)
3Q0 20 150 Δ(
59) 300 20 20
0 Δ(60) 350
20. 175 X (61) 40
0 20 200 X(62)
100 25 50
X(63) 200 25
100 X (64) 200
25 150 X (65)
300 25 150
66) 300 25 20
0 X(67) 300
25 175 Although there are almost no problems, it has been found that when b of the polygonal prism is set to 300 μm or more, many alignment defects occur, making it impractical.

以上の実施例から液晶素子を作成する際のラビング処理
方向とスペーサにおけるラビング処理方向と垂直な辺の
長さを20μm以下とじた時には、配向欠陥を生じるこ
とがなく、良好な双安定性が得られることが判る。これ
に対し、前述の辺の長さが20μmを越えると、第7図
に示す様に前述の辺から配向欠陥が発生していた。又、
この配向欠陥線を境界にして、液晶の配向状態に相異が
観察された。この配向状態の相異は、液晶が各ドメイン
で一軸性の配向をなしてはいるが、各ドメイン間での配
向方向が異なり、ラビング処理方向から2〜3°の角度
でずれて配向したドメインが存在していた。この様な配
向状態下の各ドメインでの双安定性は大きく相異してお
沙、本来、この液J&紫子が持つメモリー性を有してお
らず、所定の駆動による良好な表示を行なうことができ
なかった。
From the above examples, when the rubbing direction when producing a liquid crystal element and the length of the side perpendicular to the rubbing direction of the spacer are set to 20 μm or less, no alignment defects occur and good bistability is obtained. It turns out that it can be done. On the other hand, when the length of the aforementioned side exceeded 20 μm, alignment defects occurred from the aforementioned side as shown in FIG. or,
Differences in the alignment state of the liquid crystal were observed with this alignment defect line as a boundary. The difference in alignment state is that although the liquid crystal is uniaxially aligned in each domain, the alignment direction is different between each domain, and the domains are oriented at an angle of 2 to 3 degrees from the rubbing direction. existed. The bistability of each domain under such an orientation state is greatly different, and originally it does not have the memory property of this liquid J & Shiko, and it can perform good display by prescribed driving. I couldn't.

この配向欠陥が発生する原因に対する解析は、未だ充分
に行なわれているわけではないが、本発明者らの推測に
よれば、ラビング処理方向と垂直に沿った辺の長さが2
0amを越えると、この辺のスペーサ側面に液晶分子が
平行配向しようとするため、素子全体での液晶の一軸性
配向が阻害されることが考えられる。本実、本発明者ら
の観察によれば、辺の長さbが20μmを越えた素子サ
ンプルでは、第7図に示す様な配向欠陥が共通に生じて
いた。
The cause of this orientation defect has not yet been sufficiently analyzed, but according to the inventors' estimation, the length of the side perpendicular to the rubbing direction is 2.
If it exceeds 0 am, the liquid crystal molecules tend to be aligned parallel to the side surface of the spacer on this side, which may impede the uniaxial alignment of the liquid crystal in the entire device. In fact, according to the observations of the present inventors, alignment defects as shown in FIG. 7 commonly occur in element samples with side lengths b exceeding 20 μm.

〔効 果〕〔effect〕

このような現象は、ネiチック液晶やコレステリック液
晶では見られなかった現象であり、又、カイラルスメク
チック液晶でも、その螺旋構造を解除するのに充分薄い
セルの場合には特徴的に発生する。前述の実験に於て、
現象的にけ、辺すの長さが、20μm以下であれば欠陥
発生基を減少させることができる。
Such a phenomenon has not been observed in natic liquid crystals or cholesteric liquid crystals, and also occurs characteristically in chiral smectic liquid crystals when the cell is thin enough to release the helical structure. In the above experiment,
Phenomenologically, if the length of the edge is 20 μm or less, the number of defect-generating groups can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で用いた強誘電性液晶素子を模式的に
示した斜視図である。第2図は、本発明で用いた別の強
誘電性液晶素子を模式的に示した斜視図である。第3図
(A)は、本発明の液晶素子の断面図で、第3図(B)
はその平面図である。第4図、第5図及び第6図は、そ
れぞれ本発明で用いたスペーサ形状を示す平面図である
。第7図は、比較素子で発生した配向欠陥の状態をスケ
ッチした説明図である。 1a N                    〜へ1 
                         
 S%口
FIG. 1 is a perspective view schematically showing a ferroelectric liquid crystal element used in the present invention. FIG. 2 is a perspective view schematically showing another ferroelectric liquid crystal element used in the present invention. FIG. 3(A) is a sectional view of the liquid crystal element of the present invention, and FIG. 3(B) is a cross-sectional view of the liquid crystal element of the present invention.
is its plan view. FIG. 4, FIG. 5, and FIG. 6 are plan views each showing the shape of the spacer used in the present invention. FIG. 7 is an explanatory diagram sketching the state of orientation defects occurring in the comparative element. 1a N to 1

S% mouth

Claims (10)

【特許請求の範囲】[Claims] (1)スペーサとなる微細な突起体を有し、且つ一方向
に一軸性配向処理を施した第1の基板と、該第1の基板
に対向する第2の基板とを有し、該第1の基板と第2の
基板との間に液晶を配置した液晶素子において、前記一
軸性配向処理方向に対する垂直方向に沿つた前記突起体
の辺の長さが0μm〜20μm(0μmは突起体の頂点
又は接点を意味する)であることを特徴とする液晶素子
(1) A first substrate having minute protrusions serving as spacers and subjected to uniaxial alignment treatment in one direction, and a second substrate facing the first substrate; In a liquid crystal element in which a liquid crystal is arranged between a first substrate and a second substrate, the length of the side of the protrusion along the direction perpendicular to the uniaxial alignment treatment direction is 0 μm to 20 μm (0 μm is the length of the protrusion). A liquid crystal element characterized in that it is a vertex or a contact point.
(2)前記一軸性配向処理方向に対する垂直方向に沿つ
た前記突起体の辺の長さが0μm〜20μmであるとと
もに、前記突起体における一軸性配向処理方向と平行な
成分の長さが300μm以下である特許請求の範囲第1
項記載の液晶素子。
(2) The length of the side of the protrusion along the direction perpendicular to the uniaxial orientation treatment direction is 0 μm to 20 μm, and the length of the component of the protrusion parallel to the uniaxial orientation treatment direction is 300 μm or less The first claim is
The liquid crystal element described in .
(3)前記突起体が基板面内での直径を50μm以下と
した円柱体である特許請求の範囲第1項記載の液晶素子
(3) The liquid crystal element according to claim 1, wherein the protrusion is a cylindrical body having a diameter within the plane of the substrate of 50 μm or less.
(4)前記突起体が惰円柱体であつて、その楕円の長軸
を前記一軸性配向処理方向と平行とし、その短軸の長さ
を50μm以下とした惰円柱体である特許請求の範囲第
1項記載の液晶素子。
(4) The scope of the present invention is that the protrusion is an elliptical cylinder whose long axis is parallel to the uniaxial alignment treatment direction and whose short axis has a length of 50 μm or less. The liquid crystal element according to item 1.
(5)前記一軸性配向処理がラビング処理である特許請
求の範囲第1項記載の液晶素子。
(5) The liquid crystal element according to claim 1, wherein the uniaxial alignment treatment is a rubbing treatment.
(6)前記液晶が強誘電性液晶である特許請求の範囲第
1項記載の液晶素子。
(6) The liquid crystal element according to claim 1, wherein the liquid crystal is a ferroelectric liquid crystal.
(7)前記液晶が強誘電性液晶であつて、前記第1の基
板と第2の基板が該強誘電性液晶の螺旋構造を解徐する
のに充分小さい間隔に保持されている特許請求の範囲第
1項記載の液晶素子。
(7) The liquid crystal is a ferroelectric liquid crystal, and the first substrate and the second substrate are held at a spacing sufficiently small to loosen the helical structure of the ferroelectric liquid crystal. The liquid crystal element according to range 1.
(8)前記強誘電性液晶がカイラルスメクチツク液晶で
ある特許請求の範囲第6項又は第7項記載の液晶素子。
(8) The liquid crystal element according to claim 6 or 7, wherein the ferroelectric liquid crystal is a chiral smectic liquid crystal.
(9)前記突起体が1mm^2当り0.1個〜100個
の割合で分布している特許請求の範囲第1項記載の液晶
素子。
(9) The liquid crystal element according to claim 1, wherein the protrusions are distributed at a rate of 0.1 to 100 per mm^2.
(10)前記突起体が1mm^2当り0.5個〜50個
の割合で分布している特許請求の範囲第1項記載の液晶
素子。
(10) The liquid crystal element according to claim 1, wherein the protrusions are distributed at a rate of 0.5 to 50 per mm^2.
JP10963985A 1985-05-16 1985-05-22 Liquid crystal element Granted JPS61267736A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10963985A JPS61267736A (en) 1985-05-22 1985-05-22 Liquid crystal element
US06/862,978 US4775225A (en) 1985-05-16 1986-05-14 Liquid crystal device having pillar spacers with small base periphery width in direction perpendicular to orientation treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10963985A JPS61267736A (en) 1985-05-22 1985-05-22 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPS61267736A true JPS61267736A (en) 1986-11-27
JPH0547086B2 JPH0547086B2 (en) 1993-07-15

Family

ID=14515381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10963985A Granted JPS61267736A (en) 1985-05-16 1985-05-22 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS61267736A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499128A (en) * 1993-03-15 1996-03-12 Kabushiki Kaisha Toshiba Liquid crystal display device with acrylic polymer spacers and method of manufacturing the same
JPH10104640A (en) * 1996-08-05 1998-04-24 Toray Ind Inc Substrate for liquid crystal display element and color liquid crystal display element including the same
US6864945B2 (en) 2000-08-30 2005-03-08 Sharp Kabushiki Kaisha Liquid crystal display and manufacturing method thereof
US6888608B2 (en) * 1995-09-06 2005-05-03 Kabushiki Kaisha Toshiba Liquid crystal display device
JP2007025715A (en) * 1996-08-05 2007-02-01 Toray Ind Inc Substrate for liquid crystal display element and color liquid crystal display element including the same
KR100763677B1 (en) * 1998-12-25 2007-10-04 소니 가부시끼 가이샤 Liquid crystal light valve apparatus
JP2020064273A (en) * 2018-10-18 2020-04-23 リクスタル テクノロジー インコーポレイテッド Liquid crystal phase modulation device and method for manufacturing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499128A (en) * 1993-03-15 1996-03-12 Kabushiki Kaisha Toshiba Liquid crystal display device with acrylic polymer spacers and method of manufacturing the same
US6888608B2 (en) * 1995-09-06 2005-05-03 Kabushiki Kaisha Toshiba Liquid crystal display device
JPH10104640A (en) * 1996-08-05 1998-04-24 Toray Ind Inc Substrate for liquid crystal display element and color liquid crystal display element including the same
JP2007025715A (en) * 1996-08-05 2007-02-01 Toray Ind Inc Substrate for liquid crystal display element and color liquid crystal display element including the same
KR100763677B1 (en) * 1998-12-25 2007-10-04 소니 가부시끼 가이샤 Liquid crystal light valve apparatus
US7298450B2 (en) 2000-08-30 2007-11-20 Sharp Kabushiki Kaisha Liquid crystal display and manufacturing method thereof
US6864945B2 (en) 2000-08-30 2005-03-08 Sharp Kabushiki Kaisha Liquid crystal display and manufacturing method thereof
US7538840B2 (en) 2000-08-30 2009-05-26 Sharp Kabushiki Kaisha Liquid crystal display and manufacturing method thereof
JP2020064273A (en) * 2018-10-18 2020-04-23 リクスタル テクノロジー インコーポレイテッド Liquid crystal phase modulation device and method for manufacturing the same
CN111077701A (en) * 2018-10-18 2020-04-28 源奇科技股份有限公司 Liquid crystal phase modulation device and method for manufacturing the same
US10901268B2 (en) 2018-10-18 2021-01-26 Liqxtal Technology Inc. Liquid crystal phase modulation device having spacer in liquid crystal layer and method for fabricating the same
CN111077701B (en) * 2018-10-18 2022-07-19 源奇科技股份有限公司 Liquid crystal lens phase modulation device
US11487167B2 (en) 2018-10-18 2022-11-01 Liqxtal Technology Inc. Method for fabricating liquid crystal phase modulation device having spacer in liquid crystal layer
US11789319B2 (en) 2018-10-18 2023-10-17 Liqxtal Technology Inc. Liquid crystal phase modulation device having elongated spacer in liquid crystal layer

Also Published As

Publication number Publication date
JPH0547086B2 (en) 1993-07-15

Similar Documents

Publication Publication Date Title
US4775225A (en) Liquid crystal device having pillar spacers with small base periphery width in direction perpendicular to orientation treatment
US4712875A (en) Dimensions of spacer particles for a ferroelectric liquid crystal display
JPH0236930B2 (en)
JPS6377019A (en) Ferroelectric liquid crystal element
JPS61267736A (en) Liquid crystal element
JP2647828B2 (en) Liquid crystal device manufacturing method
JPH0799419B2 (en) Liquid crystal element
JPS62150221A (en) Ferroelectric liquid crystal element
KR101700922B1 (en) Optical memory device based on DHFLC material and method of preparing the same
JPS61205919A (en) Liquid crystal element
JPS61205920A (en) Liquid crystal element
JPS6031118A (en) Optical modulating element and its manufacture
JPS61208031A (en) Liquid crystal element
JPS61204615A (en) Liquid crystal element
JPH0644121B2 (en) Liquid crystal element
JPS61208030A (en) Liquid crystal element
JPH0415452B2 (en)
JPS61208032A (en) Liquid crystal element
JPS61205921A (en) Liquid crystal element
JPS61208029A (en) Liquid crystal element
JPS6031117A (en) Optical modulating element and its manufacture
JPS62295021A (en) Liquid crystal element and its production
JPS61205918A (en) Liquid crystal element
JPS61208033A (en) Liquid crystal element
JP2699999B2 (en) Liquid crystal element